JP3008850U - Maintenance-free turbidity measuring device - Google Patents

Maintenance-free turbidity measuring device

Info

Publication number
JP3008850U
JP3008850U JP1994008305U JP830594U JP3008850U JP 3008850 U JP3008850 U JP 3008850U JP 1994008305 U JP1994008305 U JP 1994008305U JP 830594 U JP830594 U JP 830594U JP 3008850 U JP3008850 U JP 3008850U
Authority
JP
Japan
Prior art keywords
light
turbidity
measurement
circuit
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1994008305U
Other languages
Japanese (ja)
Inventor
悟朗 佐々木
Original Assignee
測定技術開発株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 測定技術開発株式会社 filed Critical 測定技術開発株式会社
Priority to JP1994008305U priority Critical patent/JP3008850U/en
Application granted granted Critical
Publication of JP3008850U publication Critical patent/JP3008850U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

(57)【要約】 【目的】 光源の強度、検出器感度の変化および光学窓
の汚れの影響を受けない、長期間、無保守で連続測定す
ることができる濁度測定装置を実現する。 【構成】 濁りを測定する2台の光源と、散乱光を同時
に検出する2台の検出器と、光源を駆動する駆動回路
と、検出信号を駆動回路の同期信号と同期して分離復調
する同期検波回路と、同期検波出力の比を演算する除算
回路と、除算回路出力を乗算する乗算回路からなり、光
源の変化、検出器感度の変化ならびに光学窓の汚れの影
響を自動的に消去するよう光学機構を配置することを特
徴としたメンテナンスフリーの濁度測定装置である。
(57) [Abstract] [Purpose] To realize a turbidity measuring device that can be continuously measured for a long period of time without maintenance, without being affected by the intensity of a light source, changes in detector sensitivity and contamination of optical windows. [Configuration] Two light sources for measuring turbidity, two detectors for simultaneously detecting scattered light, a drive circuit for driving the light source, and a synchronization for separating and demodulating a detection signal in synchronization with a synchronization signal of the drive circuit It consists of a detection circuit, a division circuit that calculates the ratio of synchronous detection output, and a multiplication circuit that multiplies the output of the division circuit to automatically eliminate the effects of light source changes, detector sensitivity changes, and optical window contamination. It is a maintenance-free turbidity measuring device characterized by arranging an optical mechanism.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本実用新案は、河川、ダム、湖沼、海域等における濁りを測定する装置に関す るものである。特に、洪水時の一般河川、都市河川、ダムや工事水域等では、短 時間のうちに濁りが急激に変化する。このため、長期間無保守で測定できる濁度 測定装置が必要となる。また、これらの水域では、濁度測定装置そのものが汚染 され易いため、測定のたびに装置を清掃し校正する必要がない優れた機能をもつ 濁りの測定装置が要求される。 This utility model relates to a device for measuring turbidity in rivers, dams, lakes and marshes. Especially in general rivers, urban rivers, dams and construction water areas during floods, turbidity changes rapidly in a short time. Therefore, a turbidity measuring device that can measure for a long time without maintenance is required. Moreover, in these waters, the turbidity measuring device itself is easily contaminated, and therefore a turbidity measuring device having an excellent function that does not require cleaning and calibration of the device for each measurement is required.

【0002】[0002]

【従来の技術】[Prior art]

従来の濁りの測定方式には、測定する光が測定試料を透過する際に濁りにより 吸収、散乱され減衰した透過光強度を測定する透過光方式、散乱された散乱光強 度を測定する散乱光方式、透過光強度と散乱光強度を同時に測定する透過・散乱 光方式がある。 Conventional turbidity measurement methods include a transmitted light method that measures the intensity of transmitted light that is absorbed, scattered, and attenuated by turbidity when the light to be measured passes through the measurement sample, and scattered light that measures the scattered light intensity. There is a method, a transmitted / scattered light method that simultaneously measures the transmitted light intensity and the scattered light intensity.

【0003】 それぞれの方式の測定原理を表す光学構成を、透過光方式を図4、散乱光方式 を図5、透過・散乱光方式を図6に表す。FIG. 4 shows a transmitted light method, FIG. 5 shows a scattered light method, and FIG. 6 shows a transmitted / scattered light method as an optical configuration showing the measurement principle of each method.

【0004】 透過光方式の図4の符号35は濁りを測定する試料、符号36は試料を入れる セル、符号37は光源、符号38は光源の放射する光を集光レンズで平行な光束 にした測定光束、符号39は光源の測定光束が試料に入射する光源光学窓、符号 40は試料を透過した測定光束が通過する受光光学窓、符号41は透過光の光強 度を検出する検出器である。In the transmitted light method, reference numeral 35 in FIG. 4 is a sample for measuring turbidity, reference numeral 36 is a cell in which the sample is placed, reference numeral 37 is a light source, and reference numeral 38 is light emitted from the light source, which is made into a parallel light flux by a condenser lens. Measurement light flux, reference numeral 39 is a light source optical window through which the measurement light flux of the light source enters the sample, reference numeral 40 is a light receiving optical window through which the measurement light flux transmitted through the sample passes, and reference numeral 41 is a detector for detecting the light intensity of the transmitted light. is there.

【0005】 透過光方式の濁りの濃度と透過光強度の関係は、ランバートベールの法則に従 い次式で表される。The relationship between the concentration of turbidity and the intensity of transmitted light in the transmitted light system is expressed by the following equation according to Lambert-Beer's law.

【0006】[0006]

【数1】 [Equation 1]

【0007】 上記の数式において、Iは光源の光強度、Iは透過光強度、kは比例定数 、mは濁りの濃度、dは測定する試料の厚みである。wは光源光学窓の透過率 、wは受光光学窓の透過率、sは検出器の感度、Eは透過光強度の信号出力で ある。この数式のexp(−kmd)は試料そのものの透過率(I/I)を 表す。In the above formula, I O is the light intensity of the light source, I T is the transmitted light intensity, k is the proportional constant, m is the turbidity concentration, and d is the thickness of the sample to be measured. w 1 is the transmittance of the light source optical window, w 2 is the transmittance of the light receiving optical window, s is the sensitivity of the detector, and E is the signal output of the transmitted light intensity. Exp of the equation (-kmd) represents the transmittance of the sample itself to (I T / I O).

【0008】 透過光方式は、上記の数式から明らかなように信号出力は光源の強度、検出器 の感度の変化ならびに光学窓の汚れの影響を受ける。このため、測定のたびに光 学窓を清掃し、計器の校正を行う必要がある。In the transmitted light method, the signal output is affected by the intensity of the light source, the change in the sensitivity of the detector, and the dirt on the optical window, as is apparent from the above formula. Therefore, it is necessary to clean the optical window and calibrate the instrument after each measurement.

【0009】 散乱光方式の、図5の符号42は濁りを測定する試料、符号43は試料を入れ るセル、符号44は光源、符号45は光源の放射する光を集光レンズで平行な光 束にした測定光束、符号46は検出器の受光視野、符号47は光源の測定光束を 試料に入射する光源光学窓、符号48は検出器の受光視野での散乱光を受光する 受光光学窓、符号49は散乱光の光強度を検出する検出器である。In the scattered light method, reference numeral 42 in FIG. 5 is a sample for measuring turbidity, reference numeral 43 is a cell in which the sample is placed, reference numeral 44 is a light source, and reference numeral 45 is light emitted from the light source, which is parallel light with a condenser lens. A bundle of measurement light beams, reference numeral 46 is a light receiving field of view of the detector, reference numeral 47 is a light source optical window for making the measurement light beam of the light source enter the sample, and reference numeral 48 is a light receiving optical window for receiving scattered light in the light receiving field of the detector, Reference numeral 49 is a detector for detecting the light intensity of the scattered light.

【0010】 散乱光方式の濁りの濃度と散乱光強度の関係は、次式で表される。The relationship between the density of turbidity and the scattered light intensity in the scattered light method is expressed by the following equation.

【0011】[0011]

【数2】 [Equation 2]

【0012】 上記の数式において、Iは光源光強度、Iは散乱光強度、kは比例定数、 mは濁りの濃度、dは測定する試料の厚みである。wは光源光学窓の透過率、 wは受光光学窓の透過率、sは検出器の感度、Eは散乱光強度の信号出力であ る。この数式において1−exp(−kmd)は透過率1.0(100%)から 試料の厚みdの透過率を減算したもので、試料の散乱率を表す。In the above formula, I O is the light source light intensity, I S is the scattered light intensity, k is the proportional constant, m is the turbidity concentration, and d is the thickness of the sample to be measured. w 1 is the transmittance of the light source optical window, w 2 is the transmittance of the light receiving optical window, s is the sensitivity of the detector, and E is the signal output of the scattered light intensity. In this formula, 1-exp (-kmd) is the transmittance of 1.0 (100%) minus the transmittance of the thickness d of the sample, and represents the scattering rate of the sample.

【0013】 散乱光方式も、上記の数式から明らかなように透過光方式と同様に信号出力は 光源強度、検出器感度の変化ならびに光学窓の汚れの影響を受ける。このため、 透過光方式と同様の欠陥が生じる。In the scattered light method, as is clear from the above equation, the signal output is affected by the change in the light source intensity, the sensitivity of the detector, and the contamination of the optical window as in the transmitted light method. Therefore, the same defect as in the transmitted light method occurs.

【0014】 透過・散乱光方式の、図6の符号50は濁りを測定する試料、符号51は試料 を入れるセル、符号52は光源、符号53は光源の放射する光を集光レンズで平 行な光束にした測定光束、符号54は散乱光検出器の受光視野、符号55は光源 の測定光束を試料に入射する光源光学窓、符号56は透過光検出器および散乱光 検出器の受光光学窓、符号57は透過光の光強度を検出する検出器、符号58は 散乱光の光強度を検出する検出器である。In the transmitted / scattered light system, reference numeral 50 in FIG. 6 is a sample for measuring turbidity, reference numeral 51 is a cell in which the sample is placed, reference numeral 52 is a light source, and reference numeral 53 is a condensing lens for emitting light emitted from the light source. Measurement light flux which has been converted into a light flux, reference numeral 54 denotes a light receiving field of view of the scattered light detector, reference numeral 55 denotes a light source optical window for making the measurement light flux of the light source enter the sample, and reference numeral 56 denotes a light receiving optical window of the transmitted light detector and the scattered light detector. Reference numeral 57 is a detector for detecting the light intensity of the transmitted light, and reference numeral 58 is a detector for detecting the light intensity of the scattered light.

【0015】 透過・散乱光方式は、一般に検出する散乱光信号と透過光信号の比を演算して 濁りを測定する。濁りの濃度との関係は、次式で表される。The transmitted / scattered light method generally calculates the ratio of a scattered light signal and a transmitted light signal to be detected to measure turbidity. The relationship with the turbidity concentration is expressed by the following equation.

【0016】[0016]

【数3】 [Equation 3]

【0017】 上記の数式において、Iは光源強度、Iは透過光強度、Iは散乱強度、 kは透過、散乱の比例定数、mは濁りの濃度、dは測定する試料の厚みである。 wは光源光学窓の透過率、wは受光光学窓の透過率、s、sは透過光検 出器と散乱光検出器の感度、Eは散乱光強度と透過光強度の比が演算された濁度 信号出力である。In the above formula, I O is the light source intensity, I T is the transmitted light intensity, I S is the scattering intensity, k is the proportional constant of transmission and scattering, m is the concentration of turbidity, and d is the thickness of the sample to be measured. is there. w 1 is the transmittance of the light source optical window, w 2 is the transmittance of the light receiving optical window, s T and s S are the sensitivities of the transmitted light detector and the scattered light detector, and E is the ratio of the scattered light intensity and the transmitted light intensity. Is the calculated turbidity signal output.

【0018】 透過・散乱光方式は、上記の数式から明らかなように共通の光源と厳密には透 過光と散乱光の光路が異なるがほぼ共通の光学窓を持つとみなし、測定される結 果は光源の強度の変化や光学窓の汚れの影響を受けない濁度計となる。しかしな がら、透過光、散乱光を受光する検出器の感度の変化が測定誤差となる。As is clear from the above formula, the transmitted / scattered light method is strictly regarded as having a common optical window, but the optical paths of the transmitted light and the scattered light are different from each other. The result is a turbidimeter that is not affected by changes in the intensity of the light source or dirt on the optical window. However, changes in the sensitivity of detectors that receive transmitted light and scattered light cause measurement errors.

【0019】[0019]

【考案が解決しようとする課題】[Problems to be solved by the device]

本考案は、光源の強度の変化、検出器感度の変化ならびに光学窓の汚れの影響 を受けない長期間、無保守で連続測定することができる優れた機能をもった濁度 測定装置を実現するのが目的である。 The present invention realizes a turbidity measuring device having an excellent function capable of continuous measurement without maintenance for a long period of time without being affected by changes in light source intensity, changes in detector sensitivity, and dirt on optical windows. The purpose is.

【0020】[0020]

【課題を解決するための手段】[Means for Solving the Problems]

本考案は、濁りを測定するための測定光束を作る2台の光源と、測定する試料 の濁りが測定光束を散乱した散乱光を同時に受光し光強度を検出する2台の検出 器と、光源を交互に駆動して2本の測定光束をつくる駆動回路と、2本の測定光 束に対する2台の検出器の信号を光源の駆動信号と同期して4系統の信号に分離 復調する同期検波回路と、4系統の同期検波出力の同一測定光束による同期検波 出力の比を演算する除算回路と、2本の測定光束の除算回路出力を乗算する乗算 回路からなり、さらに、光学機構を、2台の検出器の受光視野の位置が異なり、 かつ、2本の測定光束が2台の検出器の受光視野を透過するように構成して、乗 算回路の出力から濁度を得るようにした濁度測定装置である。 The present invention includes two light sources that generate a measurement light flux for measuring turbidity, two detectors that simultaneously receive scattered light generated by the turbidity of a sample to be measured, and detect the light intensity, and a light source. Drive circuit that alternately drives two measuring light fluxes and synchronous detection that separates and demodulates the signals from the two detectors for the two measuring light fluxes into the signals from the four light sources in synchronization with the drive signal from the light source It comprises a circuit, a division circuit for calculating the ratio of the coherent detection outputs by the same measurement light flux of the four coherent detection outputs, and a multiplication circuit for multiplying the output of the division circuit of the two measurement light fluxes. The positions of the light-receiving fields of view of the two detectors are different, and the two measuring light beams are configured to pass through the light-receiving fields of view of the two detectors, and the turbidity is obtained from the output of the multiplication circuit. It is a turbidity measuring device.

【0021】 さらに、必要に応じて2台の検出器の間に測定光束の前方散乱光を制限するた めの光束制限板を設ける。Further, if necessary, a light flux limiting plate for limiting the forward scattered light of the measurement light flux is provided between the two detectors.

【0022】 また、除算回路、乗算回路の代わりに、同期検波回路出力をアナログーデジタ ル変換するアナログーデジタル変換回路を付加して、デジタル変換したデータを コンピュータで比および乗算の演算を行うことができようにする。Further, instead of the division circuit and the multiplication circuit, an analog-digital conversion circuit for analog-digital converting the output of the synchronous detection circuit is added, and the computer performs ratio and multiplication operations on the digitally converted data. To be able to.

【0023】 光源は電子的に高速で駆動できる半導体レーザ等を利用し、光学系で平行光束 にして測定光束をつくる。光束制限板は光遮蔽板に測定光束の光束径とほぼ同等 の測定光束の通過孔を設けた構造にする。As the light source, a semiconductor laser or the like that can be electronically driven at high speed is used, and an optical system forms a parallel light beam to form a measurement light beam. The light flux limiting plate has a structure in which a light-shielding plate is provided with a through hole for the measurement light beam having a diameter substantially equal to the diameter of the measurement light beam.

【0024】[0024]

【作用】[Action]

1本の測定光束の散乱光を2台の検出器で同時に検出し、得られる信号の比を 演算することで光束の光強度の変化が消去された濁度の関数を得ることができる 。2本の測定光束で得る各測定光束の濁度の関数を乗算することで検出器の感度 の相違、変化ならびに光学窓の透過率の相違、変化が消去された試料の濁度の関 数を得ることができる。このため、光源の光強度の変化、検出器感度の相違、変 化ならびに光学窓の汚れに影響されない濁りの測定が可能となり、長期間、無保 守で濁度を連続測定することのできる優れた機能をもつ濁度測定装置が実現でき る。 The scattered light of one measurement light beam is detected by two detectors at the same time, and the ratio of the obtained signals is calculated to obtain a turbidity function in which the change in the light intensity of the light beam is eliminated. By multiplying the turbidity function of each measurement light flux obtained by two measurement light fluxes, the sensitivity difference of the detector, the change and the transmittance of the optical window, and the turbidity function of the sample in which the change is eliminated can be obtained. Obtainable. As a result, it is possible to measure turbidity that is not affected by changes in the light intensity of the light source, differences in detector sensitivity, changes, and contamination of the optical window, making it possible to continuously measure turbidity without maintenance for a long period of time. It is possible to realize a turbidity measuring device having the above function.

【0025】[0025]

【実施例】【Example】

以下、図面により本考案の実施例を説明する。図1、図2は本考案の測定原理 を表す光学機構の具体例を示すものであって、図1は測定試料を入れる試料セル を側面から見たときの光学機構の構成であり、図2は試料セル2を上面から見た ときの光学機構の構成を表すものである。 An embodiment of the present invention will be described below with reference to the drawings. 1 and 2 show specific examples of an optical mechanism showing the measurement principle of the present invention, and FIG. 1 shows the configuration of the optical mechanism when the sample cell in which the measurement sample is placed is viewed from the side. Represents the configuration of the optical mechanism when the sample cell 2 is viewed from above.

【0026】 野外で携帯使用する濁度測定装置には試料セルは必要でなく、防水構造に設計 、製作した機器を、直接、測定試料に浸潜して測定する。The turbidity measuring device that is used outdoors in the field does not require a sample cell, and a device designed and manufactured to have a waterproof structure is directly immersed in the measurement sample for measurement.

【0027】 図1の符号1〜12は図2と同様である。符号1は濁りを測定する試料、符号 2は試料を入れるセル、符号3〜4は光源、符号5〜6は光源3と光源4の放射 する光を集光レンズ11と集光レンズ12で平行な光束にした各々の測定光束、 符号7〜8は測定光束5および測定光束6の散乱光を検出する検出器17と検出 器18の各々の受光視野、符号9〜10は光源3の測定光束5と光源4の測定光 束6が試料1に入射する各々の光学窓、符号11〜12は光源3、光源4の放射 する光を平行な測定光束5と測定光束6を作るための各々の集光レンズ、符号1 3〜14は検出器17と検出器18の受光視野の散乱光を受光する各々の光学窓 、符号15〜16は検出器17と検出器18の受光視野の散乱光を集光する各々 の集光レンズ、符号17〜18は散乱光を受光する検出器、符号19は光束制限 板である。Reference numerals 1 to 12 in FIG. 1 are the same as those in FIG. Reference numeral 1 is a sample for measuring turbidity, reference numeral 2 is a cell in which the sample is placed, reference numerals 3 to 4 are light sources, and reference numerals 5 to 6 are parallel light beams emitted from the light sources 3 and 4 by the condenser lens 11 and the condenser lens 12. Each of the measurement light fluxes made into various light fluxes, reference numerals 7 to 8 are light-receiving fields of view of the detector 17 and the detector 18, which detect scattered light of the measurement light flux 5 and the measurement light flux 6, and reference numerals 9 to 10 are measurement light fluxes of the light source 3. 5 and respective optical windows for the measurement light flux 6 of the light source 4 to enter the sample 1. Reference numerals 11 to 12 denote the respective light beams emitted from the light source 3 and the light source 4 for forming parallel measurement light flux 5 and measurement light flux 6. Condensing lenses, reference numerals 13 to 14 denote respective optical windows for receiving scattered light in the light receiving fields of the detector 17 and the detector 18, and reference numerals 15 to 16 denote scattered light in the light receiving fields of the detector 17 and the detector 18. Each condensing lens for condensing, reference numerals 17 to 18 are detectors for receiving scattered light Reference numeral 19 is a light beam limiting plate.

【0028】 図1の記号dは図2と同様である。記号dは、測定光束5線上における光学窓 9と受光視野7の中央位置までの光束距離(光路長)と光束制限板と受光視野8 の中央位置までの光路長を表し、同様に、測定光束6線上における光学窓10と 受光視野8の中央位置までの光路長と光束制限板と受光視野7の中央位置までの 光路長を表すもので全て等しい光路長を表す。また、図1のhは、光学窓13、 光学窓14から測定光束5、測定光束6への鉛直距離を表し全て等しい距離を表 す。The symbol d in FIG. 1 is the same as in FIG. The symbol d represents the light beam distance (optical path length) to the central position of the optical window 9 and the light receiving visual field 7 on the measurement light beam 5 line, and the optical path length to the central position of the light flux limiting plate and the light receiving visual field 8. The optical path lengths up to the central position of the optical window 10 and the light receiving visual field 8 on the 6th line and the optical path lengths up to the central position of the light flux limiting plate and the light receiving visual field 7 are all expressed as equal optical path lengths. Further, h in FIG. 1 represents the vertical distances from the optical window 13 and the optical window 14 to the measurement light beam 5 and the measurement light beam 6, and all represent the same distance.

【0029】 光源3の測定光束5と光源4の測定光束6は、入射方向が互いに対向し、かつ 、互いに平行となるよう定めてある。検出器17の受光視野7と検出器18の受 光視野8は、集光レンズ15と集光レンズ16で同等の視野を形成する。受光視 野7の中心線ならびに受光視野8の中心線は、測定光束5と測定光束6に対する 距離が常に等しくなる位置に定めてある。測定光束5が光学窓9から入射し、受 光視野7の透過中央に到る距離はdであり受光視野8の透過中央に到る距離は3 dである。同様に、測定光束6が光学窓10から入射し受光視野8の透過中央に 到る距離はdであり受光視野7の透過中央に到る距離は3dである。光学窓13 、光学窓14から測定光束5と測定光束6への鉛直距離は全て等しい距離(h) である。光束制限板19は、光の遮蔽板に測定光束5および測定光束6の光束径 とほぼ同等の2個の測定光束の通過孔を設けて使用する。光束制限板19は受光 視野7の中心と受光視野8の中心から等しい位置に測定光束が遮蔽されないで通 過できるよう配置してある。The measurement light beam 5 of the light source 3 and the measurement light beam 6 of the light source 4 are set so that the incident directions thereof face each other and are parallel to each other. The light receiving field 7 of the detector 17 and the light receiving field 8 of the detector 18 form the same field of view by the condenser lens 15 and the condenser lens 16. The center line of the light receiving field 7 and the center line of the light receiving field 8 are set at positions where the distances to the measurement light beam 5 and the measurement light beam 6 are always equal. The measurement light beam 5 enters from the optical window 9 and reaches the transmission center of the light receiving visual field 7 at d, and the distance to the transmission center of the light receiving visual field 8 is 3 d. Similarly, the distance that the measurement light beam 6 enters from the optical window 10 and reaches the transmission center of the light receiving visual field 8 is d, and the distance to reach the transmission center of the light receiving visual field 7 is 3d. The vertical distances from the optical window 13 and the optical window 14 to the measurement light beam 5 and the measurement light beam 6 are all the same distance (h). The light flux limiting plate 19 is used by providing a light shielding plate with two measurement light flux passage holes having substantially the same diameters as the measurement light fluxes 5 and 6. The light flux limiting plate 19 is arranged at the same position from the center of the light receiving field 7 and the center of the light receiving field 8 so that the measurement light beam can pass through without being blocked.

【0030】 以上の光学機構の構成により、測定光束5が受光視野7と受光視野8を透過す る試料の体積は等しく、同様に、測定光束6が受光視野8と受光視野7を透過す る試料の体積も等しくしなる。また、測定光束5の受光視野7における散乱光が 受光光学窓13に到る試料の厚みは同光束の受光視野8における散乱光が受光光 学窓14に到る厚みに等しく、かつ、測定光束6についても同様となる。光束制 限板19は測定光束の入射する光学窓から光束制限板までの測定光束長の間に発 生する前方散乱光を遮蔽する機能をもち、かつ、測定光束が入射した光学窓から 最初に透過する受光視野と光束制限板を通過した後に透過する受光視野への前方 散乱光強度の割合を等しくする機能をもつが、前方散乱による誤差が許容できる 濁度測定装置には使用しない。With the configuration of the optical mechanism described above, the measurement light beam 5 passes through the light-receiving field of view 7 and the light-receiving field of view 8 in the same volume of the sample, and similarly, the measurement light beam 6 passes through the light-receiving field of view 8 and the light-receiving field of view 7. The sample volumes are also equal. Further, the thickness of the sample where the scattered light in the light receiving field 7 of the measurement light beam 5 reaches the light receiving optical window 13 is equal to the thickness of the scattered light in the light receiving field 8 of the same light beam reaching the light receiving optical window 14, and the measurement light beam 6 Is also the same. The light flux limiting plate 19 has a function of blocking the forward scattered light generated during the measurement light flux length from the optical window on which the measurement light flux enters to the light flux limiting plate, and first from the optical window on which the measurement light flux enters. It has the function of equalizing the ratio of the forward scattered light intensity to the light receiving field that transmits and the light receiving field that transmits after passing through the light flux limiting plate, but it is not used in a turbidity measuring device that can tolerate errors due to forward scattering.

【0031】 図3は本考案の実施例の電子回路構成であって、符号3〜4は図1、図2と同 様の光源である。符号17〜18は図1、図2と同様の検出器である。符号20 〜21は光源3と光源4の各々の駆動回路、符号22〜23は光源3の測定光束 5による受光視野7と受光視野8におけるの各々の散乱光、符号24〜25は光 源4の測定光束6による受光視野8と受光視野7におけるの各々の散乱光、符号 26〜27は検出器17と検出器18の各々の信号増幅回路、符号28〜29は 光源3が駆動された時の検出器17と検出器18の散乱光信号を駆動回路20の 同期信号で同期検波する各々の同期検波回路、符号30〜31は光源4が駆動さ れた時の検出器17と検出器18の散乱信号を駆動回路21の同期信号で同期検 波する各々の同期検波回路、符号32は同期検波回路28と同期検波回路29の 信号の比を演算出力する除算回路、符号33は同期検波回路31と同期検波回路 30の信号の比を演算出力する除算回路、符号34は除算回路32と除算回路 33の信号を乗算出力する乗算回路である。FIG. 3 shows an electronic circuit configuration of an embodiment of the present invention, and reference numerals 3 to 4 are light sources similar to those in FIGS. Reference numerals 17 to 18 are detectors similar to those in FIGS. 1 and 2. Reference numerals 20 to 21 are drive circuits for the light source 3 and the light source 4, reference numerals 22 to 23 are scattered lights in the light receiving field 7 and the light receiving field 8 by the measurement light beam 5 of the light source 3, and reference numerals 24 to 25 are light sources 4. Each scattered light in the light-receiving visual field 8 and the light-receiving visual field 7 by the measuring luminous flux 6 is denoted by reference numerals 26 to 27, which are signal amplifying circuits of the detectors 17 and 18, respectively, and reference numerals 28 to 29 are when the light source 3 is driven. The synchronous detection circuits for synchronously detecting the scattered light signals of the detectors 17 and 18 with the synchronous signals of the drive circuit 20, reference numerals 30 to 31 are the detectors 17 and 18 when the light source 4 is driven. Each synchronous detection circuit for synchronously detecting the scattered signal of No. 1 by the synchronous signal of the drive circuit 21, reference numeral 32 is a division circuit for calculating and outputting the signal ratio of the synchronous detection circuit 28 and the synchronous detection circuit 29, and reference numeral 33 is a synchronous detection circuit. 31 and synchronous detection circuit 30 A reference numeral 34 is a division circuit for calculating and outputting the signal ratio, and reference numeral 34 is a multiplication circuit for multiplying and outputting the signals of the division circuit 32 and the division circuit 33.

【0032】 同期検波回路28〜31には、検波信号を時間積分する回路が付加してあり、 散乱光強度に比例する平均化した信号を連続出力する。A circuit for time-integrating the detection signal is added to the synchronous detection circuits 28 to 31, and an averaged signal proportional to the scattered light intensity is continuously output.

【0033】 また、除算回路32〜33、乗算回路34の代わりに同期検波回路28〜31 の信号を直接アナログーデジタル変換し、除算、乗算をデジタル演算して出力す ることもできる。Further, instead of the division circuits 32 to 33 and the multiplication circuit 34, the signals of the synchronous detection circuits 28 to 31 can be directly analog-digital converted, and the division and multiplication can be digitally calculated and output.

【0034】 図3の構成のもとで同期検波回路、除算回路、乗算回路の出力は以下のように なる。Under the configuration of FIG. 3, the outputs of the synchronous detection circuit, the division circuit and the multiplication circuit are as follows.

【0035】 以下に示す数式4〜数式10における変数f、L、rは、次のように定義する 。Variables f, L, and r in Expressions 4 to 10 shown below are defined as follows.

【0036】 受光視野7と受光視野8の試料を透過する測定光束5の厚みは等しく、この試 料の厚みをfとする。また、測定光束6についても同様とし、この試料の厚み をfとする。The thicknesses of the measurement light beams 5 passing through the sample in the light-receiving fields 7 and 8 are equal, and the thickness of this sample is f 5 . The measurement light flux 6 is also the same, and the thickness of this sample is f 6 .

【0037】 測定光束5についての受光視野7と受光視野8の間の光路長(2d)は、測定 光束6についての受光視野8と受光視野7の間の光路長(2d)と等しい。この 光路長をLとする。The optical path length (2d) between the light receiving field 7 and the light receiving field 8 for the measurement light beam 5 is equal to the optical path length (2d) between the light receiving field 8 and the light receiving field 7 for the measurement light beam 6. Let this optical path length be L.

【0038】 測定光束5の受光視野7における散乱光が受光光学窓13に到る試料の厚みは 同光束の受光視野8における散乱光が受光光学窓14に到る厚みに等しく、かつ 、測定光束6についても同様である。この試料の厚みをrとする。The thickness of the sample where the scattered light in the light receiving field 7 of the measurement light beam 5 reaches the light receiving optical window 13 is equal to the thickness of the scattered light in the light receiving field 8 of the same light beam reaching the light receiving optical window 14, and The same applies to 6. Let the thickness of this sample be r.

【0039】 光源3が駆動されている時の検出器17が受光する散乱光強度信号を出力する 同期検波回路28の出力は次式で表される。The output of the synchronous detection circuit 28, which outputs the scattered light intensity signal received by the detector 17 when the light source 3 is driven, is represented by the following equation.

【0040】[0040]

【数4】 [Equation 4]

【0041】 上記の数式において、IO3は光源3の光放射強度、IS7は受光視野7での 測定光束5の散乱光強度、kは透過比例定数、kは散乱比例定数、mは濁り の濃度、dは測定光束5が受光視野7の透過中央に到達するまでの試料の厚み である。 fは受光視野7の中を透過する測定光束5の試料の厚み、rは散乱光IS7が 光学窓13に到達するまでの試料の厚み、w13は光学窓13の透過率、s17 は検出器17の感度、E28は同期検波回路28の信号出力である。上記の数式 における、I[exp{−kmd}]の項は測定光束5が受光視野7の透 過中央に到達した測定光束の光強度を表し、[1−exp{−kmf}]の 項は透過中央の測定光束の散乱率を表す。また、[exp{−kmr}]の項 は散乱光IS7が光学窓13に到達する透過率を表す。以下に表す数式5、数式 6、数式7の同じ項は、それぞれの測定光束、受光視野、光路長および光学窓に おいて同様の意味を表す。In the above formula, I O3 is the light emission intensity of the light source 3, I S7 is the scattered light intensity of the measurement light beam 5 in the light-receiving field 7, k 1 is the transmission proportional constant, k 2 is the scattering proportional constant, and m is The turbidity concentration, d 7 is the thickness of the sample until the measurement light beam 5 reaches the transmission center of the light-receiving visual field 7. f 5 is the thickness of the sample of the measurement light beam 5 that is transmitted through the light-receiving field 7, r is the thickness of the sample until the scattered light I S7 reaches the optical window 13, w 13 is the transmittance of the optical window 13, and s 17 Is the sensitivity of the detector 17, and E 28 is the signal output of the synchronous detection circuit 28. In the above formula, the term I O [exp {−k 1 md 7 }] represents the light intensity of the measurement light flux when the measurement light flux 5 reaches the transmissive center of the light-receiving field 7, and [1-exp {-k 2 mf 5 }] represents the scattering rate of the measurement light beam at the transmission center. The term [exp {−k 1 mr}] represents the transmittance of the scattered light I S7 reaching the optical window 13. The same terms in Expressions 5, 6, and 7 shown below have the same meanings in the respective measurement light fluxes, light-receiving fields of view, optical path lengths, and optical windows.

【0042】 同様に、光源3が駆動されている時の検出器18が受光する散乱光強度信号を 出力する同期検波回路29の出力は次式で表される。Similarly, the output of the synchronous detection circuit 29 that outputs the scattered light intensity signal received by the detector 18 when the light source 3 is driven is represented by the following equation.

【0043】[0043]

【数5】 [Equation 5]

【0044】 上記の数式において、IO3は光源3の光放射強度、IS8は受光視野8での 測定光束5の散乱光強度、kは透過比例定数、kは散乱比例定数、mは濁り の濃度、dは測定光束5が受光視野7の透過中央に到達するまでの試料の厚み である。Lは受光視野7の透過中央から受光視野8の透過中央までの距離(光路 長)、fは受光視野8の中を透過する測定光束5の試料の厚み、rは散乱光IS8 が光学窓14に到達するまでの試料の厚み、w14は光学窓14の透過率、 s18は検出器18の感度、E29は同期検波回路29の信号出力である。In the above formula, I O3 is the light emission intensity of the light source 3, I S8 is the scattered light intensity of the measurement light beam 5 in the light receiving field 8, k 1 is the transmission proportional constant, k 2 is the scattering proportional constant, and m is The turbidity concentration, d 7 is the thickness of the sample until the measurement light beam 5 reaches the transmission center of the light-receiving visual field 7. L is the distance (optical path length) from the transmission center of the light-receiving visual field 7 to the transmission center of the light-receiving visual field 8, f 5 is the thickness of the sample of the measurement light beam 5 that passes through the light-receiving visual field 8, and r is the scattered light I S8 The thickness of the sample before reaching the window 14, w 14 is the transmittance of the optical window 14, s 18 is the sensitivity of the detector 18, and E 29 is the signal output of the synchronous detection circuit 29.

【0045】 光源4が駆動されている時の検出器18が受光する散乱光強度信号を出力する 同期検波回路31の出力は次式で表される。The output of the synchronous detection circuit 31 that outputs the scattered light intensity signal received by the detector 18 when the light source 4 is driven is expressed by the following equation.

【0046】[0046]

【数6】 [Equation 6]

【0047】 上記の数式において、IO4は光源4の光放射強度、IS8は受光視野8での 測定光束6の散乱光強度、kは透過比例定数、kは散乱比例定数、mは濁り の濃度、dは測定光束6が受光視野8の透過中央に到達するまでの試料の厚み である。fは受光視野8の中を透過する測定光束6の試料の厚み、rは散乱光 IS8が光学窓14に到達するまでの試料の厚み、w14は光学窓14の透過率 、s18は検出器18の感度、E31は同期検波回路31の信号出力である。In the above formula, I O4 is the light emission intensity of the light source 4, I S8 is the scattered light intensity of the measurement light beam 6 in the light receiving field 8, k 1 is the transmission proportional constant, k 2 is the scattering proportional constant, and m is The turbidity concentration, d 8 is the thickness of the sample until the measurement light beam 6 reaches the transmission center of the light-receiving visual field 8. f 6 is the thickness of the sample of the measurement light beam 6 that is transmitted through the light-receiving field 8, r is the thickness of the sample until the scattered light I S8 reaches the optical window 14, w 14 is the transmittance of the optical window 14, s 18 Is the sensitivity of the detector 18, and E 31 is the signal output of the synchronous detection circuit 31.

【0048】 同様に、光源4が駆動されている時の検出器17が受光する散乱光強度信号を 出力する同期検波回路30の出力は次式で表される。Similarly, the output of the synchronous detection circuit 30 that outputs the scattered light intensity signal received by the detector 17 when the light source 4 is driven is expressed by the following equation.

【0049】[0049]

【数7】 [Equation 7]

【0050】 上記の数式において、IO4は光源3の光放射強度、IS7は受光視野7での 測定光束6の散乱光強度、kとkは比例定数、mは濁りの濃度、dは測定 光束6が受光視野8の透過中央に到達するまでの試料の厚みである。Lは受光視 野8の透過中央から受光視野7の透過中央までの距離(光路長)、fは受光視 野7の中を透過する測定光束6の試料の厚み、rは散乱光IS7が光学窓13に 到達するまでの試料の厚み、w13は光学窓13の透過率、s17は検出器17 の感度、E30は同期検波回路30の信号出力である。In the above mathematical formula, I O4 is the light emission intensity of the light source 3, I S7 is the scattered light intensity of the measurement light beam 6 in the light receiving field 7, k 1 and k 2 are proportional constants, m is the turbidity concentration, and d 8 the measuring light beam 6 is the thickness of the sample until it reaches the transmission center of the light receiving field 8. L is the distance (optical path length) from the transmission center of the light receiving field 8 to the transmission center of the light receiving field 7, f 6 is the thickness of the sample of the measurement light beam 6 that passes through the light receiving field 7, and r is the scattered light I S7 Is the thickness of the sample before reaching the optical window 13, w 13 is the transmittance of the optical window 13, s 17 is the sensitivity of the detector 17, and E 30 is the signal output of the synchronous detection circuit 30.

【0051】 除算回路32の出力となる、同期検波回路28と同期検波回路29の信号の比 は、次式で表される。The ratio of the signals of the synchronous detection circuit 28 and the synchronous detection circuit 29, which is the output of the division circuit 32, is expressed by the following equation.

【0052】[0052]

【数8】 [Equation 8]

【0053】 上記の演算過程で、光源の光強度の変動と散乱光が光学窓に到達する透過率が 消去される。次に示す数式9の演算過程においても同様の効果が得られる。In the above calculation process, the fluctuation of the light intensity of the light source and the transmittance of scattered light reaching the optical window are erased. The same effect can be obtained in the calculation process of the following formula 9.

【0054】 除算回路33の出力となる、同期検波回路31と同期検波回路30の信号の比 は、次式で表される。The ratio of the signals of the synchronous detection circuit 31 and the synchronous detection circuit 30, which is the output of the division circuit 33, is expressed by the following equation.

【0055】[0055]

【数9】 [Equation 9]

【0056】 乗算器34の出力となる、除算回路32と除算回路33の信号の乗算結果は、 次式で表される。The multiplication result of the signals of the division circuit 32 and the division circuit 33, which is the output of the multiplier 34, is expressed by the following equation.

【0057】[0057]

【数10】 [Equation 10]

【0058】 上記の数式において、Eは濁度の測定信号出力である。濁度測定信号出力とな る数式10の演算結果から、受光視野7の中心と受光視野8の中心間の光路長( L)の2倍の厚みの試料に相当する透過率の逆数のみで表される濁りの濃度の関 数が得られることとなる。この関数には、光源の光強度、検出器の感度の相違お よび変化ならびに光学窓の透過率の変化に関する変数は、全て、消去されて含ま れていない。このため、光源の光強度、検出器の感度の相違および変化ならびに 光学窓の透過率の変化に影響されない、濁りの濃度(濁度)の測定信号を得るこ とができることとなる。In the above equation, E O is the turbidity measurement signal output. From the calculation result of Equation 10 which is the output of the turbidity measurement signal, it is expressed only by the reciprocal of the transmittance corresponding to the sample having a thickness twice the optical path length (L) between the centers of the light receiving visual field 7 and the light receiving visual field 8. The function of the concentration of turbidity is obtained. This function does not include all the variables related to the light intensity of the light source, the difference and change in the sensitivity of the detector, and the change in the transmittance of the optical window, which are erased. Therefore, it is possible to obtain a measurement signal of the turbidity concentration (turbidity) that is not affected by the light intensity of the light source, the difference or change in the sensitivity of the detector, and the change in the transmittance of the optical window.

【0059】[0059]

【考案の効果】[Effect of device]

従来の透過光方式、散乱光方式、ならびに透過・散乱光方式の濁度計は、光源 の変化、検出器感度の変化ならびに光学窓の汚れによる測定誤差が生じた。特に 、光学窓の汚れは大きな測定誤差の原因となることから、従来の装置は、長期間 の濁度の連続測定を行うために、大掛かりな洗浄機構や複雑な付加装置を必要と した。このため、測定のための装置、施設の費用が非常に高価になった。 Conventional transmitted light, scattered light, and transmitted / scattered light turbidimeters caused measurement errors due to changes in the light source, changes in detector sensitivity, and dirt on the optical window. In particular, since dirt on the optical window causes a large measurement error, the conventional device requires a large-scale cleaning mechanism and a complicated additional device in order to continuously measure the turbidity for a long period of time. As a result, the cost of equipment and facilities for measurement has become extremely expensive.

【0060】 本考案の濁度測定装置は、光源の放射強度の変化、検出器の温度係数等による 感度の変化ならびに光学窓の汚れに影響されない濁度の測定を行うことができる 。The turbidity measuring device of the present invention can measure the turbidity which is not affected by the change of radiation intensity of the light source, the change of sensitivity due to the temperature coefficient of the detector, and the contamination of the optical window.

【0061】 このため、本考案の濁度測定装置による濁度測定作業は、測定のたびに光学窓 を清掃し計器を校正するための作業を必要としない、簡易な濁度の測定を可能に した。さらに、濁度の自動測定においては、光学窓を自動洗浄するための複雑な 機構装置を必要としないで長期間、無保守で濁度を連続測定することのできるメ ンテナンスフリーの濁度測定装置を製作することができた。Therefore, the turbidity measuring work by the turbidity measuring device of the present invention enables a simple turbidity measurement without the work of cleaning the optical window and calibrating the instrument each time the measurement is performed. did. Furthermore, in automatic turbidity measurement, a maintenance-free turbidity measuring device that can continuously measure turbidity for a long period of time without the need for complicated mechanical devices for automatically cleaning the optical window. Was able to be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の光学機構の構成、構造、系統を示した
説明図であり、試料セルを側面からた見たときを表す。
FIG. 1 is an explanatory diagram showing the configuration, structure, and system of an optical mechanism of the present invention, showing a sample cell viewed from the side.

【図2】本考案の光学機構の構成、構造、系統を示した
説明図であり、試料セルを上面から見たときを表す。
FIG. 2 is an explanatory diagram showing the configuration, structure, and system of the optical mechanism of the present invention, showing the sample cell as viewed from above.

【図3】本考案の電子回路の構成、系統を示した説明図
である。
FIG. 3 is an explanatory diagram showing a configuration and system of an electronic circuit of the present invention.

【図4】従来の透過光方式の測定原理を示した説明図で
ある。
FIG. 4 is an explanatory diagram showing a measurement principle of a conventional transmitted light method.

【図5】従来の散乱光方式の測定原理を示した説明図で
ある。
FIG. 5 is an explanatory diagram showing a measurement principle of a conventional scattered light method.

【図6】従来の透過・散乱光方式の測定原理を示した説
明図である。
FIG. 6 is an explanatory diagram showing a measurement principle of a conventional transmitted / scattered light method.

【符号の説明】[Explanation of symbols]

1‥‥‥試料、 2‥‥‥試料セル、 3
‥‥‥光源、4‥‥‥光源、 5‥‥‥測定光
束、 6‥‥‥測定光束、7‥‥‥受光視野
8‥‥‥受光視野、 9‥‥‥光学窓、10‥‥
‥光学窓、 11‥‥‥光学レンズ、 12‥‥‥
光学レンズ、13‥‥‥光学窓、 14‥‥‥光学
窓、 15‥‥‥集光レンズ、16‥‥‥集光レン
ズ、 17‥‥‥検出器、 18‥‥‥検出器、1
9‥‥‥光束制限板、 20‥‥‥駆動回路、 21
‥‥‥駆動回路、22‥‥‥散乱光、 23‥‥‥
散乱光、 24‥‥‥散乱光、25‥‥‥散乱光、
26‥‥‥増幅回路 27‥‥‥増幅回路、
28‥‥‥同期検波回路、29‥‥‥同期検波回路、3
0‥‥‥同期検波回路、31‥‥‥同期検波回路、32
‥‥‥除算回路、 33‥‥‥除算回路、34‥‥‥
乗算回路、 35‥‥‥試料、 36‥‥‥試
料セル、37‥‥‥光源、 38‥‥‥測定光
束、 39‥‥‥光源光学窓、40‥‥‥受光光学
窓、 41‥‥‥検出器、 42‥‥‥試料、43
‥‥‥試料セル、 44‥‥‥光源、 45‥
‥‥測定光束、46‥‥‥受光視野、 47‥‥‥光
源光学窓、 48‥‥‥受光光学窓、49‥‥‥検出
器、 50‥‥‥試料、 51‥‥‥試料セ
ル、52‥‥‥光源、 53‥‥‥測定光束、
54‥‥‥受光視野、55‥‥‥光源光学窓、 56
‥‥‥受光光学窓、 57‥‥‥検出器、58‥‥‥検
出器、
1 ... sample, 2 ... sample cell, 3
Light source, 4 light source, 5 measurement luminous flux, 6 measurement luminous flux, 7 light receiving field of view
8 ... Receiving field of view, 9 ... Optical window, 10 ...
Optical window, 11 Optical lens, 12
Optical lens, 13 ... optical window, 14 ... optical window, 15 ... condensing lens, 16 ... condensing lens, 17 ... detector, 18 ... detector, 1
9 ... Luminous flux limiting plate, 20 ... Driving circuit, 21
Drive circuit, 22 Scattered light, 23
Scattered light, 24 scattered light, 25 scattered light,
26 ... Amplification circuit 27 ... Amplification circuit,
28: Synchronous detection circuit, 29: Synchronous detection circuit, 3
0 ... Synchronous detection circuit, 31 ... Synchronous detection circuit, 32
∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙
Multiplier circuit, 35, sample, 36, sample cell, 37, light source, 38, light flux for measurement, 39, light source optical window, 40, light receiving optical window, 41, detection Vessel, 42, sample, 43
‥‥‥ Sample cell, 44 ‥‥‥ Light source, 45 ‥‥
Measurement light flux, 46, light-receiving field of view, 47, light source optical window, 48, light receiving optical window, 49, detector, 50, sample, 51, sample cell, 52 Light source, 53, measurement luminous flux,
54 ... Receiving field of view, 55 ... Optical window of light source, 56
Light receiving optical window, 57, detector, 58, detector,

Claims (3)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 濁りを測定するための測定光束を作る2
台の光源と、測定する試料の濁りが測定光束を散乱した
散乱光を同時に受光し光強度を検出する2台の検出器
と、光源を交互に駆動して2本の測定光束をつくる駆動
回路と、2本の測定光束に対する2台の検出器の信号を
光源の駆動信号と同期して4系統の信号に分離復調する
同期検波回路と、4系統の同期検波出力の同一測定光束
による2系統の同期検波出力の比を演算する除算回路
と、2本の測定光束の除算回路出力を乗算する乗算回路
からなり、さらに、光学機構を、2台の検出器の受光視
野の位置が異なり、かつ、2本の測定光束が2台の検出
器の受光視野を透過するように構成して、乗算回路の出
力から濁度を得るようにした濁度測定装置。
1. A measuring luminous flux for measuring turbidity 2
Table light source, two detectors that simultaneously receive scattered light generated by the turbidity of the sample to be measured and that scatters the measurement light beam, and a drive circuit that alternately drives the light sources to create two measurement light beams And a synchronous detection circuit that separates and demodulates the signals of the two detectors for the two measurement light beams into four signals in synchronization with the drive signal of the light source, and two systems using the same measurement light beams of the four synchronous detection outputs. Of the synchronous detection output, and a multiplication circuit that multiplies the output of the division circuit of the two measurement light fluxes. Further, the optical mechanism is A turbidity measuring device in which two measuring light beams are configured to pass through the light-receiving fields of view of the two detectors, and the turbidity is obtained from the output of the multiplication circuit.
【請求項2】 2台の検出器の間に測定光束の前方散乱
光を制限する光束制限板を設けた実用新案登録請求の範
囲第1項記載の濁度測定装置。
2. The turbidity measuring device according to claim 1, wherein a light flux limiting plate for limiting the forward scattered light of the measurement light flux is provided between the two detectors.
【請求項3】 除算回路、乗算回路の代わりに、同期検
波回路出力をアナログーデジタル変換するアナログーデ
ジタル変換回路を付加して、デジタル変換したデータを
コンピュータで比および乗算の演算を行う実用新案登録
請求の範囲第1項記載の濁度測定装置。
3. A utility model in which an analog-to-digital conversion circuit for analog-to-digital converting the output of a synchronous detection circuit is added in place of the division circuit and the multiplication circuit, and the computer performs ratio and multiplication operations on digitally converted data. The turbidity measuring device according to claim 1.
JP1994008305U 1994-06-07 1994-06-07 Maintenance-free turbidity measuring device Expired - Lifetime JP3008850U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1994008305U JP3008850U (en) 1994-06-07 1994-06-07 Maintenance-free turbidity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1994008305U JP3008850U (en) 1994-06-07 1994-06-07 Maintenance-free turbidity measuring device

Publications (1)

Publication Number Publication Date
JP3008850U true JP3008850U (en) 1995-03-20

Family

ID=43144665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1994008305U Expired - Lifetime JP3008850U (en) 1994-06-07 1994-06-07 Maintenance-free turbidity measuring device

Country Status (1)

Country Link
JP (1) JP3008850U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010164413A (en) * 2009-01-15 2010-07-29 Shimadzu Corp Gas concentration measuring instrument

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010164413A (en) * 2009-01-15 2010-07-29 Shimadzu Corp Gas concentration measuring instrument

Similar Documents

Publication Publication Date Title
US3713743A (en) Forward scatter optical turbidimeter apparatus
EP0979111A1 (en) Optical detection and quantification of microair in blood
JP2641927B2 (en) Particle measurement device
CN107490563A (en) A kind of measurement apparatus and method of monitoring instrument diaphragm laying dust
JP4522882B2 (en) Absorption measuring device
JP3008850U (en) Maintenance-free turbidity measuring device
JPS6125304B2 (en)
JPH04157339A (en) Particle diameter and velocity measuring instrument
CN110887814B (en) Underwater turbidity detection method based on spectral analysis
JP2007278858A (en) Fog particle sensor and fog sensor
CA2571295A1 (en) Turbidity sensor
JPH0875648A (en) Measuring device of quantity of light transmitted through liquid
JPS6129450B2 (en)
JP3031778U (en) Probe type turbidity detector
JP3101776B2 (en) Turbidity measuring device
JPS6366441A (en) Refractive index meter
JPS5899733A (en) Turbidimeter
JPH0416620A (en) Discrimination method between slime and concrete in muddy water
JPS59107223A (en) Spectrochemical analyzer
SU855409A1 (en) Photometer
JP2008268233A (en) Differential refractive index detector
JPH038702B2 (en)
JPS59105543A (en) Detector for antigen-antibody reaction
JPS6329235A (en) Measuring instrument for degree of contamination of fluid
JPH07113757A (en) Defect detection method for light transmissive object