JP3011394B2 - Method for manufacturing nickel-metal hydride storage battery - Google Patents

Method for manufacturing nickel-metal hydride storage battery

Info

Publication number
JP3011394B2
JP3011394B2 JP7035635A JP3563595A JP3011394B2 JP 3011394 B2 JP3011394 B2 JP 3011394B2 JP 7035635 A JP7035635 A JP 7035635A JP 3563595 A JP3563595 A JP 3563595A JP 3011394 B2 JP3011394 B2 JP 3011394B2
Authority
JP
Japan
Prior art keywords
nickel
storage battery
charge
positive electrode
metal hydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7035635A
Other languages
Japanese (ja)
Other versions
JPH08236146A (en
Inventor
憲一 菅野
清司 石塚
健 小見山
秀和 乙幡
裕之 長谷部
雅秋 山本
慎司 鶴田
秀紀 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Toshiba Corp filed Critical Toshiba Battery Co Ltd
Priority to JP7035635A priority Critical patent/JP3011394B2/en
Priority to DE19606879A priority patent/DE19606879C2/en
Priority to KR1019960004379A priority patent/KR100224464B1/en
Priority to US08/604,795 priority patent/US5708349A/en
Publication of JPH08236146A publication Critical patent/JPH08236146A/en
Application granted granted Critical
Publication of JP3011394B2 publication Critical patent/JP3011394B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ニッケル水素蓄電池の
製造方法に関する。
The present invention relates to a method for manufacturing a nickel-metal hydride storage battery.

【0002】[0002]

【従来の技術】近年の電子技術の進歩による小電力化、
実装技術の進歩により従来予想し得なかった電子機器が
ポータブル化されてきている。電子機器のポータブル化
は、これに組み込まれる電源としての蓄電池の高容量化
が要求される。このような要求に対応し得る蓄電池とし
ては、三次元構造基板に活物質を含むペーストを充填し
た非焼結式電極を備えたニッケルカドミウム蓄電池や、
カドミウム負極に代えて水素吸蔵合金を含む負極を用い
たニッケル水素蓄電池が開発され、広く市場に投入され
てきている。特に、水素吸蔵合金を含む負極を備えたニ
ッケル水素蓄電池はニッケルカドミウム蓄電池に比べて
約2倍以上の高容量化を達成できること、カドミウムの
ような環境汚染物質を含まないこと、から近年その需要
が急速に伸びてきている。
2. Description of the Related Art Recent advances in electronic technology have reduced power consumption,
2. Description of the Related Art Advances in packaging technology have made portable electronic devices that could not be expected in the past. In order to make electronic equipment portable, it is required to increase the capacity of a storage battery as a power supply incorporated therein. As a storage battery that can respond to such demands, a nickel cadmium storage battery having a non-sintered electrode filled with a paste containing an active material on a three-dimensional structure substrate,
Nickel-metal hydride storage batteries using a negative electrode containing a hydrogen storage alloy instead of a cadmium negative electrode have been developed and have been widely put on the market. In particular, the demand for nickel-metal hydride storage batteries equipped with a negative electrode containing a hydrogen storage alloy has been increasing in recent years because they can achieve a capacity approximately twice or more higher than nickel cadmium storage batteries and do not contain environmental pollutants such as cadmium. It is growing rapidly.

【0003】しかしながら、前述したニッケル水素蓄電
池は近年の急激な電子機器の進歩、電子機器ユーザの要
求を十分に満たしていない。特に、より一層の高容量化
の要求に合わせて、デジタル機器の進歩に伴うパルス状
の大電流放電特性の改善要求に対応する開発が急務にな
っている。
However, the above-mentioned nickel-metal hydride storage battery has not sufficiently satisfied the recent rapid progress of electronic equipment and the demands of electronic equipment users. In particular, in response to the demand for higher capacity, there is an urgent need to develop a device that responds to the demand for improving the pulse-like high-current discharge characteristics accompanying the progress of digital devices.

【0004】ところで、従来の典型的な大電流特性の改
善策としてはニッケル正極中へのコバルト化合物の添加
量を増加させることや、ニッケル正極の空隙率を増加さ
せることが知られている。しかしながら、これらの改善
策はいずれも蓄電池の容量低下を伴うため、高容量化を
犠牲にすることなく大電流放電特性を改善することが困
難であった。
[0004] By the way, it is known to increase the amount of a cobalt compound added to a nickel positive electrode and to increase the porosity of the nickel positive electrode as typical conventional measures for improving large current characteristics. However, since all of these improvement measures involve a decrease in the capacity of the storage battery, it has been difficult to improve the large-current discharge characteristics without sacrificing a high capacity.

【0005】一方、近年の電子機器に特有な問題とし
て、例えば携帯用小型コンピュータのメモリ内蔵保持回
路の動作電源のように電源スイッチを切った後の微小電
流による連続放電や長時間に亘る電池の放置後の電池容
量の低下に対する解決策の開発も急務になっている。し
かしながら、このような問題は最近になって顕在化した
ものであるだけに、現状ではその解決は全くなされてい
ない。
On the other hand, problems specific to recent electronic devices include, for example, continuous discharge due to a minute current after turning off a power switch such as an operating power supply of a memory built-in holding circuit of a portable small computer, and a long-lasting battery. There is also an urgent need to develop a solution to a decrease in battery capacity after being left unattended. However, such a problem has only recently become apparent, and no solution has been made at present.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、正極
中のコバルト化合物の配合量を多くせずに長期放置後の
容量低減の抑制を図ることが可能で、かつ初充電工程で
用いる熱エネルギーを有効に利用することが可能なニッ
ケル水素蓄電池の製造方法を提供しようとするものであ
る。
SUMMARY OF THE INVENTION It is an object of the present invention to reduce the capacity after long-term storage without increasing the amount of the cobalt compound in the positive electrode, and to reduce the heat used in the first charging step. An object of the present invention is to provide a method for manufacturing a nickel-metal hydride storage battery that can effectively use energy.

【0007】[0007]

【課題を解決するための手段】本発明に係わるニッケル
水素蓄電池の製造方法は、一酸化コバルト、水酸化コバ
ルト及び金属コバルトから選ばれる1種及びニッケル酸
化物を含む非焼結式ニッケル正極と水素吸蔵合金を含む
負極の間に高分子不織布からなるセパレータを介在して
絶縁することにより電極群を作製する工程と、前記電極
群をアルカリ電解液と共に密閉容器内に収納する工程
と、40〜120℃の高温で初充電を行う工程と、前記
初充電後の密閉容器と未初充電の前記電極群およびアル
カリ電解液が収納された密閉容器とを熱交換して前記初
充電後の密閉容器を冷却すると共に、前記未初充電の密
閉容器を加温する工程とを具備したことを特徴とするも
のである。
Method for manufacturing a nickel-metal hydride storage battery according to the present invention SUMMARY OF] is cobalt monoxide, hydroxide Koba
An electrode group is produced by interposing a non-sintered nickel positive electrode containing nickel oxide and a non-sintered nickel positive electrode containing nickel oxide and a negative electrode containing a hydrogen storage alloy with a separator made of a polymer nonwoven fabric interposed therebetween for insulation. A step of storing the electrode group in a closed container together with an alkaline electrolyte, a step of performing initial charging at a high temperature of 40 to 120 ° C., and a closed container after the first charging and the uncharged electrode group and Cooling the sealed container after the first charge by exchanging heat with the sealed container containing the alkaline electrolyte, and heating the not-yet-charged sealed container. is there.

【0008】前記非焼結式ニッケル正極は、ニッケル酸
化物とコバルト化合物を含む構成を有する。このような
非焼結式ニッケル正極は、例えば水酸化ニッケル粉末
と、コバルト化合物粉末と、結着剤とを水の存在下で混
練してペーストを調製し、このペーストを集電体に充填
し、乾燥した後、プレスすることにより作製される。
The non-sintered nickel positive electrode has a structure containing nickel oxide and a cobalt compound. Such a non-sintered nickel positive electrode is prepared, for example, by kneading a nickel hydroxide powder, a cobalt compound powder, and a binder in the presence of water to prepare a paste, and filling the paste into a current collector. It is produced by pressing after drying.

【0009】前記水酸化ニッケル粉末は、平均粒径が5
〜30μm、タップ密度が1.8g/cm3 以上、比表
面積が8〜25m2 /gであることが好ましい。前記水
酸化ニッケル粉末は、球状もしくはそれに近似した形状
を有することが好ましい。
The nickel hydroxide powder has an average particle size of 5
It is preferable that the tap density is 1.8 g / cm 3 or more and the specific surface area is 8 to 25 m 2 / g. The nickel hydroxide powder preferably has a spherical shape or a shape similar thereto.

【0010】前記コバルト化合物とは、一酸化コバル
ト、水酸化コバルトまたは金属コバルトを意味する。前
記結着剤としては、例えばカルボキシメチルセルロー
ス、ポリアクリル酸塩、ポリテトラフルオロエチレン、
ポリビニルアルコール等を用いることができる。
The above-mentioned cobalt compound means cobalt monoxide, cobalt hydroxide or metallic cobalt. Examples of the binder include carboxymethyl cellulose, polyacrylate, polytetrafluoroethylene,
Polyvinyl alcohol or the like can be used.

【0011】前記集電体としては、例えば発泡ニッケル
基板、網状焼結金属繊維基板、不織布にニッケルメッキ
を施すことにより作製されたフェルトメッキ基板などの
三次元基板、またはパンチドメタル、エキスパンドメタ
ルなどの二次元基板を使用することができる。
The current collector may be, for example, a three-dimensional substrate such as a foamed nickel substrate, a reticulated sintered metal fiber substrate, a felt-plated substrate prepared by plating a nonwoven fabric with nickel, a punched metal, an expanded metal, or the like. Can be used.

【0012】前記負極は、例えば水素吸蔵合金粉末およ
び結着剤を含むペーストを集電体に塗布することにより
作製される。前記ペースト中に配合される水素吸蔵合金
としては、例えばAB5 型、A2 B型、AB型、AB2
型として呼ばれる全ての合金を用いることができる。た
だし、RNi5-x-y Coxy (ただし、RはLa、Y
を含む希土類元素から選ばれる少なくとも1種の元素ま
たはミッシュメタル、AはAl、Mn、Ti、Cu、Z
n、Zr、Crから選ばれる少なくとも1種、x、yは
原子比にてそれぞれx≧0.4、0≦y≦2.0を示
す)にて表される水素吸蔵合金を用いることが好まし
い。
The negative electrode is manufactured by applying a paste containing, for example, a hydrogen storage alloy powder and a binder to a current collector. As the hydrogen storage alloy to be blended in the paste, for example, AB 5 type, A 2 B type, AB-type, AB 2
All alloys referred to as molds can be used. However, RNi 5-xy Co x A y (where R is La, Y
At least one element selected from the rare earth elements containing or a misch metal, A is Al, Mn, Ti, Cu, Z
It is preferable to use a hydrogen storage alloy represented by at least one selected from n, Zr, and Cr, and x and y each represent x ≧ 0.4 and 0 ≦ y ≦ 2.0 in atomic ratio. .

【0013】前記ペースト中に配合される結着剤として
は、例えばポリアクリル酸ソーダ、ポリアクリル酸カリ
ウムなどのポリアクリル酸塩、ポリテトラフルオロエチ
レン(PTFE)などのフッ素系樹脂、またはポリビニ
ルアルコール等を挙げることができる。このような結着
剤は、前記水素吸蔵合金100重量部に対して0.1〜
5重量部配合することが好ましい。
Examples of the binder compounded in the paste include polyacrylates such as sodium polyacrylate and potassium polyacrylate, fluorine resins such as polytetrafluoroethylene (PTFE), and polyvinyl alcohol. Can be mentioned. Such a binder is used in an amount of 0.1 to 100 parts by weight of the hydrogen storage alloy.
It is preferable to mix 5 parts by weight.

【0014】前記ペースト中には、必要に応じて例えば
カーボンブラック、黒鉛のような導電材が含まれること
を許容する。このような導電材は、前記水素吸蔵合金粉
末100重量部に対して0.1〜4重量部の範囲で配合
することが好ましい。
The paste is allowed to contain a conductive material such as carbon black or graphite as necessary. Such a conductive material is preferably blended in an amount of 0.1 to 4 parts by weight based on 100 parts by weight of the hydrogen storage alloy powder.

【0015】前記集電体としては、例えば発泡ニッケル
基板、網状焼結金属繊維基板、不織布にニッケルメッキ
を施すことにより作製されたフェルトメッキ基板などの
三次元基板、またはパンチドメタル、エキスパンドメタ
ルなどの二次元基板を使用することができる。
As the current collector, for example, a three-dimensional substrate such as a foamed nickel substrate, a reticulated sintered metal fiber substrate, a felt-plated substrate produced by applying a nickel plating to a nonwoven fabric, a punched metal, an expanded metal, or the like. Can be used.

【0016】前記セパレータは、例えばポリプロピレン
不織布、ナイロン不織布、ポリプロピレン繊維とナイロ
ン繊維を混繊した不織布のような高分子不織布からな
る。特に、表面が親水化処理されたポリプロピレン不織
布はセパレータとして好適である。
The separator is made of, for example, a polymer nonwoven fabric such as a polypropylene nonwoven fabric, a nylon nonwoven fabric, or a nonwoven fabric obtained by mixing polypropylene fibers and nylon fibers. In particular, a polypropylene nonwoven fabric whose surface has been hydrophilized is suitable as a separator.

【0017】前記アルカリ電解液としては、例えば水酸
化ナトリウム(NaOH)と水酸化リチウム(LiO
H)の混合液、水酸化カリウム(KOH)とLiOHの
混合液、又はNaOH、KOH及びLiOHの混合液等
を用いることができる。
Examples of the alkaline electrolyte include sodium hydroxide (NaOH) and lithium hydroxide (LiO).
H), a mixed solution of potassium hydroxide (KOH) and LiOH, a mixed solution of NaOH, KOH and LiOH, or the like can be used.

【0018】前記初充電時の温度を規定したのは、次の
ような理由によるものである。初充電時の温度を40℃
未満にすると、正極の活物質であるニッケル酸化物の利
用率の向上、つまり長期放置後の電池容量の回復効果を
十分に図ることが困難になる。一方、初充電時の温度が
120℃を越えると電解液の蒸気圧が上昇し、安全弁が
作動したり、電池構成部材が熱劣化して信頼性を低下す
る恐れがある。より好ましい初充電時の温度は、50〜
90℃である。
The temperature at the time of the first charge is specified for the following reason. 40 ℃ at first charging
If it is less than the above range, it becomes difficult to improve the utilization rate of nickel oxide, which is the active material of the positive electrode, that is, to sufficiently achieve the effect of restoring the battery capacity after long-term storage. On the other hand, if the temperature at the time of the first charge exceeds 120 ° C., the vapor pressure of the electrolytic solution increases, which may cause the safety valve to operate or the battery components to be thermally degraded to lower the reliability. A more preferable temperature at the time of the first charge is 50 to
90 ° C.

【0019】前記初充電後の密閉容器と未初充電の前記
電極群およびアルカリ電解液が収納された密閉容器との
熱交換は、例えば前記各密閉容器を直接接触する方法、
前記各密閉容器を水や油のような熱媒体を介して接触す
る方法等を採用することができる。
The heat exchange between the sealed container after the first charge and the sealed container containing the electrode group and the alkaline electrolyte not yet charged may be performed, for example, by directly contacting each of the sealed containers.
A method of contacting each of the closed containers via a heat medium such as water or oil may be employed.

【0020】[0020]

【作用】本発明は、ニッケル酸化物およびコバルト化合
(前記コバルト化合物とは、一酸化コバルト、水酸化
コバルトまたは金属コバルトである)を含む非焼結式ニ
ッケル正極と水素吸蔵合金を含む負極の間に高分子不織
布からなるセパレータを介在して絶縁することにより電
極群を作製し、前記電極群をアルカリ電解液と共に密閉
容器内に収納した後、所定の高温で初充電を行うことに
より、高容量化、大電流放電特性の改善はもとより、長
期放置後の再充電時の容量低下を抑制することが可能な
ニッケル水素蓄電池を製造することができる。このよう
な特性を有するニッケル水素蓄電池が得られるのは次の
ような機構によるものと考えられる。
According to the present invention, a nickel oxide and a cobalt compound (the above-mentioned cobalt compound is cobalt monoxide,
A non-sintered nickel positive electrode containing cobalt or metallic cobalt) and a negative electrode containing a hydrogen storage alloy are interposed and insulated from each other with a separator made of a polymer nonwoven fabric. After being stored in an airtight container together with the electrolyte, the initial charge is performed at a predetermined high temperature, which not only increases the capacity and improves the large current discharge characteristics, but also suppresses the decrease in capacity when recharging after long-term storage. A possible nickel-metal hydride storage battery can be manufactured. It is considered that the nickel-metal hydride storage battery having such characteristics is obtained by the following mechanism.

【0021】すなわち、ニッケル酸化物およびコバルト
化合物を含む非焼結式ニッケル正極と水素吸蔵合金を含
む負極を用いて組み立てた蓄電池を40〜120℃の高
温下で初充電を行うことにより、前記正極中のコバルト
化合物のアルカリ電解液中への溶解、それに引き続いく
水酸化ニッケル表面への再析出と、充電電流による再析
出したコバルト化合物の酸化(オキシ水酸化コバルトの
生成)とが過不足なく円滑に進行するため、前記正極中
に導通に寄与するのに有効な量のオキシ水酸化コバルト
が均一に生成する。このようにニッケル正極に含まれる
コバルト化合物がより効果的に正極活物質である水酸化
ニッケルに作用するため、前記正極の利用率が向上され
ると共に、長期間保存ないし放置された後の再充電時の
容量低下を抑制するものと考えられる。
That is, a storage battery assembled using a non-sintered nickel positive electrode containing a nickel oxide and a cobalt compound and a negative electrode containing a hydrogen storage alloy is initially charged at a high temperature of 40 to 120 ° C. Dissolution of the cobalt compound in the alkaline electrolyte, followed by redeposition on the nickel hydroxide surface, and oxidation of the redeposited cobalt compound (formation of cobalt oxyhydroxide) by the charging current is smooth and complete. Therefore, an effective amount of cobalt oxyhydroxide to contribute to conduction in the positive electrode is uniformly generated. As described above, the cobalt compound contained in the nickel positive electrode more effectively acts on nickel hydroxide, which is a positive electrode active material, thereby improving the utilization rate of the positive electrode and recharging after being stored or left for a long time. It is considered that the capacity reduction at the time is suppressed.

【0022】さらに、初充電後の密閉容器と未初充電の
前記電極群およびアルカリ電解液が収納された密閉容器
とを熱交換して前記初充電後の密閉容器を冷却すると共
に、前記未初充電の密閉容器を加温することによって、
前記初充電後の密閉容器空の放熱により製造雰囲気温度
が過度に上昇するのを抑制できる。しかも、前記未初充
電の密閉容器の加熱時間を短縮できるため初充電を効率
よく行うことができる。その上、省エネルギーによる製
造コストの低減化を達成できる。
Further, heat exchange is performed between the sealed container after the first charge and the sealed container containing the electrode group and the alkaline electrolyte not yet charged to cool the sealed container after the first charge, and By heating the sealed container for charging,
Excessive rise in the production atmosphere temperature due to heat radiation from the airtight container after the initial charge can be suppressed. In addition, since the heating time for the uninitialized closed container can be reduced, the initial charging can be performed efficiently. In addition, it is possible to achieve a reduction in manufacturing cost due to energy saving.

【0023】すなわち、初充電工程においてニッケル正
極の導電マトリックスとして作用するオキシ水酸化コバ
ルトを生成するのに有効な温度範囲である70〜90℃
は常温に比べて40〜50℃以上も高い。ところで、A
Aサイズのニッケル水素蓄電池においては1℃温度を上
昇させるには約18calの熱量が必要になるので、初
充電前の状態における前記蓄電池の温度が25℃で、初
充電時の温度が85℃であるとすれば、60℃だけ温度
を上昇させる必要がある。したがって、1本のAAサイ
ズの蓄電池当たり1080calの熱量を必要とする。
仮に、1万本の蓄電池群を加熱するためには約107
alの大きな熱量を必要とし、逆に初充電後の蓄電池群
を20〜30℃の温度まで冷却するためには同じ熱量が
前記蓄電池群から放出される必要がある。
That is, a temperature range of 70 to 90 ° C., which is an effective temperature range for producing cobalt oxyhydroxide serving as a conductive matrix of the nickel positive electrode in the initial charging step.
Is higher than normal temperature by 40 to 50 ° C or more. By the way, A
In an A-size nickel-metal hydride storage battery, about 18 cal of heat is required to raise the temperature by 1 ° C., so the temperature of the storage battery before the first charge is 25 ° C., and the temperature at the time of the first charge is 85 ° C. If so, the temperature must be increased by 60 ° C. Therefore, it requires 1080 cal of heat per one AA-size storage battery.
To heat a group of 10,000 batteries, about 10 7 c
In order to cool the storage battery group after the initial charge to a temperature of 20 to 30 ° C., the same heat quantity needs to be released from the storage battery group.

【0024】このように複数の蓄電池を初充電する毎に
加熱・冷却を行うのでは、それだけ余分のエネルギーを
必要とし、効率が低い。したがって、本発明のように初
充電の終了後で未だ高温状態の蓄電池ないし蓄電池群と
未初充電の前記電極群およびアルカリ電解液が収納され
た密閉容器ないし複数の密閉容器との間で熱交換を行う
ことによって、余分なエネルギーの消費を解消でき、し
かも製造雰囲気温度を必要以上に上昇させるのを回避で
きる。
Heating and cooling each time a plurality of storage batteries are charged for the first time requires extra energy and lowers efficiency. Therefore, as in the present invention, heat exchange between the storage battery or the storage battery group still in a high temperature state after the end of the initial charge and the sealed container or the plurality of sealed containers in which the electrode group and the alkaline electrolyte not yet charged are stored. By performing the above, unnecessary energy consumption can be eliminated, and furthermore, it is possible to avoid raising the manufacturing atmosphere temperature more than necessary.

【0025】[0025]

【実施例】以下、本発明の実施例を図面を参照して詳細
に説明する。まず、LmNi4.0 Co0.4 Mn0.3 Al
0.3 (Lm;ランタンリッチミッシュメタル)(Lm;
ランタンリッチミッシュメタル)からなる水素吸蔵合金
粉末100重量部にポリアクリル酸ソーダ0.125重
量部、カルボキシメチルセルロース0.125重量部、
ポリテトラフルオロエチレン0.25重量部、カーボン
ブラック1重量部およびを水60重量部を加えて混合
し、剪断応力を加えながら混練することによりペースト
を調製した。その後、前記ペーストをパンチドメタルに
塗布し、乾燥し、成形することにより負極を作製した。
Embodiments of the present invention will be described below in detail with reference to the drawings. First, LmNi 4.0 Co 0.4 Mn 0.3 Al
0.3 (Lm; lantern rich misch metal) (Lm;
0.125 parts by weight of sodium polyacrylate, 0.125 parts by weight of carboxymethyl cellulose,
A paste was prepared by adding 0.25 parts by weight of polytetrafluoroethylene, 1 part by weight of carbon black, and 60 parts by weight of water, mixing and kneading while applying shear stress. Thereafter, the paste was applied to punched metal, dried, and molded to produce a negative electrode.

【0026】一方、水酸化ニッケル粉末90重量部、一
酸化コバルト10重量部、ポリアクリル酸ソーダ0.2
5重量部、カルボキシルメチルセルロース0.25重量
部、ポリテトラフルオロエチレン3.0重量部および水
30重量部を混練することによりペーストを調製した。
このペーストをニッケル繊維からなる導電性芯体に塗布
して充填した後、乾燥し、プレス加工を施すことにより
非焼結式正極を作製した。
On the other hand, 90 parts by weight of nickel hydroxide powder, 10 parts by weight of cobalt monoxide, 0.2% of sodium polyacrylate
A paste was prepared by kneading 5 parts by weight, 0.25 parts by weight of carboxymethyl cellulose, 3.0 parts by weight of polytetrafluoroethylene, and 30 parts by weight of water.
The paste was applied to a conductive core made of nickel fiber, filled, dried, and pressed to produce a non-sintered positive electrode.

【0027】得られた正極および負極の間に親水処理し
たポリプロピレン不織布からなるセパレータをそれぞれ
配置し、これら正極群を金属容器に収納した後、水酸化
カリウムを主成分とする電解液を前記容器内に収容し、
金属蓋体等の各部材を用いて図1に示す構造を有するA
Aサイズの円筒形ニッケル水素蓄電池を組立てた。図1
において、負極1は非焼結式正極2との間にセパレータ
3を介在して渦巻状に捲回され、有底円筒状の容器4内
に収納されている。アルカリ電解液は、前記容器4内に
収容されている。中央に穴5を有する円形の封口板6
は、前記容器4の上部開口部に配置されている。リング
状の絶縁性ガスケット7は、前記封口板6の周縁と前記
容器4の上部開口部内面の間に配置され、前記上部開口
部を内側に縮径するカシメ加工により前記容器4に前記
封口板6を前記ガスケット7を介して気密に固定してい
る。正極リード8は、一端が前記正極2に接続、他端が
前記封口板6の下面に接続されている。帽子形状をなす
正極端子9は、前記封口板4上に前記穴5を覆うように
取り付けられている。ゴム製の安全弁10は、前記封口
板4と前記正極端子9で囲まれた空間内に前記穴5を塞
ぐように配置されている。
Separators each made of a hydrophilic non-woven polypropylene nonwoven fabric are placed between the obtained positive electrode and negative electrode, and these positive electrode groups are stored in a metal container. Then, an electrolytic solution containing potassium hydroxide as a main component is placed in the container. Housed in
A having the structure shown in FIG. 1 using each member such as a metal lid
An A-size cylindrical nickel-metal hydride battery was assembled. FIG.
1, the negative electrode 1 is spirally wound with a separator 3 interposed between the negative electrode 1 and the non-sintered positive electrode 2, and is housed in a bottomed cylindrical container 4. The alkaline electrolyte is contained in the container 4. A circular sealing plate 6 having a hole 5 in the center
Are arranged in the upper opening of the container 4. The ring-shaped insulating gasket 7 is disposed between the peripheral edge of the sealing plate 6 and the inner surface of the upper opening of the container 4, and the sealing plate is formed on the container 4 by caulking to reduce the diameter of the upper opening inward. 6 is hermetically fixed via the gasket 7. One end of the positive electrode lead 8 is connected to the positive electrode 2, and the other end is connected to the lower surface of the sealing plate 6. A positive electrode terminal 9 having a hat shape is mounted on the sealing plate 4 so as to cover the hole 5. A rubber safety valve 10 is disposed in a space surrounded by the sealing plate 4 and the positive electrode terminal 9 so as to close the hole 5.

【0028】このような組立て後の複数のニッケル水素
蓄電池Bを図2に示す初充電用電池ケース11に収納し
た。前記ケース11は、上面が開放された例えば耐熱性
樹脂ような絶縁材料からなるケース本体12と、前記本
体12内に配置され、前記本体12内を5つの細長状空
間に区画するための4枚の支持板13と、前記本体12
の内部底面に形成され、蓄電池Bの負極と接続される端
子部14と、前記本体12の対向する側壁下部にそれぞ
れ開口された加温水流通口15と、前記本体12に取り
付けられ、内面に蓄電池Bの正極とそれぞれ接続される
弾性端子部16を有する例えば耐熱性樹脂ような絶縁材
料からなる蓋体17とから構成されている。なお、前記
端子部14と弾性端子部16は外部に配置された図示し
ない電源に接続されている。
A plurality of the nickel-metal hydride batteries B thus assembled were housed in a battery case 11 for initial charging shown in FIG. The case 11 includes a case body 12 having an open upper surface and made of an insulating material such as a heat-resistant resin, and four cases 11 disposed in the body 12 to partition the inside of the body 12 into five elongated spaces. Support plate 13 and the main body 12
A terminal portion 14 formed on the inner bottom surface of the main body 12 and connected to the negative electrode of the storage battery B, a heated water flow port 15 respectively opened at a lower portion of the opposite side wall of the main body 12, and attached to the main body 12. And a lid 17 made of an insulating material such as a heat-resistant resin and having an elastic terminal portion 16 connected to each of the B positive electrodes. The terminal portion 14 and the elastic terminal portion 16 are connected to a power source (not shown) disposed outside.

【0029】図3は、初充電処理装置を示す平面図であ
る。図3中の21は、45℃の温度に設定された第1恒
温槽、22は前記第1恒温槽21の左側に隣接配置さ
れ、65℃の温度に設定された第2恒温槽、23は前記
第2恒温槽22の左側に隣接配置され、85℃の温度に
設定された第3恒温槽である。前記第1〜第3の恒温槽
21〜23内には熱媒体として温水が収容されている。
前記第1、第2の恒温槽21、22は前記ケース11が
2つ収納できるスペースを有し、前記第3恒温槽23は
前記ケース11が1つ入るスペースを有する。このよう
な初充電処理装置により前述した図2に示す初充電用電
池ケース11内の複数のニッケル水素蓄電池Bを高温初
充電を行った。
FIG. 3 is a plan view showing the initial charge processing device. In FIG. 3, reference numeral 21 denotes a first constant temperature bath set to a temperature of 45 ° C., 22 denotes a second constant temperature bath which is disposed adjacent to the left side of the first constant temperature bath 21 and is set to a temperature of 65 ° C. This is a third constant temperature bath which is arranged adjacent to the left side of the second constant temperature bath 22 and is set at a temperature of 85 ° C. The first to third thermostats 21 to 23 contain hot water as a heat medium.
The first and second thermostats 21 and 22 have a space for accommodating two cases 11, and the third thermostat 23 has a space for one case 11. A plurality of nickel-metal hydride batteries B in the above-described initial charging battery case 11 shown in FIG. 2 were initially charged at a high temperature by such an initial charging processing device.

【0030】すなわち、複数のニッケル水素蓄電池Bが
収納された初充電用電池ケース11を矢印A1 に示すよ
うに第1恒温槽21内に搬送し、恒温槽21内の加温水
をケース本体の流通口を通して前記本体内に流通させる
ことにより複数の蓄電池を45℃まで加熱した。つづい
て、ケース11を矢印A2 に示すように第2恒温槽22
内に搬送し、ここでケース11内の複数の蓄電池Bを6
5℃まで加熱した。ひきつづき、ケース11を矢印A3
に示すように第3恒温槽23に搬送し、ここで85℃ま
で加熱された時点で、ケース11内の複数の蓄電池Bに
端子部14と弾性端子部16を通して所定の電流値の電
圧を印加して初充電を行った。初充電後の蓄電池が収納
されたケース11を矢印C1 、C2 に示すように第2恒
温槽22および第1恒温槽21に順次搬送し、さらに矢
印C3 に示すように外部に搬送した。このようなケース
11の第2恒温槽22、第1恒温槽21の搬送過程で、
ケース11内の初充電後の蓄電池は矢印A1 、A2 に示
すように第1恒温槽21および第2恒温槽22に搬送さ
れたケース11内の未初充電の蓄電池と互いに熱交換さ
れるため、ケース11内の初充電後の蓄電池は65℃、
45℃に順次冷却され、ケース11の未初充電の蓄電池
は45℃、65℃に順次加温された。
That is, the battery case 11 for initial charging, in which a plurality of nickel-metal hydride batteries B are stored, is transported into the first constant temperature bath 21 as shown by an arrow A 1 , and the heated water in the constant temperature bath 21 is transferred to the case body. The plurality of storage batteries were heated to 45 ° C. by flowing through the main body through the flow ports. Then, the second constant-temperature bath 22, as shown the case 11 in the arrow A 2
And a plurality of storage batteries B in the case 11
Heated to 5 ° C. Subsequently, the case 11 of the arrow A 3
Is transported to the third constant temperature bath 23 as shown in FIG. 3, and when heated to 85 ° C., a voltage of a predetermined current value is applied to the plurality of storage batteries B in the case 11 through the terminal portion 14 and the elastic terminal portion 16. And did the first charge. The case 11 in which the storage battery after the initial charge is stored is sequentially transported to the second constant temperature bath 22 and the first constant temperature bath 21 as shown by arrows C 1 and C 2 , and further transported outside as shown by the arrow C 3 . . In the process of transporting the second thermostat 22 and the first thermostat 21 of such a case 11,
The storage battery after the first charge in the case 11 exchanges heat with the uninitialized storage battery in the case 11 transported to the first constant temperature bath 21 and the second constant temperature bath 22 as shown by arrows A 1 and A 2. Therefore, the storage battery after the first charge in the case 11 is 65 ° C.
The storage battery, which was sequentially cooled to 45 ° C. and was not initially charged in the case 11, was sequentially heated to 45 ° C. and 65 ° C.

【0031】以上のように複数の蓄電池が収納された図
2に示す初充電用電池ケース11を第1〜第3の恒温槽
21〜23に段階的に搬送し、高温の初充電を行い、し
かる後にそれと逆方向に第2、第1の恒温槽22、21
に搬送し、冷却後に外部に取り出ことによって、初充電
の環境雰囲気が温度上昇することなく、しかも初充電前
の蓄電池を効率的に加温でき、エネルギーを有効に利用
することができる。また、初充電を行った蓄電池は長期
保存特性として望ましい90%以上の容量回復率を有し
ていた。
As described above, the battery case 11 for initial charging shown in FIG. 2 in which a plurality of storage batteries are stored is transferred stepwise to the first to third constant temperature baths 21 to 23, and the initial charging at a high temperature is performed. Thereafter, the second and first constant temperature baths 22 and 21 are moved in the opposite directions.
By transporting the battery to the outside and taking it out after cooling, the temperature of the environmental atmosphere for the first charge does not rise, the storage battery before the first charge can be efficiently heated, and energy can be used effectively. In addition, the storage battery that was initially charged had a capacity recovery rate of 90% or more, which is desirable as long-term storage characteristics.

【0032】なお、前記実施例では蓄電池の高温初充電
を図3に示す3つの恒温槽を有する初充電処理装置を用
いて行ったが、4つ以上の恒温槽を有する初充電処理装
置を用いて蓄電池の高温初充電を行ってもよい。このよ
うな初充電処理装置を用いれば、初充電後の蓄電池の冷
却および未初充電の蓄電池の加温をより効率よく行うこ
とができる。
In the above-described embodiment, the high-temperature initial charging of the storage battery was performed using the initial charge processing device having three constant temperature baths shown in FIG. 3, but the initial charge processing device having four or more constant temperature baths was used. The battery may be initially charged at high temperature. By using such an initial charge processing device, it is possible to more efficiently cool the storage battery after the initial charge and heat the storage battery not yet initially charged.

【0033】前記実施例では負極および非焼結式正極の
間にセパレータを介在して渦巻状に捲回し、有底円筒状
の容器内に収納した円筒形ニッケル水素蓄電池を例にし
て説明したが、複数の負極および複数の正極の間にセパ
レータをそれぞれ介在して積層物とし、この積層物を有
底矩形筒状の容器内に収納したニッケル水素矩形形蓄電
池にも同様に適用できる。
In the above-described embodiment, a cylindrical nickel-metal hydride storage battery which is spirally wound with a separator interposed between a negative electrode and a non-sintered positive electrode and accommodated in a bottomed cylindrical container has been described as an example. The present invention can be similarly applied to a nickel-metal hydride storage battery in which a separator is interposed between a plurality of negative electrodes and a plurality of positive electrodes to form a laminate, and the laminate is housed in a bottomed rectangular cylindrical container.

【0034】[0034]

【発明の効果】以上詳述したように、本発明によれば正
極中のコバルト化合物の配合量を多くせずに長期放置後
の容量低減の抑制を図ることが可能で、かつ初充電工程
で用いる熱エネルギーを有効に利用することができ、ひ
いては高性能のニッケル水素蓄電池を効率よく製造し得
る方法を提供できる。
As described in detail above, according to the present invention, it is possible to suppress the capacity reduction after long-term storage without increasing the amount of the cobalt compound in the positive electrode, and to reduce the amount of the cobalt compound in the first charging step. It is possible to effectively utilize the heat energy to be used, and to provide a method for efficiently producing a high performance nickel-metal hydride storage battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わるニッケル水素二次電池を示す部
分分解斜視図。
FIG. 1 is a partially exploded perspective view showing a nickel-metal hydride secondary battery according to the present invention.

【図2】本発明の実施例で用いられる初充電用電池ケー
スを示す部分切欠正面図。
FIG. 2 is a partially cutaway front view showing a battery case for initial charging used in an embodiment of the present invention.

【図3】本発明の実施例で用いられる初充電処理装置を
示す平面図。
FIG. 3 is a plan view showing an initial charge processing device used in the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…負極、2…正極、4…容器、6…封口板、7…絶縁
性ガスケット、9…正極端子、11…初充電用電池ケー
ス、12…ケース本体、15…流通口、21〜23…恒
温槽、B…蓄電池。
DESCRIPTION OF SYMBOLS 1 ... Negative electrode, 2 ... Positive electrode, 4 ... Container, 6 ... Sealing plate, 7 ... Insulating gasket, 9 ... Positive electrode terminal, 11 ... Battery case for initial charge, 12 ... Case main body, 15 ... Distribution port, 21-23 ... Constant temperature bath, B: storage battery.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小見山 健 東京都品川区南品川3丁目4番10号 東 芝電池株式会社内 (72)発明者 乙幡 秀和 東京都品川区南品川3丁目4番10号 東 芝電池株式会社内 (72)発明者 長谷部 裕之 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝研究開発センター内 (72)発明者 山本 雅秋 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝研究開発センター内 (72)発明者 鶴田 慎司 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝研究開発センター内 (72)発明者 吉田 秀紀 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝研究開発センター内 (56)参考文献 特開 平5−151990(JP,A) 特開 平5−198302(JP,A) 特開 平5−314983(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/30 H01M 4/32 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takeshi Ken Omiyama 3-4-1-10 Minamishinagawa, Shinagawa-ku, Tokyo Inside Toshiba Battery Corporation (72) Inventor Hidekazu Ohata 3-4-1-10 Minamishinagawa, Shinagawa-ku, Tokyo No. Within Toshiba Battery Co., Ltd. (72) Inventor Hiroyuki Hasebe 1 at Komukai Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Prefecture Inside of Toshiba R & D Center Co., Ltd. No. 1 Toshiba R & D Center Co., Ltd. (72) Inventor Shinji Tsuruta No. 1 Komukai Toshiba-cho, Yuki-ku, Kawasaki-shi, Kanagawa Prefecture Toshiba R & D Center (72) Inventor Hideki Yoshida Komukai, Yuki-ku, Kawasaki-shi, Kanagawa No. 1, Toshiba Town Inside R & D Center, Toshiba Corporation (56) References JP-A-5-151990 (JP, A) JP-A-5-198302 (JP, ) Patent flat 5-314983 (JP, A) (58 ) investigated the field (Int.Cl. 7, DB name) H01M 10/30 H01M 4/32 JICST file (JOIS)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一酸化コバルト、水酸化コバルト及び金
属コバルトから選ばれる1種及びニッケル酸化物を含む
非焼結式ニッケル正極と水素吸蔵合金を含む負極の間に
高分子不織布からなるセパレータを介在して絶縁するこ
とにより電極群を作製する工程と、 前記電極群をアルカリ電解液と共に密閉容器内に収納す
る工程と、 40〜120℃の高温で初充電を行う工程と、 前記初充電後の密閉容器と未初充電の前記電極群および
アルカリ電解液が収納された密閉容器とを熱交換して前
記初充電後の密閉容器を冷却すると共に、前記未初充電
の密閉容器を加温する工程とを具備したことを特徴とす
るニッケル水素蓄電池の製造方法。
1. Cobalt monoxide, cobalt hydroxide and gold
A step of producing an electrode group by interposing and insulating a separator made of a polymer nonwoven fabric between a non-sintered nickel positive electrode containing nickel oxide and one selected from the group consisting of cobalt and a negative electrode containing a hydrogen storage alloy; A step of housing the electrode group together with an alkaline electrolyte in a closed container; a step of performing initial charge at a high temperature of 40 to 120 ° C .; a closed container after the first charge; Cooling the sealed container after the first charge by exchanging heat with the sealed container containing the liquid, and heating the not-yet-charged sealed container. Production method.
JP7035635A 1995-02-23 1995-02-23 Method for manufacturing nickel-metal hydride storage battery Expired - Fee Related JP3011394B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP7035635A JP3011394B2 (en) 1995-02-23 1995-02-23 Method for manufacturing nickel-metal hydride storage battery
DE19606879A DE19606879C2 (en) 1995-02-23 1996-02-23 Process for the production of an alkaline secondary battery
KR1019960004379A KR100224464B1 (en) 1995-02-23 1996-02-23 Alkaline secondary battery manufacturing method, alkaline secondary battery positive electrode, alkaline secondary battery, and a method of manufacturing an initially charged alkaline secondary battery
US08/604,795 US5708349A (en) 1995-02-23 1996-02-23 Alkaline secondary battery manufacturing method, alkaline secondary battery positive electrode, alkaline secondary battery, and a method of manufacturing an initially charged alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7035635A JP3011394B2 (en) 1995-02-23 1995-02-23 Method for manufacturing nickel-metal hydride storage battery

Publications (2)

Publication Number Publication Date
JPH08236146A JPH08236146A (en) 1996-09-13
JP3011394B2 true JP3011394B2 (en) 2000-02-21

Family

ID=12447341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7035635A Expired - Fee Related JP3011394B2 (en) 1995-02-23 1995-02-23 Method for manufacturing nickel-metal hydride storage battery

Country Status (1)

Country Link
JP (1) JP3011394B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10018681B2 (en) * 2015-02-09 2018-07-10 Tesla, Inc. Cell manufacturing using liquid-based thermal system

Also Published As

Publication number Publication date
JPH08236146A (en) 1996-09-13

Similar Documents

Publication Publication Date Title
JP3438142B2 (en) Medium / large capacity sealed metal oxide / hydrogen storage battery
Furukawa Development and commercialization of nickel-metal hydride secondary batteries
EP2782181B1 (en) Layer cell and assembled battery including layer cell
JPH03184275A (en) Rectangular sealed alkaline battery with negative electrode of hydrogen storage alloy
JPH11162505A (en) Nickel-hydrogen battery
US5708349A (en) Alkaline secondary battery manufacturing method, alkaline secondary battery positive electrode, alkaline secondary battery, and a method of manufacturing an initially charged alkaline secondary battery
JP3011394B2 (en) Method for manufacturing nickel-metal hydride storage battery
JP3390309B2 (en) Sealed alkaline storage battery
JPH0831390A (en) Sealed storage battery and its manufacture
US20060234129A1 (en) Batteries utilizing a solid polymeric electrolyte
JPS59181459A (en) Metal oxide hydrogen battery
JPH10214604A (en) Battery and nickel hydrogen secondary battery
JP3094041B2 (en) Nickel hydrogen secondary battery module
JP3011393B2 (en) Method for manufacturing nickel-metal hydride storage battery
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JPH05159779A (en) Nickel hydroxide electrode and alkaline secondary battery with this electrode serving as positive pole
JP2989877B2 (en) Nickel hydride rechargeable battery
JP2877493B2 (en) Activation treatment device
JPS6215769A (en) Nickel-hydrogen alkaline battery
JP3536849B2 (en) Sealed metal oxide / hydrogen storage battery
JP3536850B2 (en) Sealed metal oxide / hydrogen storage battery
KR100790563B1 (en) Structure of electrode group for large capacity nickel/metal hydryde secondary battery
JPH09147901A (en) Manufacture of alkali secondary cell
JP2565508Y2 (en) Alkaline secondary battery
JP2002280057A (en) Alkaline secondary battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees