WO2009122538A1 - Honeycomb structure - Google Patents

Honeycomb structure Download PDF

Info

Publication number
WO2009122538A1
WO2009122538A1 PCT/JP2008/056415 JP2008056415W WO2009122538A1 WO 2009122538 A1 WO2009122538 A1 WO 2009122538A1 JP 2008056415 W JP2008056415 W JP 2008056415W WO 2009122538 A1 WO2009122538 A1 WO 2009122538A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb structure
aluminum titanate
firing
inorganic fiber
honeycomb
Prior art date
Application number
PCT/JP2008/056415
Other languages
French (fr)
Japanese (ja)
Inventor
大野一茂
山寄一徳
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Priority to PCT/JP2008/056415 priority Critical patent/WO2009122538A1/en
Publication of WO2009122538A1 publication Critical patent/WO2009122538A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • B01J35/56
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers

Definitions

  • the present invention relates to a honeycomb structure.
  • exhaust gas discharged from an internal combustion engine such as a diesel engine contains particulate matter (hereinafter also referred to as PM).
  • PM particulate matter
  • various honeycomb filters using honeycomb structures made of cordierite, silicon carbide, aluminum titanate, etc. have been proposed as exhaust gas filters that collect PM in exhaust gas and purify the exhaust gas.
  • a honeycomb structure using aluminum titanate has a melting temperature higher than that of a honeycomb structure using cordierite, so that melting damage occurs when regeneration is performed by burning PM as a honeycomb filter. 2) Since the thermal expansion coefficient is lower than that of a honeycomb structure using silicon carbide, it is known that even a large filter is not easily destroyed by heat generated when PM is burned. ing.
  • a honeycomb structure made of aluminum titanate has minute cracks due to anisotropy of the crystal axis of aluminum titanate.
  • Such a honeycomb structure made of aluminum titanate tends to be damaged when a thermal shock occurs due to a local temperature change during the regeneration process or when vibration occurs during use. That is, a honeycomb structure made of aluminum titanate has a problem that it has low mechanical strength and is easily decomposed by heat.
  • the honeycomb structure used in the exhaust gas filter has a first particle made of aluminum titanate and a second aluminum titanate having an average particle size smaller than at least the first particle.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a honeycomb structure having high mechanical strength and suppressed shrinkage during firing.
  • the porous honeycomb structure obtained by firing the aluminum titanate powder includes inorganic fibers having a melting point or sublimation point higher than the firing temperature when firing the aluminum titanate powder.
  • the inorganic fibers serve to reinforce the aluminum titanate particles when tensile stress is applied. Thereby, the breakage of the honeycomb structure that progresses from minute cracks at the time of manufacture and use can be prevented.
  • the presence of inorganic fibers between the aluminum titanate particles acts as a framework that fixes the position of each particle, so that the aluminum titanate particles tend to contract during firing. It can resist, and shrinkage at the time of firing can be suppressed.
  • the aluminum titanate powder has a composition ratio (% by mass) of Al 2 O 3 of 40 to 60%, TiO 2 of 30 to 50%, and SiO 2 and MgO in total. 1 to 15%.
  • the Al contained in the aluminum titanate is replaced by Si 2 or MgO derived from SiO 2 and MgO, and the particles are more firmly bonded, so that the thermal decomposition of the honeycomb structure Resistance can be further improved.
  • the composition ratio of Al 2 O 3 and TiO 2 is outside the above range, the reaction-sintered aluminum titanate is gradually decomposed into Al 2 O 3 and TiO 2 by high-temperature exhaust gas or the like. Become. If the total composition ratio of SiO 2 and MgO is outside the above range, decomposition tends to proceed.
  • the total amount of each component does not have to be 100% by mass, and the aluminum titanate powder may contain impurities.
  • the impurities include alkali feldspar-derived substances (K 2 O, Na 2 O, etc.), Al 2 O 3 powder as a raw material for iron compounds and aluminum titanate powders when the aluminum titanate powder is pulverized or mixed. And substances originally contained in TiO 2 powder.
  • inorganic fiber since 5 to 30 parts by weight of inorganic fiber is contained with respect to 100 parts by weight of the aluminum titanate powder, the high melting temperature and low thermal expansion characteristic of aluminum titanate are maintained. Moreover, the effect of strength improvement by inorganic fibers and the effect of suppressing shrinkage during firing can be obtained more efficiently.
  • the inorganic fiber is an inorganic fiber mainly composed of at least one of alumina and silicon carbide as in the honeycomb structure according to claim 4, a melting point or sublimation higher than a firing temperature at the time of firing the aluminum titanate powder. Therefore, the strength can be sufficiently improved even after firing.
  • the main component of the inorganic fiber is silicon carbide
  • the thermal conductivity of the entire honeycomb structure including the inorganic fiber is improved due to the high thermal conductivity of silicon carbide.
  • FIG. 1 (a) is a perspective view schematically showing an example of the honeycomb structure of the present invention
  • FIG. 1 (b) shows the cell wall of the honeycomb structure of the present invention shown in FIG. 1 (a).
  • FIG. 2 is a cross-sectional view (cross-sectional view taken along line AA in FIG. 1A) schematically showing an example of a cross-section of a cell wall exposed by cutting in parallel to the longitudinal direction.
  • the honeycomb structure 10 made of aluminum titanate has a cylindrical shape. And in that inside, as shown in FIG.1 (b), the several cell 11 is formed along the longitudinal direction (the direction of arrow a in FIG.1 (a)) of the honeycomb structure 10, Each cell 11 is separated by a cell wall 13. One end of the cell 11 is sealed with a sealing material 12.
  • the sealing material 12 is made of the same material as that of the honeycomb structure 10 and is made of aluminum titanate. With this sealing material 12, the honeycomb structure 10 is sealed so that the exhaust gas does not flow out from one end of the cell 11. For this reason, the exhaust gas flowing into one cell (indicated by an arrow in FIG. 1B) always passes through the cell wall 13 separating the one cell and then flows out from the other cells. Therefore, when exhaust gas passes through the cell wall 13, PM is collected by the cell wall 13 and the exhaust gas is purified.
  • the honeycomb structure of the present embodiment includes inorganic fibers having a melting point or sublimation point higher than the firing temperature when firing the aluminum titanate powder.
  • FIG. 2 is a cross-sectional view schematically showing a part of the cross section of the cell wall when the honeycomb structure is cut in a direction parallel to the longitudinal direction (part of the cross section of the cell wall shown in FIG. 1B). It is an expanded sectional view).
  • the cell wall 13 has a porous structure in which portions made of aluminum titanate (hereinafter also referred to as a base material) 21 and pores 22 exist. .
  • Cell walls 13 exhibiting this porous structure contain inorganic fibers 20 mainly composed of silicon carbide or alumina.
  • the inorganic fibers 20 are uniformly present inside the cell wall 13.
  • the average length of the inorganic fibers is 5 to 100 ⁇ m, and the average diameter is 0.1 to 10 ⁇ m.
  • the inorganic fiber has a melting point or sublimation point higher than the firing temperature of aluminum titanate described later. Thereby, even after firing, the inorganic fiber can maintain its own shape and exert an effect of reinforcing the base material 21.
  • the entire surface of the inorganic fibers 20 is not completely covered by the base material 21, but is integrated so as to occupy a part of the surface of the base material 21 constituting the cell wall 13. There are portions that are turned (ie, portions that are covered with the base material 21) and portions that are exposed to the pores 22.
  • the number of portions integrated with the base material 21 may be one, or two or more. Depending on the fiber length of the inorganic fiber 20, the size of the pores 22, the orientation of the inorganic fiber 20, etc., the range and the number of the integrated parts will change.
  • the inorganic fiber 20 reinforces the space between the aluminum titanate particles, so that the mechanical strength of the cell wall 13 portion is improved, and sufficient durability against external forces such as vibration received when the honeycomb structure 10 is used is exhibited. It will be. Further, in the manufacturing process of the honeycomb structure 10, in the firing process of the aluminum titanate powder, a contraction force that causes the aluminum titanate powder to contract is generated. However, since the inorganic fiber 20 works so as to oppose the shrinkage force peculiar to aluminum titanate, a predetermined dimension and a pore structure can be maintained.
  • the thermal conductivity in the cell wall 13 is isotropic.
  • the thermal conductivity is improved, and the PM combustion heat during the regeneration process is efficiently distributed to the entire honeycomb structure, so that the PM combustion efficiency can be improved.
  • a mixture is prepared by mixing coarse powder of aluminum titanate, fine powder of aluminum titanate, inorganic fibers, pore former, organic binder, plasticizer, lubricant and water, and stirring sufficiently.
  • the added amount of the inorganic fiber may be 5 to 30 parts by weight with respect to 100 parts by weight of the total of the aluminum titanate coarse powder and the aluminum titanate fine powder.
  • the inorganic fiber should just have melting
  • the mixture is extruded using an extruder, and a long honeycomb molded body having a cylindrical shape in which a plurality of cells separated by cell walls is formed along the longitudinal direction is produced.
  • the obtained honeycomb formed body is cut with a microwave dryer and a hot air dryer. Dry at 100 to 150 ° C. in an air atmosphere for 1 to 30 minutes.
  • the plug material paste having the same composition as that of the above mixture is filled into a predetermined cell of the honeycomb molded body so that the plug material paste is filled into any one end portion of the cells of the honeycomb molded body.
  • the honeycomb formed body in which the plug material paste is filled at either one end of the cell is dried again. Thereafter, degreasing is performed in a degreasing furnace at 250 to 400 ° C., oxygen concentration of 5% by volume to atmospheric atmosphere for 3 to 15 hours, and then baking is performed in a baking furnace at 1200 to 1700 ° C. for 1 to 24 hours.
  • the honeycomb structure of the present embodiment is manufactured through the above steps.
  • the porous honeycomb structure obtained by firing the aluminum titanate powder includes inorganic fibers having a melting point or sublimation point higher than the firing temperature when firing the aluminum titanate powder.
  • the inorganic fibers serve to reinforce the space between the aluminum titanate particles, and it is possible to prevent damage to the honeycomb structure that develops from minute cracks during production and use.
  • the presence of the inorganic fiber can resist the force that the aluminum titanate particles tend to shrink when the inorganic fiber is fired, and can suppress shrinkage during the firing.
  • the aluminum titanate powder contains 40 to 60% Al 2 O 3 , 30 to 50% TiO 2 and 1 to 15% in total of SiO 2 and MgO as a composition ratio. Thereby, the thermal decomposition tolerance of a honeycomb structure can be improved more.
  • the reinforcing effect between the aluminum titanate particles can contribute to the improvement of the mechanical strength of the honeycomb structure.
  • the strength of the inorganic fibers themselves can be maintained while maintaining the entanglement between the inorganic fibers and the aluminum titanate particles, and the strength of the honeycomb structure Can be improved.
  • the inorganic fiber is an inorganic fiber mainly composed of at least one of alumina and silicon carbide, it has a melting point or sublimation point higher than the firing temperature at the time of firing the aluminum titanate powder. In this case, the strength can be sufficiently improved.
  • the main component of the inorganic fiber is silicon carbide, the thermal conductivity of the entire honeycomb structure including the inorganic fiber is improved due to the high thermal conductivity of silicon carbide.
  • Example 1 (1) Mixing step: Aluminum titanate coarse powder 2000 parts by weight, aluminum titanate fine powder 500 parts by weight, pore former (spherical acrylic particles) 300 parts by weight, organic binder (methylcellulose) 188 parts by weight, plasticizer (Japan) A wet mixture was prepared by mixing 96 parts by weight (Unilube, manufactured by Yushi Co., Ltd.), 44 parts by weight of a lubricant (glycerin), and 725 parts by weight of water and stirring sufficiently. The average length of the inorganic fibers was 15 ⁇ m, and the average diameter was 1 ⁇ m.
  • the honeycomb formed body obtained in the drying step (3) is subjected to a drying treatment at 120 ° C. for 20 minutes in an air atmosphere by a microwave dryer and a hot air dryer to remove moisture contained in the honeycomb formed body. Removed.
  • the honeycomb formed body obtained in the degreasing and firing step (5) is dried again at 120 ° C. for 10 minutes in the air atmosphere, and then degreased in a degreasing furnace at 300 ° C., air atmosphere for 12 hours. Furthermore, it baked at 1300 degreeC for 3 hours in the baking furnace.
  • a honeycomb structure made of aluminum titanate having a cell density of 46.5 cells / cm 2 , a diameter of 143.8 mm, and a length in the longitudinal direction of 150 mm was manufactured.
  • Example 2 A honeycomb structure was manufactured in the same manner as in Example 1 except that inorganic fibers made of alumina (average length: 50 ⁇ m, average diameter: 5 ⁇ m) were used as the inorganic fibers.
  • Example 1 A honeycomb structure was manufactured in the same manner as in Example 1 except that inorganic fibers were not included.
  • the substrate strength of the honeycomb structures of Examples 1 and 2 was 4 MPa or more, whereas the honeycomb structure of Comparative Example 1 did not reach 4 MPa. This is because in the honeycomb structures of Examples 1 and 2, since the aluminum titanate particles are reinforced by the inorganic fibers contained in these honeycomb structures, the strength against the applied stress is high. It is thought that it improved.
  • the inorganic fiber contained in the honeycomb structure of the present invention is not particularly limited as long as it is an inorganic fiber having a melting point or sublimation point higher than the firing temperature of the aluminum titanate powder, but an inorganic fiber having a melting point or sublimation point of 1500 ° C. or higher.
  • Fiber is preferable, for example, alumina fiber such as Denka Arsene (manufactured by Denki Kagaku Kogyo Co., Ltd.), SC Bulk 1600 (manufactured by Nippon Kayaku Thermal Ceramics Co., Ltd.), Safil Alumina (manufactured by Safil Japan Co., Ltd.), Tyranno Fiber (manufactured by Ube Industries, Ltd.) ) And silicon carbide fibers such as Nikaron (manufactured by Nippon Carbon Co., Ltd.). In particular, silicon carbide fibers are desirable from the viewpoint of heat resistance.
  • alumina fiber such as Denka Arsene (manufactured by Denki Kagaku Kogyo Co., Ltd.), SC Bulk 1600 (manufactured by Nippon Kayaku Thermal Ceramics Co., Ltd.), Safil Alumina (manufactured by Safil Japan Co., Ltd.), Tyranno Fiber (manufactured by Ube Industries, Ltd.) )
  • the shape of the cross section perpendicular to the longitudinal direction of the honeycomb structure of the present invention is not particularly limited to a circle, and may be various shapes such as a rectangle, but is surrounded only by a curve or by a curve and a straight line. It is desirable to have a shape.
  • a shape in which a part of a simple closed curve such as an ellipse, an ellipse (race track shape), an ellipse, or an ellipse has a recess (concave shape) can be exemplified. .
  • the desirable value of the aperture ratio of the honeycomb structure of the present invention is a lower limit of 50% and an upper limit of 75%.
  • the opening ratio is less than 50%, the pressure loss when the exhaust gas flows into and out of the honeycomb structure may increase, and when it exceeds 75%, the strength of the honeycomb structure may decrease.
  • the thickness of the adjacent cell wall is preferably 0.15 mm or more. This is because if the thickness is less than 0.15 mm, the strength of the honeycomb structure may be lowered.
  • the desirable upper limit of the thickness of the adjacent cell walls is 0.4 mm. If the cell wall is too thick, the cell aperture ratio and / or the filtration area may be reduced, and the pressure loss may increase accordingly. Further, the ash generated when PM is burned is deeply penetrated into the pores and is difficult to escape.
  • the cell density in the direction perpendicular to the longitudinal direction is not particularly limited.
  • the desirable lower limit is 23.3 / cm 2 (150 / in 2 ), and the desirable upper limit is 93.0 / cm 2 (600.0 pieces / in 2 ), the more desirable lower limit is 31 pieces / cm 2 (200 pieces / in 2 ), and the more desirable upper limit is 77.5 pieces / cm 2 (500.0 pieces / in 2). ).
  • the shape of the cell in plan view is not particularly limited to a quadrangle, and examples thereof include a triangle, a hexagon, an octagon, a dodecagon, a circle, an ellipse, and a star.
  • the average particle size of the aluminum titanate coarse powder is preferably 3 to 50 ⁇ m, and the average particle size of the fine aluminum titanate powder is preferably 0.1 to 3 ⁇ m.
  • the mixing ratio of the aluminum titanate coarse powder and the aluminum titanate fine powder is preferably 9: 1 to 6: 4. It is because shrinkage
  • the organic binder used when preparing the said mixture is not specifically limited, For example, carboxymethylcellulose, hydroxyethylcellulose, polyethyleneglycol etc. are mentioned. Of these, methylcellulose is desirable.
  • the blending amount of the organic binder is usually preferably 1 to 10 parts by weight with respect to 100 parts by weight of the aluminum titanate powder.
  • the plasticizer and lubricant used in preparing the mixture are not particularly limited, and examples of the plasticizer include glycerin.
  • examples of the lubricant include polyoxyalkylene compounds such as polyoxyethylene alkyl ether and polyoxypropylene alkyl ether.
  • Specific examples of the lubricant include polyoxyethylene monobutyl ether and polyoxypropylene monobutyl ether. In some cases, the plasticizer and the lubricant may not be contained in the above mixture.
  • a dispersion medium liquid may be used.
  • the dispersion medium liquid include water, alcohols such as methanol, and organic solvents such as benzene and toluene.
  • a molding aid may be added to the mixture.
  • the molding aid is not particularly limited, and examples thereof include ethylene glycol, dextrin, fatty acid, fatty acid soap, polyalcohol and the like.
  • a pore-forming agent such as balloons that are fine hollow spheres containing oxide-based ceramics, spherical acrylic particles, and graphite may be added to the above mixture as necessary.
  • the balloon is not particularly limited, and examples thereof include an alumina balloon, a glass micro balloon, a shirasu balloon, a fly ash balloon (FA balloon), and a mullite balloon. Of these, alumina balloons are desirable.
  • the sealing material paste for sealing the cells is not particularly limited, but it is desirable that the porosity of the sealing material manufactured through a subsequent process is 40 to 60%.
  • the same material as the above mixture is used. be able to.
  • a catalyst may be added to the honeycomb structure as necessary.
  • the type of catalyst supported on the honeycomb structure is not particularly limited, and examples thereof include noble metal elements, alkali metal elements, alkaline earth metal elements, and metal oxides. These may be used alone or in combination of two or more.
  • Examples of the noble metal element include platinum, palladium, rhodium and the like, examples of the alkali metal element include potassium and sodium, and examples of the alkaline earth metal element include barium and the like. It is done.
  • Examples of the metal oxide include CeO 2 , K 2 O, ZrO 2 , FeO 2 , Fe 2 O 3 , CuO, CuO 2 , Mn 2 O 3 , MnO, composition formula An B 1-n CO 3 (where 0 ⁇ n ⁇ 1, A is La, Nd, Sm, Eu, Gd or Y, B is an alkali metal or alkaline earth metal, and C is Mn, Co, Fe or Ni) ) And the like.
  • the supported amount of the catalyst with respect to the apparent volume of the honeycomb structure is preferably 10 to 200 g / l.
  • the supported amount is 10 g / l or less, the portion where the catalyst is not supported on the wall portion of the honeycomb structure increases, so that a portion where PM and the catalyst do not come into contact with each other, and the PM combustion temperature is sufficiently high.
  • the contact efficiency between PM and the catalyst does not improve so much even when the amount exceeds 200 g / l.
  • an alumina film having a high specific surface area may be formed on the surface of the honeycomb structure, and the catalyst may be applied to the surface of the alumina film.
  • an alumina film on the surface of the honeycomb structure for example, a method in which a honeycomb structure is impregnated with a solution of a metal compound containing aluminum such as Al (NO 3 ) 3 and heated, an alumina powder is contained.
  • the honeycomb structure may be impregnated with a solution to be heated and heated.
  • the catalyst may be applied in advance by applying the catalyst to alumina particles, impregnating the honeycomb structure with a solution containing the alumina powder to which the catalyst is applied, and heating.
  • the apparatus used for producing the elongated body of the honeycomb molded body is not particularly limited, and is a single-screw extruder, a multi-screw extruder, a plunger type. Examples thereof include a molding machine. Among these, a plunger type molding machine can be particularly preferably used.
  • the dryer used for drying the honeycomb formed body after the cutting step or the honeycomb formed body after the sealing step is not particularly limited.
  • a microwave heating dryer for example, a hot air dryer, an infrared dryer, etc.
  • a plurality of devices may be combined.
  • FIG. 3 is a cross-sectional view schematically showing an example of a cross section of a cell wall exposed by cutting in a cross section (a cross-sectional view taken along line AA in FIG. 5A).
  • Fig. 3 is a cross-sectional view schematically showing a part of a cross section of a cell wall when cut along a plane perpendicular to the longitudinal direction of the honeycomb structure.

Abstract

A honeycomb structure of high mechanical strength that attains an inhibition of shrinkage at firing. The honeycomb structure is a porous honeycomb structure having multiple cells laid along the longitudinal direction with a cell wall interposed therebetween, either one end portion of each of the cells being sealed, which porous honeycomb structure is obtained by firing powdery aluminum titanate. The porous honeycomb structure is characterized by containing an inorganic fiber with a melting point or sublimation point higher than the firing temperature at firing of powdery aluminum titanate.

Description

ハニカム構造体Honeycomb structure
本発明は、ハニカム構造体に関する。 The present invention relates to a honeycomb structure.
従来、ディーゼルエンジン等の内燃機関から排出される排ガス中には、パティキュレートマター(以下、PMともいう)が含まれており、近年、このPMが環境や人体に害を及ぼすことが問題となっている。
そこで、排ガス中のPMを捕集して排ガスを浄化する排ガスフィルタとして、コージェライト、炭化ケイ素、チタン酸アルミニウムなどからなるハニカム構造体を用いたハニカムフィルタが種々提案されている。
Conventionally, exhaust gas discharged from an internal combustion engine such as a diesel engine contains particulate matter (hereinafter also referred to as PM). In recent years, it has been a problem that this PM is harmful to the environment and the human body. ing.
Accordingly, various honeycomb filters using honeycomb structures made of cordierite, silicon carbide, aluminum titanate, etc. have been proposed as exhaust gas filters that collect PM in exhaust gas and purify the exhaust gas.
これらのなかで、チタン酸アルミニウムを用いたハニカム構造体では、1)コージェライトを用いたハニカム構造体よりも溶融温度が高いので、ハニカムフィルタとしてPMを燃焼させて再生処理を行う際に溶損が発生しにくいこと、2)炭化ケイ素を用いたハニカム構造体よりも熱膨張率が低いので、大型のフィルタであっても、PMを燃焼した際に発生する熱によって破壊されにくいことが知られている。 Among these, a honeycomb structure using aluminum titanate has a melting temperature higher than that of a honeycomb structure using cordierite, so that melting damage occurs when regeneration is performed by burning PM as a honeycomb filter. 2) Since the thermal expansion coefficient is lower than that of a honeycomb structure using silicon carbide, it is known that even a large filter is not easily destroyed by heat generated when PM is burned. ing.
一方で、チタン酸アルミニウムからなるハニカム構造体には、チタン酸アルミニウムの結晶軸の異方性に起因する微小なクラックが存在することが知られている。このようなチタン酸アルミニウムからなるハニカム構造体は、再生処理時の局所的な温度変化による熱衝撃が生じた場合や、使用時に振動が生じた場合には破損しやすい傾向にある。すなわち、チタン酸アルミニウムからなるハニカム構造体は、機械的強度が低く、熱による分解が生じやすいという問題を有している。 On the other hand, it is known that a honeycomb structure made of aluminum titanate has minute cracks due to anisotropy of the crystal axis of aluminum titanate. Such a honeycomb structure made of aluminum titanate tends to be damaged when a thermal shock occurs due to a local temperature change during the regeneration process or when vibration occurs during use. That is, a honeycomb structure made of aluminum titanate has a problem that it has low mechanical strength and is easily decomposed by heat.
このような問題に対し、特許文献1のように、排ガスフィルタに用いるハニカム構造体として、チタン酸アルミニウムからなる第一粒子と、少なくとも第一粒子より平均粒径の小さいチタン酸アルミニウムからなる第二粒子と、SiO成分とを含む混合物を焼結したハニカム構造体を用い、排ガスフィルタの機械的強度を向上させようとする試みがなされている。 To solve such a problem, as disclosed in Patent Document 1, the honeycomb structure used in the exhaust gas filter has a first particle made of aluminum titanate and a second aluminum titanate having an average particle size smaller than at least the first particle. Attempts have been made to improve the mechanical strength of exhaust gas filters using a honeycomb structure obtained by sintering a mixture containing particles and a SiO 2 component.
特開平9-299730号公報JP-A-9-299730
しかしながら、特許文献1に記載のチタン酸アルミニウムからなるハニカム構造体でも、絶対的な機械的強度が充分高いとはいえないことから、ハニカム構造体の製造工程の段階や使用時に破損することがあった。また、チタン酸アルミニウム粉末の焼成時の収縮率が大きいことから、焼成体の形状不良や破損が生じることがあった。 However, even the honeycomb structure made of aluminum titanate described in Patent Document 1 cannot be said to have sufficiently high absolute mechanical strength, and therefore may be damaged at the stage of manufacturing the honeycomb structure or during use. It was. Moreover, since the shrinkage rate at the time of baking of an aluminum titanate powder is large, the shape defect and damage of a sintered body may arise.
本発明は、上記課題を鑑みてなされたものであり、機械的強度が高く、焼成時の収縮が抑制されたハニカム構造体を提供することを目的とするものである。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a honeycomb structure having high mechanical strength and suppressed shrinkage during firing.
上記目的を達成するために請求項1に記載のハニカム構造体では、セル壁で隔てられた複数のセルが長手方向に沿って形成され、セルのいずれか一方の端部が封止されており、チタン酸アルミニウム粉末を焼成して得られる多孔質のハニカム構造体において、上記チタン酸アルミニウム粉末を焼成する際の焼成温度より高い融点又は昇華点を有する無機繊維を含むことを特徴とする。
このような無機繊維をチタン酸アルミニウムからなるハニカム構造体に含ませることによって、引張応力が働いた際に無機繊維がチタン酸アルミニウム粒子間を補強する役目を果たすことになる。これにより、製造時や使用時に微小なクラックから進展するハニカム構造体の破損を防止することができる。また、チタン酸アルミニウム粒子間に無機繊維が存在することで、あたかも無機繊維がそれぞれの粒子の位置を固定する骨組みのような働きをするので、焼成時にチタン酸アルミニウム粒子が収縮しようとする力に抗することができ、焼成時の収縮を抑制することができる。
In order to achieve the above object, in the honeycomb structure according to claim 1, a plurality of cells separated by cell walls are formed along the longitudinal direction, and either one end of the cells is sealed. The porous honeycomb structure obtained by firing the aluminum titanate powder includes inorganic fibers having a melting point or sublimation point higher than the firing temperature when firing the aluminum titanate powder.
By including such inorganic fibers in a honeycomb structure made of aluminum titanate, the inorganic fibers serve to reinforce the aluminum titanate particles when tensile stress is applied. Thereby, the breakage of the honeycomb structure that progresses from minute cracks at the time of manufacture and use can be prevented. In addition, the presence of inorganic fibers between the aluminum titanate particles acts as a framework that fixes the position of each particle, so that the aluminum titanate particles tend to contract during firing. It can resist, and shrinkage at the time of firing can be suppressed.
請求項2に記載のハニカム構造体では、チタン酸アルミニウム粉末は、組成比(質量%)として、Alを40~60%、TiOを30~50%、SiOとMgOとを合計で1~15%含んでいる。
請求項2に記載のハニカム構造体によると、チタン酸アルミニウムに含まれるAlがSiO及びMgO由来のSiやMgで置換されて粒子間がより強固に結合されるので、ハニカム構造体の熱分解耐性をより向上させることができる。ここで、Al及びTiOの組成比が上記範囲以外であると、反応焼結したチタン酸アルミニウムが、高温の排ガス等によってAlとTiOとに徐々に分解することになる。SiOとMgOとの合計組成比が上記範囲以外であると分解が進行しやすくなる。
In the honeycomb structure according to claim 2, the aluminum titanate powder has a composition ratio (% by mass) of Al 2 O 3 of 40 to 60%, TiO 2 of 30 to 50%, and SiO 2 and MgO in total. 1 to 15%.
According to the honeycomb structure according to claim 2, since the Al contained in the aluminum titanate is replaced by Si 2 or MgO derived from SiO 2 and MgO, and the particles are more firmly bonded, so that the thermal decomposition of the honeycomb structure Resistance can be further improved. Here, when the composition ratio of Al 2 O 3 and TiO 2 is outside the above range, the reaction-sintered aluminum titanate is gradually decomposed into Al 2 O 3 and TiO 2 by high-temperature exhaust gas or the like. Become. If the total composition ratio of SiO 2 and MgO is outside the above range, decomposition tends to proceed.
なお、チタン酸アルミニウム粉末において、各成分の合計量は100質量%となっていないくてもよく、チタン酸アルミニウム粉末中に不純物が含まれていてもよい。
上記不純物は、アルカリ長石由来の物質(KO、NaO等)、チタン酸アルミニウム粉末を粉砕したり、混合したりする際に鉄化合物、チタン酸アルミニウム粉末の原料のAl粉末やTiO粉末にもともと含まれる物質等である。
In the aluminum titanate powder, the total amount of each component does not have to be 100% by mass, and the aluminum titanate powder may contain impurities.
The impurities include alkali feldspar-derived substances (K 2 O, Na 2 O, etc.), Al 2 O 3 powder as a raw material for iron compounds and aluminum titanate powders when the aluminum titanate powder is pulverized or mixed. And substances originally contained in TiO 2 powder.
請求項3に記載のハニカム構造体では、チタン酸アルミニウム粉末100重量部に対し、無機繊維が5~30重量部含まれているので、チタン酸アルミニウム特有の高溶融温度や低熱膨張性を保ちながら、無機繊維による強度向上の効果や焼成時の収縮を抑制する効果をより効率的に得ることができる。 In the honeycomb structure according to claim 3, since 5 to 30 parts by weight of inorganic fiber is contained with respect to 100 parts by weight of the aluminum titanate powder, the high melting temperature and low thermal expansion characteristic of aluminum titanate are maintained. Moreover, the effect of strength improvement by inorganic fibers and the effect of suppressing shrinkage during firing can be obtained more efficiently.
請求項4に記載のハニカム構造体のように、無機繊維が、アルミナ及び炭化ケイ素の少なくとも一種を主成分とする無機繊維であると、チタン酸アルミニウム粉末の焼成時の焼成温度より高い融点又は昇華点を有することになるので、焼成後においても充分に強度向上の効果を奏することができる。特に、無機繊維の主成分が炭化ケイ素である場合は、炭化ケイ素の熱伝導率が高いことに起因して、この無機繊維を含むハニカム構造体全体での熱伝導率も向上する。これにより、捕集したPMを燃焼させるために再生処理時にハニカム構造体に付与される熱の拡散性が向上することから、PMの燃焼を促進させることができる。 When the inorganic fiber is an inorganic fiber mainly composed of at least one of alumina and silicon carbide as in the honeycomb structure according to claim 4, a melting point or sublimation higher than a firing temperature at the time of firing the aluminum titanate powder. Therefore, the strength can be sufficiently improved even after firing. In particular, when the main component of the inorganic fiber is silicon carbide, the thermal conductivity of the entire honeycomb structure including the inorganic fiber is improved due to the high thermal conductivity of silicon carbide. Thereby, since the diffusibility of the heat | fever provided to a honeycomb structure at the time of a regeneration process in order to burn collected PM improves, combustion of PM can be accelerated | stimulated.
(第一実施形態)
以下、本発明の一実施形態である第一実施形態について、図1を参照しながら説明する。
図1(a)は、本発明のハニカム構造体の一例を模式的に示した斜視図であり、図1(b)は、図1(a)に示す本発明のハニカム構造体のセル壁を長手方向に対して平行に切断することにより露出したセル壁の断面の一例を模式的に示す断面図(図1(a)のA-A線断面図)である。
(First embodiment)
Hereinafter, a first embodiment which is an embodiment of the present invention will be described with reference to FIG.
FIG. 1 (a) is a perspective view schematically showing an example of the honeycomb structure of the present invention, and FIG. 1 (b) shows the cell wall of the honeycomb structure of the present invention shown in FIG. 1 (a). FIG. 2 is a cross-sectional view (cross-sectional view taken along line AA in FIG. 1A) schematically showing an example of a cross-section of a cell wall exposed by cutting in parallel to the longitudinal direction.
図1(a)に示すように、チタン酸アルミニウムからなるハニカム構造体10は、その形状が円柱形状である。そして、その内部においては、図1(b)に示すように、複数のセル11がハニカム構造体10の長手方向(図1(a)中、矢印aの方向)に沿って形成されており、各セル11は、セル壁13によって隔てられている。また、セル11の一端は、封止材12によって目封じされている。 As shown in FIG. 1A, the honeycomb structure 10 made of aluminum titanate has a cylindrical shape. And in that inside, as shown in FIG.1 (b), the several cell 11 is formed along the longitudinal direction (the direction of arrow a in FIG.1 (a)) of the honeycomb structure 10, Each cell 11 is separated by a cell wall 13. One end of the cell 11 is sealed with a sealing material 12.
封止材12は、ハニカム構造体10と同様の材質からなり、チタン酸アルミニウムで構成されている。この封止材12によって、ハニカム構造体10は、セル11の一端から排ガスが流出しないように目封じされることになる。このため、一のセルに流入した排ガス(図1(b)中、矢印で示す)は、必ず一のセルを隔てるセル壁13を通過した後、他のセルから流出するようになっている。従って、排ガスがこのセル壁13を通過する際にPMがセル壁13で捕集され、排ガスが浄化されることとなる。 The sealing material 12 is made of the same material as that of the honeycomb structure 10 and is made of aluminum titanate. With this sealing material 12, the honeycomb structure 10 is sealed so that the exhaust gas does not flow out from one end of the cell 11. For this reason, the exhaust gas flowing into one cell (indicated by an arrow in FIG. 1B) always passes through the cell wall 13 separating the one cell and then flows out from the other cells. Therefore, when exhaust gas passes through the cell wall 13, PM is collected by the cell wall 13 and the exhaust gas is purified.
本実施形態のハニカム構造体には、チタン酸アルミニウム粉末を焼成する際の焼成温度より高い融点又は昇華点を有する無機繊維が含まれている。これを図2を参照して説明する。図2は、長手方向に平行な方向でハニカム構造体の切断したときのセル壁の断面の一部を模式的に示す断面図(図1(b)に示したセル壁の断面の一部を拡大した拡大断面図)である。ハニカム構造体10のセル壁13内を細部にわたって観察すると、セル壁13内では、チタン酸アルミニウムからなる部分(以下、基材ともいう)21と気孔22とが存在する多孔質構造となっている。 The honeycomb structure of the present embodiment includes inorganic fibers having a melting point or sublimation point higher than the firing temperature when firing the aluminum titanate powder. This will be described with reference to FIG. FIG. 2 is a cross-sectional view schematically showing a part of the cross section of the cell wall when the honeycomb structure is cut in a direction parallel to the longitudinal direction (part of the cross section of the cell wall shown in FIG. 1B). It is an expanded sectional view). When the inside of the cell wall 13 of the honeycomb structure 10 is observed in detail, the cell wall 13 has a porous structure in which portions made of aluminum titanate (hereinafter also referred to as a base material) 21 and pores 22 exist. .
この多孔質構造を呈するセル壁13に炭化ケイ素又はアルミナを主成分とする無機繊維20が含まれている。無機繊維20は、セル壁13の内部に一様に存在している。この無機繊維の平均長は、5~100μmであり、平均径は0.1~10μmである。また、無機繊維は、後述するチタン酸アルミニウムの焼成温度より高い融点又は昇華点を有している。これにより、焼成後においても無機繊維はそれ自体の形状を維持し、基材21を補強するような作用を発揮することができる。 Cell walls 13 exhibiting this porous structure contain inorganic fibers 20 mainly composed of silicon carbide or alumina. The inorganic fibers 20 are uniformly present inside the cell wall 13. The average length of the inorganic fibers is 5 to 100 μm, and the average diameter is 0.1 to 10 μm. In addition, the inorganic fiber has a melting point or sublimation point higher than the firing temperature of aluminum titanate described later. Thereby, even after firing, the inorganic fiber can maintain its own shape and exert an effect of reinforcing the base material 21.
この無機繊維20の大部分では、無機繊維20の表面全体が基材21に完全に覆われているのではなく、セル壁13を構成する基材21とその表面の一部を占めるように一体化している部分(すなわち、基材21に覆われている部分)や、気孔22に露出した部分が存在している。 In most of the inorganic fibers 20, the entire surface of the inorganic fibers 20 is not completely covered by the base material 21, but is integrated so as to occupy a part of the surface of the base material 21 constituting the cell wall 13. There are portions that are turned (ie, portions that are covered with the base material 21) and portions that are exposed to the pores 22.
一の無機繊維20において、基材21と一体化している部分は、1箇所でもよく、2箇所以上であってもよい。無機繊維20の繊維長や気孔22の大きさ、無機繊維20の配向性等に応じて、一体化している部分の範囲や数は変化することになる。 In one inorganic fiber 20, the number of portions integrated with the base material 21 may be one, or two or more. Depending on the fiber length of the inorganic fiber 20, the size of the pores 22, the orientation of the inorganic fiber 20, etc., the range and the number of the integrated parts will change.
無機繊維20がチタン酸アルミニウム粒子間を補強することで、セル壁13部分の機械的強度が向上し、ハニカム構造体10を使用した際に受ける振動等の外力に対して充分な耐久性を示すことになる。また、ハニカム構造体10の製造工程において、チタン酸アルミニウム粉末の焼成工程では、チタン酸アルミニウム粉末が収縮しようとする収縮力が生じる。しかし、無機繊維20が、チタン酸アルミニウムに特有の収縮力に対抗するように働くため、所定の寸法や気孔構造を維持することができるようになる。 The inorganic fiber 20 reinforces the space between the aluminum titanate particles, so that the mechanical strength of the cell wall 13 portion is improved, and sufficient durability against external forces such as vibration received when the honeycomb structure 10 is used is exhibited. It will be. Further, in the manufacturing process of the honeycomb structure 10, in the firing process of the aluminum titanate powder, a contraction force that causes the aluminum titanate powder to contract is generated. However, since the inorganic fiber 20 works so as to oppose the shrinkage force peculiar to aluminum titanate, a predetermined dimension and a pore structure can be maintained.
また、炭化ケイ素からなる無機繊維20が、セル壁13の内部において縦横に張りめぐらせるように存在していることから、セル壁13での熱伝導性が等方性を有することになる。主として炭化ケイ素からなる無機繊維の場合には熱伝導性が向上し、再生処理時のPM燃焼熱が効率良くハニカム構造体全体に行き渡るので、PMの燃焼効率を向上させることができる。 In addition, since the inorganic fibers 20 made of silicon carbide exist so as to stretch vertically and horizontally inside the cell wall 13, the thermal conductivity in the cell wall 13 is isotropic. In the case of inorganic fibers mainly composed of silicon carbide, the thermal conductivity is improved, and the PM combustion heat during the regeneration process is efficiently distributed to the entire honeycomb structure, so that the PM combustion efficiency can be improved.
以下、本実施形態のハニカム構造体10の製造方法について説明する。
チタン酸アルミニウムの粗粉、チタン酸アルミニウムの微粉、無機繊維、造孔剤、有機バインダ、可塑剤、潤滑剤及び水を混合し、充分攪拌することによって混合物を調製する。ここで、無機繊維の添加量は、チタン酸アルミニウムの粗粉とチタン酸アルミニウムの微粉との合計100重量部に対して、5~30重量部であればよい。また、無機繊維は、チタン酸アルミニウム粉末の焼成温度より高い融点又は昇華点を有していればよく、例示的な融点又は昇華点として、1300℃以上が挙げられる。
Hereinafter, a method for manufacturing the honeycomb structure 10 of the present embodiment will be described.
A mixture is prepared by mixing coarse powder of aluminum titanate, fine powder of aluminum titanate, inorganic fibers, pore former, organic binder, plasticizer, lubricant and water, and stirring sufficiently. Here, the added amount of the inorganic fiber may be 5 to 30 parts by weight with respect to 100 parts by weight of the total of the aluminum titanate coarse powder and the aluminum titanate fine powder. Moreover, the inorganic fiber should just have melting | fusing point or sublimation point higher than the calcination temperature of aluminum titanate powder, and 1300 degreeC or more is mentioned as an illustrative melting | fusing point or sublimation point.
次に、上記混合物を押出成形機により押出成形し、セル壁で隔てられた複数のセルが長手方向に沿って形成された円柱形状のハニカム成形体の長尺体を作製する。 Next, the mixture is extruded using an extruder, and a long honeycomb molded body having a cylindrical shape in which a plurality of cells separated by cell walls is formed along the longitudinal direction is produced.
次に、上記ハニカム成形体の長尺体を、切断ディスクが切断部材として備えられた切断装置により所定の長さに切断した後、得られたハニカム成形体をマイクロ波乾燥機及び熱風乾燥機により、100~150℃、大気雰囲気下、1~30分乾燥する。 Next, after cutting the long body of the honeycomb formed body into a predetermined length by a cutting device provided with a cutting disk as a cutting member, the obtained honeycomb formed body is cut with a microwave dryer and a hot air dryer. Dry at 100 to 150 ° C. in an air atmosphere for 1 to 30 minutes.
次に、ハニカム成形体のセルのいずれか一方の端部に封止材ペーストが充填されるように、上記混合物と同様の組成の封止材ペーストをハニカム成形体の所定のセルに充填する。 Next, the plug material paste having the same composition as that of the above mixture is filled into a predetermined cell of the honeycomb molded body so that the plug material paste is filled into any one end portion of the cells of the honeycomb molded body.
さらに、セルのいずれか一方の端部に封止材ペーストが充填されたハニカム成形体を再度乾燥させる。その後、脱脂炉中で、250~400℃、酸素濃度5容積%~大気雰囲気下で、3~15時間脱脂した後、焼成炉中で、1200~1700℃で1~24時間焼成する。
以上の工程により、本実施形態のハニカム構造体を製造する。
Further, the honeycomb formed body in which the plug material paste is filled at either one end of the cell is dried again. Thereafter, degreasing is performed in a degreasing furnace at 250 to 400 ° C., oxygen concentration of 5% by volume to atmospheric atmosphere for 3 to 15 hours, and then baking is performed in a baking furnace at 1200 to 1700 ° C. for 1 to 24 hours.
The honeycomb structure of the present embodiment is manufactured through the above steps.
以下、第一実施形態のハニカム構造体についての作用効果を列挙する。 Hereinafter, effects of the honeycomb structure according to the first embodiment will be listed.
(1)チタン酸アルミニウム粉末を焼成して得られる多孔質のハニカム構造体において、上記チタン酸アルミニウム粉末を焼成する際の焼成温度より高い融点又は昇華点を有する無機繊維を含んでいる。引張応力が働いた際に、無機繊維がチタン酸アルミニウム粒子間を補強する役目を果たすことになり、製造時や使用時に微小なクラックから進展するハニカム構造体の破損を防止することができる。また、無機繊維の存在により、無機繊維が焼成時にチタン酸アルミニウム粒子が収縮しようとする力に抗することができ、焼成時の収縮を抑制することができる。 (1) The porous honeycomb structure obtained by firing the aluminum titanate powder includes inorganic fibers having a melting point or sublimation point higher than the firing temperature when firing the aluminum titanate powder. When the tensile stress is applied, the inorganic fibers serve to reinforce the space between the aluminum titanate particles, and it is possible to prevent damage to the honeycomb structure that develops from minute cracks during production and use. In addition, the presence of the inorganic fiber can resist the force that the aluminum titanate particles tend to shrink when the inorganic fiber is fired, and can suppress shrinkage during the firing.
(2)チタン酸アルミニウム粉末は、組成比として、Alを40~60%、TiOを30~50%、SiOとMgOとを合計で1~15%含んでいる。
これにより、ハニカム構造体の熱分解耐性をより向上させることができる。
(2) The aluminum titanate powder contains 40 to 60% Al 2 O 3 , 30 to 50% TiO 2 and 1 to 15% in total of SiO 2 and MgO as a composition ratio.
Thereby, the thermal decomposition tolerance of a honeycomb structure can be improved more.
(3)無機繊維の平均長を1~100μmとすることで、チタン酸アルミニウム粒子間の補強効果により、ハニカム構造体の機械的強度の向上に寄与することができる。 (3) By setting the average length of the inorganic fibers to 1 to 100 μm, the reinforcing effect between the aluminum titanate particles can contribute to the improvement of the mechanical strength of the honeycomb structure.
(4)無機繊維の平均径を0.1~10μmとしているので、無機繊維とチタン酸アルミニウム粒子との絡み合いを保ちつつ、無機繊維自体の強度を維持することができ、ひいてはハニカム構造体の強度を向上させることができる。 (4) Since the average diameter of the inorganic fibers is 0.1 to 10 μm, the strength of the inorganic fibers themselves can be maintained while maintaining the entanglement between the inorganic fibers and the aluminum titanate particles, and the strength of the honeycomb structure Can be improved.
(5)チタン酸アルミニウム粉末100重量部に対し、無機繊維が5~30重量部含まれているので、チタン酸アルミニウム特有の高溶融温度や低熱膨張性を保ちながら、無機繊維による強度向上の効果や焼成時の収縮を抑制する効果をより効率的に得ることができる。 (5) Since 5 to 30 parts by weight of inorganic fiber is contained with respect to 100 parts by weight of aluminum titanate powder, the effect of improving strength by inorganic fiber while maintaining the high melting temperature and low thermal expansion characteristic of aluminum titanate And the effect of suppressing shrinkage during firing can be obtained more efficiently.
(6)無機繊維が、アルミナ及び炭化ケイ素の少なくとも一種を主成分とする無機繊維であると、チタン酸アルミニウム粉末の焼成時の焼成温度より高い融点又は昇華点を有することになるので、焼成後においても充分に強度向上の効果を奏することができる。特に、無機繊維の主成分が炭化ケイ素である場合は、炭化ケイ素の熱伝導率が高いことに起因して、この無機繊維を含むハニカム構造体全体での熱伝導率も向上する。これにより、捕集したPMを燃焼させるために再生処理時にハニカム構造体に付与される熱の拡散性が向上することから、PMの燃焼を促進させることができる。 (6) If the inorganic fiber is an inorganic fiber mainly composed of at least one of alumina and silicon carbide, it has a melting point or sublimation point higher than the firing temperature at the time of firing the aluminum titanate powder. In this case, the strength can be sufficiently improved. In particular, when the main component of the inorganic fiber is silicon carbide, the thermal conductivity of the entire honeycomb structure including the inorganic fiber is improved due to the high thermal conductivity of silicon carbide. Thereby, since the diffusibility of the heat | fever provided to a honeycomb structure at the time of a regeneration process in order to burn collected PM improves, combustion of PM can be accelerated | stimulated.
以下、本発明の第一実施形態をより具体的に開示した実施例を示すが、本実施形態はこれら実施例のみに限定されるものではない。 Examples that more specifically disclose the first embodiment of the present invention will be described below, but the present embodiment is not limited to these examples.
(実施例1)
(1)混合工程
チタン酸アルミニウムの粗粉末2000重量部、チタン酸アルミニウムの微粉末500重量部、造孔剤(球状アクリル粒子)300重量部、有機バインダ(メチルセルロース)188重量部、可塑剤(日本油脂社製 ユニルーブ)96重量部、潤滑剤(グリセリン)44重量部及び水725重量部を混合し、充分攪拌することによって湿潤混合物を調製した。なお、無機繊維の平均長としては、15μmであり、平均径は、1μmであった。
Example 1
(1) Mixing step: Aluminum titanate coarse powder 2000 parts by weight, aluminum titanate fine powder 500 parts by weight, pore former (spherical acrylic particles) 300 parts by weight, organic binder (methylcellulose) 188 parts by weight, plasticizer (Japan) A wet mixture was prepared by mixing 96 parts by weight (Unilube, manufactured by Yushi Co., Ltd.), 44 parts by weight of a lubricant (glycerin), and 725 parts by weight of water and stirring sufficiently. The average length of the inorganic fibers was 15 μm, and the average diameter was 1 μm.
(2)押出成形工程
(1)で得られた湿潤混合物をプランジャー式押出成形機の混合物タンクよりシリンダー内に投入し、ピストンをダイス側に押し込んで円柱形状のダイスより混合物を押し出し、セル壁で隔てられた複数のセルが長手方向に沿って形成された円柱形状のチタン酸アルミニウムからなるハニカム成形体の長尺体を作製した。
(2) The wet mixture obtained in the extrusion molding step (1) is put into the cylinder from the mixture tank of the plunger type extruder, the piston is pushed into the die side, and the mixture is pushed out from the cylindrical die, and the cell wall A long body of a honeycomb formed body made of a columnar aluminum titanate in which a plurality of cells separated by 1 was formed along the longitudinal direction was produced.
(3)切断工程
(2)で得られたハニカム成形体の長尺体を、切断ディスクを切断部材として備えた切断装置を用いて切断した。これにより、円柱形状のチタン酸アルミニウムからなるハニカム成形体を得た。
(3) The long body of the honeycomb formed body obtained in the cutting step (2) was cut using a cutting device provided with a cutting disk as a cutting member. Thereby, a honeycomb formed body made of columnar aluminum titanate was obtained.
(4)乾燥工程
(3)で得られたハニカム成形体を、マイクロ波乾燥機及び熱風乾燥機により、大気雰囲気下、120℃で20分間、乾燥処理し、ハニカム成形体中に含まれる水分を除去した。
(4) The honeycomb formed body obtained in the drying step (3) is subjected to a drying treatment at 120 ° C. for 20 minutes in an air atmosphere by a microwave dryer and a hot air dryer to remove moisture contained in the honeycomb formed body. Removed.
(5)封止工程
(4)で得られた乾燥処理後のハニカム成形体のセルのいずれか一方の端部に封止材ペーストが充填されるように、(1)で作製した混合物と同様の組成の封止材ペーストをハニカム成形体の所定のセルに充填した。
(5) The same as the mixture prepared in (1) so that the plug material paste is filled in either one end of the cells of the honeycomb formed body after the drying treatment obtained in the sealing step (4). A predetermined paste cell was filled with a sealing material paste having the composition:
(6)脱脂、焼成工程
(5)で得られたハニカム成形体を大気雰囲気下、120℃で10分間、再度乾燥処理した後、脱脂炉中で、300℃、大気雰囲気、12時間脱脂し、さらに、焼成炉中、1300℃で3時間焼成した。
上記工程により、セル密度が46.5個/cmで、直径143.8mm、長手方向における長さが150mmの大きさのチタン酸アルミニウムからなるハニカム構造体を製造した。
(6) The honeycomb formed body obtained in the degreasing and firing step (5) is dried again at 120 ° C. for 10 minutes in the air atmosphere, and then degreased in a degreasing furnace at 300 ° C., air atmosphere for 12 hours. Furthermore, it baked at 1300 degreeC for 3 hours in the baking furnace.
By the above process, a honeycomb structure made of aluminum titanate having a cell density of 46.5 cells / cm 2 , a diameter of 143.8 mm, and a length in the longitudinal direction of 150 mm was manufactured.
(実施例2)
無機繊維として、アルミナからなる無機繊維(平均長50μm、平均径5μm)を用いたこと以外は、実施例1と同様にハニカム構造体を製造した。
(Example 2)
A honeycomb structure was manufactured in the same manner as in Example 1 except that inorganic fibers made of alumina (average length: 50 μm, average diameter: 5 μm) were used as the inorganic fibers.
(比較例1)
無機繊維を含めなかったこと以外は、実施例1と同様にハニカム構造体を製造した。
(Comparative Example 1)
A honeycomb structure was manufactured in the same manner as in Example 1 except that inorganic fibers were not included.
(強度の評価)
ハニカム構造体から34.3mm角、長さ150mmの試験片を切り出し、JIS R 1601に準拠して、インストロン5582を用い、スパン間距離:130mm、スピード0.5mm/分で3点曲げ試験を行い、実施例1、2及び比較例1のハニカム構造体の曲げ強度を測定した。そして、使用時の振動や熱衝撃等に対する耐久強度の目安である基材強度が4MPa以上であるかを基準として、強度試験の評価とした。
(Strength evaluation)
A 34.3 mm square, 150 mm long test piece was cut out from the honeycomb structure, and a three-point bending test was performed using an Instron 5582 in accordance with JIS R 1601, with a span distance of 130 mm and a speed of 0.5 mm / min. The bending strengths of the honeycomb structures of Examples 1 and 2 and Comparative Example 1 were measured. And it was set as evaluation of a strength test on the basis of whether the substrate strength which is a standard of endurance strength to vibration at the time of use, thermal shock, etc. is 4MPa or more.
その結果、実施例1、2のハニカム構造体では基材強度が4MPa以上であったのに対し、比較例1のハニカム構造体では4MPaに達しなかった。これは、実施例1、2のハニカム構造体では、これらのハニカム構造体に含まれている無機繊維によってチタン酸アルミニウム粒子間が補強されることになったことから、負荷される応力に対する強度が向上したと考えられる。 As a result, the substrate strength of the honeycomb structures of Examples 1 and 2 was 4 MPa or more, whereas the honeycomb structure of Comparative Example 1 did not reach 4 MPa. This is because in the honeycomb structures of Examples 1 and 2, since the aluminum titanate particles are reinforced by the inorganic fibers contained in these honeycomb structures, the strength against the applied stress is high. It is thought that it improved.
なお、同一寸法の成形体の焼成後のハニカム構造体において両者を比較したところ、比較例1の結果に比して実施例1、2の収縮量の方が充分に小さいことが分かった。これは、実施例1、2のハニカム構造体に含まれている無機繊維がチタン酸アルミニウム粉末の収縮を抑制したことに起因すると推測される。 In addition, when both were compared in the honeycomb structure after firing of the molded body having the same size, it was found that the shrinkage amount of Examples 1 and 2 was sufficiently smaller than the result of Comparative Example 1. This is presumably because the inorganic fibers contained in the honeycomb structures of Examples 1 and 2 suppressed the shrinkage of the aluminum titanate powder.
(その他の実施形態)
本発明のハニカム構造体に含まれる無機繊維としては、チタン酸アルミニウム粉末の焼成温度より高い融点又は昇華点を有する無機繊維であれば特に限定されないが、1500℃以上の融点又は昇華点を有する無機繊維が好ましく、例えば、デンカアルセン(電気化学工業社製)、SCバルク1600(新日化サーマルセラミックス社製)、サフィルアルミナ(サフィルジャパン社製)等のアルミナ繊維や、チラノ繊維(宇部興産社製)、ニカロン(日本カーボン社製)等の炭化ケイ素繊維が挙げられる。特に、耐熱性の観点から炭化ケイ素繊維が望ましい。
(Other embodiments)
The inorganic fiber contained in the honeycomb structure of the present invention is not particularly limited as long as it is an inorganic fiber having a melting point or sublimation point higher than the firing temperature of the aluminum titanate powder, but an inorganic fiber having a melting point or sublimation point of 1500 ° C. or higher. Fiber is preferable, for example, alumina fiber such as Denka Arsene (manufactured by Denki Kagaku Kogyo Co., Ltd.), SC Bulk 1600 (manufactured by Nippon Kayaku Thermal Ceramics Co., Ltd.), Safil Alumina (manufactured by Safil Japan Co., Ltd.), Tyranno Fiber (manufactured by Ube Industries, Ltd.) ) And silicon carbide fibers such as Nikaron (manufactured by Nippon Carbon Co., Ltd.). In particular, silicon carbide fibers are desirable from the viewpoint of heat resistance.
本発明のハニカム構造体の長手方向に対して垂直な断面の形状は、特に円形に限られるものではなく、矩形等、種々の形状とすることができるが、曲線のみ又は曲線と直線とで囲まれた形状であることが望ましい。
その具体例として、円形以外には、例えば、楕円形、長円形(レーストラック形)、楕円形又は長円形等の単純閉曲線の一部が凹部を有する形状(concave形状)等を挙げることができる。
The shape of the cross section perpendicular to the longitudinal direction of the honeycomb structure of the present invention is not particularly limited to a circle, and may be various shapes such as a rectangle, but is surrounded only by a curve or by a curve and a straight line. It is desirable to have a shape.
As a specific example, besides a circle, for example, a shape in which a part of a simple closed curve such as an ellipse, an ellipse (race track shape), an ellipse, or an ellipse has a recess (concave shape) can be exemplified. .
本発明のハニカム構造体の開口率の望ましい値は、下限が50%であり、上限が75%である。
上記開口率が50%未満では、ハニカム構造体に排ガスが流入出する際の圧力損失が大きくなる場合があり、75%を超えると、ハニカム構造体の強度が低下したりする場合がある。
The desirable value of the aperture ratio of the honeycomb structure of the present invention is a lower limit of 50% and an upper limit of 75%.
When the opening ratio is less than 50%, the pressure loss when the exhaust gas flows into and out of the honeycomb structure may increase, and when it exceeds 75%, the strength of the honeycomb structure may decrease.
また、上記ハニカム構造体において、隣接するセル壁の厚さは、0.15mm以上であることが望ましい。0.15mm未満では、ハニカム構造体の強度が低下することがあるからである。 In the honeycomb structure, the thickness of the adjacent cell wall is preferably 0.15 mm or more. This is because if the thickness is less than 0.15 mm, the strength of the honeycomb structure may be lowered.
一方、上記隣接するセル壁の厚さの望ましい上限は0.4mmである。セル壁の厚さが厚すぎるとセルの開口率及び/又は濾過面積が小さくなり、それに伴って圧力損失が増加することがある。また、PMを燃焼させた際に生じるアッシュが、気孔に深く入り込んで抜けにくくなる。 On the other hand, the desirable upper limit of the thickness of the adjacent cell walls is 0.4 mm. If the cell wall is too thick, the cell aperture ratio and / or the filtration area may be reduced, and the pressure loss may increase accordingly. Further, the ash generated when PM is burned is deeply penetrated into the pores and is difficult to escape.
上記ハニカム構造体において、長手方向に対して垂直方向におけるセル密度は特に限定されず、望ましい下限は、23.3個/cm(150個/in)、望ましい上限は、93.0個/cm(600.0個/in)、より望ましい下限は、31個/cm(200個/in)、より望ましい上限は、77.5個/cm(500.0個/in)である。 In the honeycomb structure, the cell density in the direction perpendicular to the longitudinal direction is not particularly limited. The desirable lower limit is 23.3 / cm 2 (150 / in 2 ), and the desirable upper limit is 93.0 / cm 2 (600.0 pieces / in 2 ), the more desirable lower limit is 31 pieces / cm 2 (200 pieces / in 2 ), and the more desirable upper limit is 77.5 pieces / cm 2 (500.0 pieces / in 2). ).
なお、上記セルの平面視形状については特に四角形に限定されず、例えば、三角形、六角形、八角形、十二角形、円形、楕円形、星型等の形状を挙げることができる。 The shape of the cell in plan view is not particularly limited to a quadrangle, and examples thereof include a triangle, a hexagon, an octagon, a dodecagon, a circle, an ellipse, and a star.
チタン酸アルミニウムの粗粉の平均粒径は、3~50μmであることが望ましく、また、チタン酸アルミニウムの微粉の平均粒径は、0.1~3μmであることが望ましい。 The average particle size of the aluminum titanate coarse powder is preferably 3 to 50 μm, and the average particle size of the fine aluminum titanate powder is preferably 0.1 to 3 μm.
チタン酸アルミニウムの粗粉とチタン酸アルミニウムの微粉との混合比は、9:1~6:4が望ましい。上記範囲内であると、焼成工程での収縮を抑制することができるとともに、平均気孔径、気孔径分布及び平均気孔率をある程度制御することができるからである。 The mixing ratio of the aluminum titanate coarse powder and the aluminum titanate fine powder is preferably 9: 1 to 6: 4. It is because shrinkage | contraction in a baking process can be suppressed as it is in the said range, and an average pore diameter, a pore diameter distribution, and an average porosity can be controlled to some extent.
上記混合物を調製する際に使用する有機バインダは、特に限定されず、例えば、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリエチレングリコール等が挙げられる。このなかでは、メチルセルロースが望ましい。有機バインダの配合量は、通常、チタン酸アルミニウム粉末100重量部に対して、1~10重量部が望ましい。 The organic binder used when preparing the said mixture is not specifically limited, For example, carboxymethylcellulose, hydroxyethylcellulose, polyethyleneglycol etc. are mentioned. Of these, methylcellulose is desirable. The blending amount of the organic binder is usually preferably 1 to 10 parts by weight with respect to 100 parts by weight of the aluminum titanate powder.
上記混合物を調製する際に使用する可塑剤や潤滑剤は、特に限定されず、可塑剤としては、例えば、グリセリン等が挙げられる。また、潤滑剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシプロピレンアルキルエーテル等のポリオキシアルキレン系化合物等が挙げられる。
潤滑剤の具体例としては、例えば、ポリオキシエチレンモノブチルエーテル、ポリオキシプロピレンモノブチルエーテル等が挙げられる。
なお、可塑剤、潤滑剤は、場合によっては、上記混合物に含まれていなくてもよい。
The plasticizer and lubricant used in preparing the mixture are not particularly limited, and examples of the plasticizer include glycerin. Examples of the lubricant include polyoxyalkylene compounds such as polyoxyethylene alkyl ether and polyoxypropylene alkyl ether.
Specific examples of the lubricant include polyoxyethylene monobutyl ether and polyoxypropylene monobutyl ether.
In some cases, the plasticizer and the lubricant may not be contained in the above mixture.
また、上記混合物を調製する際には、分散媒液を使用してもよく、分散媒液としては、例えば、水、メタノール等のアルコール、ベンゼン、トルエン等の有機溶媒が挙げられる。
さらに、上記混合物中には、成形助剤が添加されていてもよい。
成形助剤としては特に限定されず、例えば、エチレングリコール、デキストリン、脂肪酸、脂肪酸石鹸、ポリアルコール等が挙げられる。
In preparing the above mixture, a dispersion medium liquid may be used. Examples of the dispersion medium liquid include water, alcohols such as methanol, and organic solvents such as benzene and toluene.
Furthermore, a molding aid may be added to the mixture.
The molding aid is not particularly limited, and examples thereof include ethylene glycol, dextrin, fatty acid, fatty acid soap, polyalcohol and the like.
さらに、上記混合物には、必要に応じて酸化物系セラミックを成分とする微小中空球体であるバルーンや、球状アクリル粒子、グラファイト等の造孔剤を添加してもよい。
バルーンとしては特に限定されず、例えば、アルミナバルーン、ガラスマイクロバルーン、シラスバルーン、フライアッシュバルーン(FAバルーン)、ムライトバルーン等が挙げられる。これらのなかでは、アルミナバルーンが望ましい。
Furthermore, a pore-forming agent such as balloons that are fine hollow spheres containing oxide-based ceramics, spherical acrylic particles, and graphite may be added to the above mixture as necessary.
The balloon is not particularly limited, and examples thereof include an alumina balloon, a glass micro balloon, a shirasu balloon, a fly ash balloon (FA balloon), and a mullite balloon. Of these, alumina balloons are desirable.
セルを封止する封止材ペーストとしては特に限定されないが、後工程を経て製造される封止材の気孔率が40~60%となるものが望ましく、例えば、上記混合物と同様のものを用いることができる。 The sealing material paste for sealing the cells is not particularly limited, but it is desirable that the porosity of the sealing material manufactured through a subsequent process is 40 to 60%. For example, the same material as the above mixture is used. be able to.
上記ハニカム構造体には、必要に応じて、触媒を添加させてもよい。ハニカム構造体に担持させる触媒の種類は特に限定されるものでないが、例えば、貴金属元素、アルカリ金属元素、アルカリ土類金属元素、金属酸化物等が挙げられる。これらは、単独で用いてもよいし、2種以上併用してもよい。 A catalyst may be added to the honeycomb structure as necessary. The type of catalyst supported on the honeycomb structure is not particularly limited, and examples thereof include noble metal elements, alkali metal elements, alkaline earth metal elements, and metal oxides. These may be used alone or in combination of two or more.
上記貴金属元素としては、例えば、白金、パラジウム、ロジウム等が挙げられ、上記アルカリ金属元素としては、例えば、カリウム、ナトリウム等が挙げられ、上記アルカリ土類金属元素としては、例えば、バリウム等が挙げられる。また、上記金属酸化物としては、例えば、CeO、KO、ZrO、FeO、Fe、CuO、CuO、Mn、MnO、組成式A1-nCO(式中、0≦n≦1であり、AはLa、Nd、Sm、Eu、Gd又はYであり、Bはアルカリ金属又はアルカリ土類金属であり、CはMn、Co、Fe又はNi)で表される複合酸化物等が挙げられる。 Examples of the noble metal element include platinum, palladium, rhodium and the like, examples of the alkali metal element include potassium and sodium, and examples of the alkaline earth metal element include barium and the like. It is done. Examples of the metal oxide include CeO 2 , K 2 O, ZrO 2 , FeO 2 , Fe 2 O 3 , CuO, CuO 2 , Mn 2 O 3 , MnO, composition formula An B 1-n CO 3 (where 0 ≦ n ≦ 1, A is La, Nd, Sm, Eu, Gd or Y, B is an alkali metal or alkaline earth metal, and C is Mn, Co, Fe or Ni) ) And the like.
上記触媒の上記ハニカム構造体のみかけ体積に対する担持量は、10~200g/lが望ましい。
上記担持量が10g/l以下では、ハニカム構造体の壁部に対して上記触媒が担持されていない部分が多くなるため、PMと上記触媒とが接触しない部分が生じ、充分にPMの燃焼温度を低下することができない場合があり、一方、200g/lを超えてもPMと上記触媒との接触効率はさほど向上しないからである。
The supported amount of the catalyst with respect to the apparent volume of the honeycomb structure is preferably 10 to 200 g / l.
When the supported amount is 10 g / l or less, the portion where the catalyst is not supported on the wall portion of the honeycomb structure increases, so that a portion where PM and the catalyst do not come into contact with each other, and the PM combustion temperature is sufficiently high. On the other hand, the contact efficiency between PM and the catalyst does not improve so much even when the amount exceeds 200 g / l.
また、上記触媒を担持させる場合には、ハニカム構造体の表面に高い比表面積のアルミナ膜を形成し、このアルミナ膜の表面に上記触媒を付与してもよい。 When the catalyst is supported, an alumina film having a high specific surface area may be formed on the surface of the honeycomb structure, and the catalyst may be applied to the surface of the alumina film.
上記ハニカム構造体の表面にアルミナ膜を形成する方法としては、例えば、Al(NO等のアルミニウムを含有する金属化合物の溶液をハニカム構造体に含浸させて加熱する方法、アルミナ粉末を含有する溶液をハニカム構造体に含浸させて加熱する方法等を挙げることができる。
また、予め、アルミナ粒子に上記触媒を付与して、上記触媒が付与されたアルミナ粉末を含有する溶液をハニカム構造体に含浸させて加熱する方法で触媒を付与してもよい。
As a method for forming an alumina film on the surface of the honeycomb structure, for example, a method in which a honeycomb structure is impregnated with a solution of a metal compound containing aluminum such as Al (NO 3 ) 3 and heated, an alumina powder is contained. For example, the honeycomb structure may be impregnated with a solution to be heated and heated.
Alternatively, the catalyst may be applied in advance by applying the catalyst to alumina particles, impregnating the honeycomb structure with a solution containing the alumina powder to which the catalyst is applied, and heating.
また、押出成形工程において、ハニカム成形体の長尺体を作製する際に用いる装置は、特に限定されるものではなく、単軸スクリュー式押出成形機、多軸スクリュー式押出成形機、プランジャー式成形機等を挙げることができる。この中でも、プランジャー式成形機を特に好適に用いることができる。 Further, in the extrusion molding process, the apparatus used for producing the elongated body of the honeycomb molded body is not particularly limited, and is a single-screw extruder, a multi-screw extruder, a plunger type. Examples thereof include a molding machine. Among these, a plunger type molding machine can be particularly preferably used.
切断工程後のハニカム成形体又は封止工程後のハニカム成形体の乾燥に用いる乾燥機としては、特に限定されるものではないが、例えば、マイクロ波加熱乾燥機、熱風乾燥機、赤外線乾燥機等を挙げることができ、複数の装置を組み合わせてもよい。 The dryer used for drying the honeycomb formed body after the cutting step or the honeycomb formed body after the sealing step is not particularly limited. For example, a microwave heating dryer, a hot air dryer, an infrared dryer, etc. A plurality of devices may be combined.
(a)は、本発明のハニカム構造体の一例を模式的に示した斜視図であり、(b)は、(a)に示す本発明のハニカム構造体のセル壁を長手方向に対して平行に切断することにより露出したセル壁の断面の一例を模式的に示す断面図((a)のA-A線断面図)である。(A) is the perspective view which showed typically an example of the honeycomb structure of this invention, (b) is parallel to the longitudinal direction the cell wall of the honeycomb structure of this invention shown to (a). FIG. 3 is a cross-sectional view schematically showing an example of a cross section of a cell wall exposed by cutting in a cross section (a cross-sectional view taken along line AA in FIG. 5A). ハニカム構造体の長手方向に垂直な面で切断したときのセル壁の断面の一部を模式的に示す断面図である。Fig. 3 is a cross-sectional view schematically showing a part of a cross section of a cell wall when cut along a plane perpendicular to the longitudinal direction of the honeycomb structure.
符号の説明Explanation of symbols
10 ハニカム構造体
11、11a、11b セル
12 封止材
13 セル壁
20 無機繊維
21 基材
22 気孔
DESCRIPTION OF SYMBOLS 10 Honeycomb structure 11, 11a, 11b Cell 12 Sealing material 13 Cell wall 20 Inorganic fiber 21 Base material 22 Pore

Claims (4)

  1. セル壁で隔てられた複数のセルが長手方向に沿って形成され、
    前記セルのいずれか一方の端部が封止されており、
    チタン酸アルミニウム粉末を焼成して得られる多孔質のハニカム構造体であって、
    前記チタン酸アルミニウム粉末を焼成する際の焼成温度より高い融点又は昇華点を有する無機繊維が含まれているハニカム構造体。
    A plurality of cells separated by cell walls are formed along the longitudinal direction,
    Either one end of the cell is sealed,
    A porous honeycomb structure obtained by firing aluminum titanate powder,
    A honeycomb structure including an inorganic fiber having a melting point or sublimation point higher than a firing temperature when firing the aluminum titanate powder.
  2. 前記チタン酸アルミニウム粉末は、組成比で、Alを40~60%、TiOを30~50%、SiOとMgOとを合計で1~15%含む請求項1に記載のハニカム構造体。 The honeycomb structure according to claim 1, wherein the aluminum titanate powder contains Al 2 O 3 in a composition ratio of 40 to 60%, TiO 2 in a range of 30 to 50%, and SiO 2 and MgO in a total amount of 1 to 15%. body.
  3. 前記チタン酸アルミニウム粉末100重量部に対し、前記無機繊維が5~30重量部含まれている請求項1又は2に記載のハニカム構造体。 The honeycomb structure according to claim 1 or 2, wherein the inorganic fiber is contained in an amount of 5 to 30 parts by weight with respect to 100 parts by weight of the aluminum titanate powder.
  4. 前記無機繊維は、アルミナ及び炭化ケイ素の少なくとも一種を主成分とする無機繊維である請求項1~3のいずれかに記載のハニカム構造体。 The honeycomb structure according to any one of claims 1 to 3, wherein the inorganic fiber is an inorganic fiber mainly composed of at least one of alumina and silicon carbide.
PCT/JP2008/056415 2008-03-31 2008-03-31 Honeycomb structure WO2009122538A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/056415 WO2009122538A1 (en) 2008-03-31 2008-03-31 Honeycomb structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/056415 WO2009122538A1 (en) 2008-03-31 2008-03-31 Honeycomb structure

Publications (1)

Publication Number Publication Date
WO2009122538A1 true WO2009122538A1 (en) 2009-10-08

Family

ID=41134959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/056415 WO2009122538A1 (en) 2008-03-31 2008-03-31 Honeycomb structure

Country Status (1)

Country Link
WO (1) WO2009122538A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009122535A1 (en) * 2008-03-31 2011-07-28 イビデン株式会社 Manufacturing method of honeycomb structure
JPWO2009122536A1 (en) * 2008-03-31 2011-07-28 イビデン株式会社 Manufacturing method of honeycomb structure
JPWO2009122537A1 (en) * 2008-03-31 2011-07-28 イビデン株式会社 Manufacturing method of honeycomb structure
WO2012008447A1 (en) * 2010-07-14 2012-01-19 住友化学株式会社 Green molded body, and manufacturing method for aluminium titanate sintered body
US9376347B2 (en) 2013-05-20 2016-06-28 Corning Incorporated Porous ceramic article and method of manufacturing the same
JP2016538161A (en) * 2013-11-27 2016-12-08 コーニング インコーポレイテッド Composition for improved manufacture of substrates
US9623360B2 (en) 2013-05-20 2017-04-18 Corning Incorporated Porous ceramic article and method of manufacturing the same
US9908260B2 (en) 2013-05-20 2018-03-06 Corning Incorporated Porous ceramic article and method of manufacturing the same
US11229902B2 (en) 2016-05-31 2022-01-25 Corning Incorporated Porous article and method of manufacturing the same
US11447422B2 (en) 2017-10-31 2022-09-20 Corning Incorporated Batch compositions comprising spheroidal pre-reacted inorganic particles and spheroidal pore-formers and methods of manufacture of honeycomb bodies therefrom

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04349167A (en) * 1991-05-23 1992-12-03 Isuzu Motors Ltd High strength and low thermal expansion ceramic material and its manufacture
JPH0551251A (en) * 1991-08-21 1993-03-02 Isuzu Motors Ltd Ceramic sintered body and its production
JPH08290963A (en) * 1995-04-21 1996-11-05 Matsushita Electric Ind Co Ltd Material having low thermal expansion and discharge gas filter using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04349167A (en) * 1991-05-23 1992-12-03 Isuzu Motors Ltd High strength and low thermal expansion ceramic material and its manufacture
JPH0551251A (en) * 1991-08-21 1993-03-02 Isuzu Motors Ltd Ceramic sintered body and its production
JPH08290963A (en) * 1995-04-21 1996-11-05 Matsushita Electric Ind Co Ltd Material having low thermal expansion and discharge gas filter using the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009122535A1 (en) * 2008-03-31 2011-07-28 イビデン株式会社 Manufacturing method of honeycomb structure
JPWO2009122536A1 (en) * 2008-03-31 2011-07-28 イビデン株式会社 Manufacturing method of honeycomb structure
JPWO2009122537A1 (en) * 2008-03-31 2011-07-28 イビデン株式会社 Manufacturing method of honeycomb structure
WO2012008447A1 (en) * 2010-07-14 2012-01-19 住友化学株式会社 Green molded body, and manufacturing method for aluminium titanate sintered body
US9376347B2 (en) 2013-05-20 2016-06-28 Corning Incorporated Porous ceramic article and method of manufacturing the same
US9623360B2 (en) 2013-05-20 2017-04-18 Corning Incorporated Porous ceramic article and method of manufacturing the same
US9908260B2 (en) 2013-05-20 2018-03-06 Corning Incorporated Porous ceramic article and method of manufacturing the same
JP2016538161A (en) * 2013-11-27 2016-12-08 コーニング インコーポレイテッド Composition for improved manufacture of substrates
US11229902B2 (en) 2016-05-31 2022-01-25 Corning Incorporated Porous article and method of manufacturing the same
US11447422B2 (en) 2017-10-31 2022-09-20 Corning Incorporated Batch compositions comprising spheroidal pre-reacted inorganic particles and spheroidal pore-formers and methods of manufacture of honeycomb bodies therefrom
US11591265B2 (en) 2017-10-31 2023-02-28 Corning Incorporated Batch compositions comprising pre-reacted inorganic particles and methods of manufacture of green bodies therefrom

Similar Documents

Publication Publication Date Title
WO2009122538A1 (en) Honeycomb structure
US8153073B2 (en) Honeycomb filter, exhaust gas purifying apparatus and method for manufacturing honeycomb filter
KR100855167B1 (en) Honeycomb structured body
US8168127B2 (en) Honeycomb structure, exhaust gas purifying apparatus and method for manufacturing honeycomb structure
JP6028735B2 (en) Method for manufacturing ceramic honeycomb structure and ceramic honeycomb structure
WO2009122535A1 (en) Process for producing honeycomb structure
EP2944366A2 (en) Honeycomb structure
US20150013284A1 (en) Honeycomb structured body, exhaust gas purifying honeycomb filter, and exhaust gas purifying device
WO2008032391A1 (en) Process for producing honeycomb structure and raw-material composition for burnt honeycomb
WO2009122539A1 (en) Honeycomb structure
JP2009255037A (en) Honeycomb structure
KR20110114542A (en) Filtration structure having inlet and outlet surfaces with a different plugging material
US8168018B2 (en) Method for manufacturing honeycomb structure
WO2009101691A1 (en) Honeycomb structure
WO2016039325A1 (en) Honeycomb sintered body and honeycomb filter
WO2009122536A1 (en) Process for producing honeycomb structure
JP6086294B2 (en) Ceramic honeycomb filter
WO2009095982A1 (en) Honeycomb structure
WO2013145243A1 (en) Honeycomb structure, honeycomb filter for exhaust gas purification, and exhaust gas purification device
JP2004322082A (en) Ceramic honeycomb filter
WO2009122537A1 (en) Process for producing honeycomb structure
JP2019026547A (en) Method for manufacturing honeycomb structure
JP6400395B2 (en) Manufacturing method of honeycomb structure
JP5234973B2 (en) Honeycomb structure
JP2009113995A (en) Method for manufacturing honeycomb structure and raw material composition for honeycomb fired body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08739528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08739528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP