JP3003420B2 - Coriolis mass flowmeter - Google Patents

Coriolis mass flowmeter

Info

Publication number
JP3003420B2
JP3003420B2 JP4261995A JP26199592A JP3003420B2 JP 3003420 B2 JP3003420 B2 JP 3003420B2 JP 4261995 A JP4261995 A JP 4261995A JP 26199592 A JP26199592 A JP 26199592A JP 3003420 B2 JP3003420 B2 JP 3003420B2
Authority
JP
Japan
Prior art keywords
vibration
vibrator
tube
measuring tube
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4261995A
Other languages
Japanese (ja)
Other versions
JPH06109513A (en
Inventor
紀和 大沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP4261995A priority Critical patent/JP3003420B2/en
Publication of JPH06109513A publication Critical patent/JPH06109513A/en
Application granted granted Critical
Publication of JP3003420B2 publication Critical patent/JP3003420B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、測定管は1本でシンプ
ル且つ流体抵抗が少ない構造でありながら、測定管の振
動を管路に伝えず、測定管の上下流における固定端条件
のアンバランスが、ゼロ点変動に影響を与えることが少
ないコリオリ質量流量計に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a measuring pipe having a simple structure with a small fluid resistance, which does not transmit vibration of the measuring pipe to a pipe line, and which is used to adjust the fixed end conditions at the upstream and downstream of the measuring pipe. The present invention relates to a Coriolis mass flowmeter in which balance does not affect zero point fluctuation.

【0002】[0002]

【従来の技術】図5は、従来より一般に使用されている
従来例の構成説明図で、例えば、特開平4−27092
2号、発明の名称「コリオリ質量流量計」に示されてい
る。図において、1はフランジ2に、両端が取付けられ
た測定管である。フランジ2は管路Aへ測定管1を取付
けるためのものである。3は測定管1の中央部に設けら
れた振動子である。4,5は測定管1の両側にそれぞれ
設けられた振動検出センサである。
2. Description of the Related Art FIG. 5 is a diagram for explaining the structure of a conventional example generally used in the prior art.
No. 2, the title of the invention "Coriolis Mass Flow Meter". In the figure, reference numeral 1 denotes a measuring tube having both ends attached to a flange 2. The flange 2 is for attaching the measuring pipe 1 to the pipe A. Reference numeral 3 denotes a vibrator provided at the center of the measuring tube 1. Reference numerals 4 and 5 denote vibration detection sensors provided on both sides of the measuring tube 1, respectively.

【0003】以上の構成において、測定管1に測定流体
が流され、振動子3が駆動される。振動子3の振動方向
の角速度『ω』、測定流体の流速『V』(以下『』で囲
まれた記号はベクトル量を表す。)とすると、 Fc=―2m『ω』×『V』 のコリオリ力が働く、コリオリ力に比例した振動の振幅
を測定すれば、質量流量が測定出来る。
In the above configuration, a measurement fluid is caused to flow through the measurement tube 1, and the vibrator 3 is driven. Assuming that the angular velocity in the vibration direction of the vibrator 3 is “ω” and the flow velocity of the measurement fluid is “V” (the symbol enclosed by “” represents a vector quantity), Fc = −2 m “ω” × “V” The mass flow rate can be measured by measuring the amplitude of the vibration in which the Coriolis force acts and which is proportional to the Coriolis force.

【0004】図6は従来より一般に使用されている他の
従来例の構成説明図である。本従来例では、更に、ノイ
ズを低減し、信号を大きくとるために、測定管1を2管
式にし、ノイズを打消すようにしたものである。
FIG. 6 is an explanatory view of the structure of another conventional example which has been generally used. In this conventional example, in order to further reduce the noise and increase the signal, the measurement tube 1 is of a two-tube type so as to cancel the noise.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この様
な装置においては、図5従来例では、測定管1は近似的
に両端固定条件で振動するが、どうしても固定部は完全
な固定端にならず、わずかに振動してしまう。これで
は、振動が管路Aに伝わり、上下流端のわずかな固定条
件の相違、例えば溶接強度等、により、対称性が崩れ、
零点がずれ易くなる。一方、図6従来例では、2本の測
定管が互いに反対方向に振動することで、分岐部で力が
打ち消しあって、図7,8に示す如く、音叉の原理によ
り振動が外に漏れにくい構造となつている。しかし、分
岐点の無い測定管1本の構造はとれなくなる。
However, in such an apparatus, in the conventional example shown in FIG. 5, the measuring tube 1 vibrates approximately under the condition that both ends are fixed. However, the fixed portion does not necessarily have a completely fixed end. , Will vibrate slightly. In this case, the vibration is transmitted to the pipe A, and the symmetry is broken due to a slight difference in the fixing conditions of the upstream and downstream ends, for example, welding strength and the like.
The zero point easily shifts. On the other hand, in the conventional example shown in FIG. 6, the two measuring tubes vibrate in opposite directions, so that the forces cancel each other out at the branch portion, and as shown in FIGS. It has a structure. However, the structure of one measuring tube having no branch point cannot be taken.

【0006】本発明は、この問題点を解決するものであ
る。本発明の目的は、測定管は1本でシンプル且つ流体
抵抗が少ない構造でありながら、測定管の振動をケース
に伝えず、測定管の上下流における固定端条件のアンバ
ランスが、ゼロ点変動に影響を与えることが少ないコリ
オリ質量流量計を提供するにある。
The present invention solves this problem. An object of the present invention is to provide a single measuring tube having a simple structure with low fluid resistance, but not transmitting the vibration of the measuring tube to the case, and the unbalance of the fixed end conditions at the upstream and downstream of the measuring tube to zero point fluctuation. The present invention provides a Coriolis mass flow meter that does not significantly affect the flow rate.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に、本発明は、振動する測定管内に測定流体を流し、そ
の流れと測定管の角振動によって生じるコリオリ力によ
り、測定管を変形振動させるコリオリ質量流量計におい
て、前記測定流体が流れる測定管と、該測定管を挟んで
平行に設けられた2個の振動補助棒と、前記測定管と該
振動補助棒の一端が固定された第1振動体支持部と、前
記測定管と前記振動補助棒の他端が固定された第2振動
体支持部と、前記第1振動体支持部と該第2振動体支持
部の涙れ振動の節となる個所にそれぞれ一端が接続され
た接続ばねと、該接続ばねの他端が接続されると共に前
記測定管の両端がそれぞれ接続された管路と、前記2個
の振動捕助棒の中央部分を連結する連結棒と、該連結棒
の中央部分と前記測定管の中央部分との間に設けられ前
記測定管と前記振動補助棒で構成される面に直交する方
向に加振する振動子と、前記測定管の該振動子と前記振
動体支持部の取り付け位置との間に設けられた振動検出
センサとを具備したことを特徴とするコリオリ質量流量
計を構成したものである。
In order to achieve this object, the present invention provides a method of flowing a measuring fluid into a vibrating measuring tube, and deforming the measuring tube by a Coriolis force generated by the flow and the angular vibration of the measuring tube. In the Coriolis mass flowmeter to be measured, a measurement pipe through which the measurement fluid flows, two vibration auxiliary rods provided in parallel with the measurement pipe interposed therebetween, and one end of the measurement pipe and one end of the vibration auxiliary rod are fixed. (1) a vibrating body support, a second vibrating body support to which the other end of the measuring tube and the vibration auxiliary rod are fixed, and a tear vibration of the first vibrating body supporting part and the second vibrating body supporting part. A connection spring having one end connected to each of the nodes, a pipe line to which the other end of the connection spring is connected and both ends of the measuring tube are connected, and a center of the two vibration assisting rods A connecting rod connecting the parts, a central part of the connecting rod and A vibrator provided between the center portion of the fixed tube and vibrating in a direction perpendicular to a plane formed by the measuring tube and the vibration assisting rod; and a vibrator of the measuring tube and the vibrating body supporting portion. A Coriolis mass flow meter comprising a vibration detection sensor provided between the mass flow meter and the mounting position.

【0008】[0008]

【作用】以上の構成において、測定管に測定流体が流さ
れ、振動子が駆動されると、コリオリ力が働く、このコ
リオリ力に比例した振動の振幅を測定すれば、質量流量
が測定出来る。而して、第1振動体支持部と第2振動体
支持部の捻れ振動の節となる個所にそれぞれ一端が接続
された接続ばねと、接続ばねの他端が接続されると共に
測定管の両端がそれぞれ接続された管路とが設けられて
いるので、外部に漏れるエネルギーを削滅することがで
きる。以下、実施例に基づき詳細に説明する。
In the above arrangement, when the measuring fluid is flowed through the measuring tube and the vibrator is driven, the Coriolis force acts. By measuring the amplitude of the vibration proportional to the Coriolis force, the mass flow rate can be measured. Thus, a connection spring having one end connected to a portion of the first vibrator support portion and the second vibrator support portion which serves as a node of torsional vibration, the other end of the connection spring being connected and both ends of the measuring tube Are connected to each other, so that energy leaking to the outside can be eliminated. Hereinafter, a detailed description will be given based on embodiments.

【0009】[0009]

【実施例】図1は、本発明の一実施例の要部構成説明図
である。11は、測定流体が流れる直管状の測定管であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory diagram of a main portion of an embodiment of the present invention. Reference numeral 11 denotes a straight measurement tube through which a measurement fluid flows.

【0010】12は、測定管11を挟んで平行に設けら
れた2個の振動補助棒である。13は、測定管11と振
動補助棒12の一端が固定される第1振動体支持部であ
る。14は、測定管11と振動補助棒12の他端が固定
される第2振動体支持部である。
Reference numeral 12 denotes two vibration auxiliary rods provided in parallel with the measuring tube 11 interposed therebetween. Reference numeral 13 denotes a first vibrating body support to which one ends of the measuring tube 11 and the vibration auxiliary rod 12 are fixed. Reference numeral 14 denotes a second vibrating body support to which the other ends of the measuring tube 11 and the vibration auxiliary rod 12 are fixed.

【0011】15は、第l振動体支持部13と第2振動
体支持部14との捻れ振動の節となる個所にそれぞれ一
端が接続された4個の接続ばねである。なお、接続ばね
15は、4個に限ることはないことは勿論である。16
は、2個の振動補助棒12の中央部分を連結する連結棒
である。17は、連結棒16の中央部分と測定管11の
中央部分との間に設けられ測定管11と振動補助棒12
で構成される面に直交する方向に加振する振動子であ
る。
Reference numeral 15 denotes four connection springs each having one end connected to a portion of the l-th vibrating body supporting portion 13 and the second vibrating body supporting portion 14 which serves as a node of torsional vibration. It is needless to say that the number of connection springs 15 is not limited to four. 16
Is a connecting rod connecting the central portions of the two vibration assisting rods 12. 17 is provided between the central part of the connecting rod 16 and the central part of the measuring pipe 11,
Is a vibrator that vibrates in a direction perpendicular to the plane composed of.

【0012】18は、振動子17の両側の測定管11に
設けられた振動検出センサである。19は、接続ばね1
5の他端が接続されると共に、後述するチューブ21を
介して測定管11の両端がそれぞれ接続されたフランジ
である。フランジ19は、管路A(図示せす)に接続す
るためのものである。また、測定管11の両端は、チュ
ーブ21を介して実質的にフランジ19に接続されてい
るものである。従って、測定管11と接続ばね15と
は、管路A(図示せす)に直接に接続されても良い。而
して、接続ばね15は振動系部分とフランジ19の絶縁
を図り、熱膨張の吸収ができる様な伸縮性のある構造を
取りながら、振動系全体を支える役目を果たす。21
は、測定管11とフランジ19を連通するチューブであ
る。チューブ21は、熱膨張と振動の影響を測定管11
とフランジ19のお互いに伝えない様な柔らかい材質が
用いられている。
Reference numeral 18 denotes a vibration detection sensor provided on the measuring tube 11 on both sides of the vibrator 17. 19 is the connection spring 1
5 is a flange to which the other end is connected and both ends of the measuring tube 11 are connected via a tube 21 described later. The flange 19 is for connecting to a pipe A (not shown). Further, both ends of the measuring tube 11 are substantially connected to the flange 19 via the tube 21. Therefore, the measurement pipe 11 and the connection spring 15 may be directly connected to the pipe A (not shown). Thus, the connection spring 15 plays a role of supporting the entire vibration system while insulating the vibration system portion and the flange 19 and having an elastic structure capable of absorbing thermal expansion. 21
Is a tube that connects the measurement tube 11 and the flange 19. The tube 21 measures the influence of thermal expansion and vibration.
The flange 19 is made of a soft material that does not transmit to each other.

【0013】以上の構成において、測定管11に測定流
体が流され、振動子17が駆動されると、コリオリ力が
働く、このコリオリ力に比例した測定管11の振動の振
幅を測定すれぱ、質量流量が測定出来る。而して、第1
振動体支持部13と第2振動体支持部14の捻れ振動の
節となる個所にそれぞれ一端が接続され他端がフランジ
に接続された接続ばね15が設けられているので、外部
に漏れるエネルギーを削減することができる。
In the above arrangement, when a measuring fluid is flowed through the measuring tube 11 and the vibrator 17 is driven, a Coriolis force acts. The amplitude of the vibration of the measuring tube 11 in proportion to the Coriolis force is measured. Mass flow rate can be measured. Thus, the first
The connection springs 15 each having one end connected to the torsion vibration node of the vibrating body supporting portion 13 and the second vibrating body supporting portion 14 and the other end connected to the flange are provided. Can be reduced.

【0014】すなわち、図1に示す如く、X,Y,Z軸
方向を決めると、測定管11は、振動子17により、Z
方向に振動する。振動子17は、連結棒16を介して振
動補助棒12に連結されているので、測定管11に力を
加えると、反力が連結棒16に加わる。この結果、測定
管11と振動補助棒12は、図2に実線で示す如く、測
定管11がZ軸方向に最大変形した時に、両側の振動補
助棒12は、Z軸負方向に最大変形する。
That is, as shown in FIG. 1, when the X, Y, and Z axis directions are determined, the measuring tube 11 is moved by the vibrator 17 to the Z direction.
Vibrates in the direction. Since the vibrator 17 is connected to the vibration assisting rod 12 via the connecting rod 16, when a force is applied to the measuring tube 11, a reaction force is applied to the connecting rod 16. As a result, as shown by a solid line in FIG. 2, when the measuring tube 11 is deformed to the maximum in the Z-axis direction, the vibration assisting rods 12 on both sides are deformed to the maximum in the negative Z-axis direction. .

【0015】すなわち、測定管11の振幅をA1、振動
補助棒12の振幅をA2(A1,A2>0)とすると、両
者のZ方向の振動は、以下の如く表わせる。 測定管11 :Z11=A1Sin(ωT) 振動補助棒12:Z12=A2Sin(ωT+π)
That is, assuming that the amplitude of the measuring tube 11 is A 1 and the amplitude of the vibration assisting rod 12 is A 2 (A 1 , A 2 > 0), the vibrations of the two in the Z direction can be expressed as follows. Measuring tube 11: Z 11 = A 1 Sin (ωT) Vibration auxiliary rod 12: Z 12 = A 2 Sin (ωT + π)

【0016】次に、振動体支持部13,14の動きは、
測定管11と振動補助棒12の動きに伴い、図2に示す
如く、捩れ振動を行う。測定管11と振動補助棒12の
振動方向が逆向きのため、測定管11が取り付けられて
いる側と振動補助棒12が取り付けられている側とで
は、捩の向きが逆になる。このため、振動体支持部1
3,14の途中に捩振動の節となる部分Bが存在し、部
分Bでは併進成分も回転成分も零で、停止している。部
分Bにフランジ19と振動体支持部13,14との接続
部(接続ばね15)が設けられているので、外部に振動
が伝わるのを防止することができる。
Next, the movements of the vibrating body supporting parts 13 and 14 are as follows.
With the movement of the measuring tube 11 and the vibration assisting rod 12, as shown in FIG. Since the vibration directions of the measuring tube 11 and the vibration assisting rod 12 are opposite, the directions of the screws are opposite on the side where the measuring tube 11 is attached and on the side where the vibration assisting rod 12 is attached. For this reason, the vibrating body support 1
A portion B which is a node of the torsional vibration exists in the middle of 3, 14 where both the translational component and the rotational component are zero and stopped. Since the connection portion (connection spring 15) between the flange 19 and the vibrating body support portions 13 and 14 is provided in the portion B, it is possible to prevent the transmission of vibration to the outside.

【0017】要するに、振動子17がZ軸方向に振動す
る力により、振動系部分は、Z軸方向併進運動成分とY
軸回転成分が生ずる。測定管11と振動補助棒12とが
Z軸方向の互いに反対方向に振動するので、Z軸方向併
進運動成分は、振動体支持部13,14にて打ち消し合
い消滅する。Y軸回転成分は、振動体支持部13,14
では捩れ成分となるが、部分Bでは、捩振動の節である
ので、静止状態が保たれる。
In short, the vibrator 17 is caused to vibrate in the Z-axis direction by the force of the vibrator 17 so that the vibrating system portion has a Z-axis translational motion component and Y
An axial rotation component occurs. Since the measuring tube 11 and the vibration assisting rod 12 vibrate in opposite directions in the Z-axis direction, the Z-axis translational motion components cancel each other out at the vibrating body supports 13 and 14 and disappear. The Y-axis rotation components are
However, since the portion B is a node of torsional vibration, the stationary state is maintained.

【0018】この結果、測定管11の振動が外部(フラ
ンジ19)に伝わるのを防止できる。振動系の両端から
の振動エネルギーの散逸を無くすことで、余計な加振力
を掛けずに済み、外部からのエネルギー供給量を低く抑
えることができる。更に、測定管11の上下流の振動エ
ネルギーの散逸量のアンバランスが無くなることで、温
度や流量等の変化にも安定した零点とスパンを維持でき
る効果がある。
As a result, it is possible to prevent the vibration of the measuring tube 11 from being transmitted to the outside (flange 19). By eliminating the dissipation of the vibration energy from both ends of the vibration system, it is not necessary to apply an extra excitation force, and the amount of external energy supply can be suppressed. Further, since there is no imbalance in the amount of vibration energy dissipated upstream and downstream of the measurement tube 11, there is an effect that a zero point and a span that are stable even when the temperature or the flow rate changes can be maintained.

【0019】結局、3本音叉の構造を採用することによ
り、測定管を2本の平行管や曲管を使用するまでもな
く、1本の直管式のまま、上記の効果を得ることができ
る。図3は、本発明の他の実施例の要部構成説明図、図
4は動作概念図である。本実施例においては、振動補助
棒12の中央部分を分断したのものである。このような
装置に於いては、測定管11内の測定流体による温度変
化等に基づき、測定管11と振動補助棒12との熱膨張
差により捩応力が発生する事が少ないものが得られる。
After all, by adopting the structure of the three tuning forks, the above-mentioned effect can be obtained without changing the measuring pipe to two parallel pipes or curved pipes and keeping one straight pipe type. it can. FIG. 3 is an explanatory diagram of a main part configuration of another embodiment of the present invention, and FIG. 4 is a conceptual diagram of operation. In this embodiment, the center part of the vibration assisting rod 12 is divided. In such a device, a device in which torsional stress is less likely to occur due to a difference in thermal expansion between the measurement tube 11 and the vibration assisting rod 12 based on a temperature change or the like due to the measurement fluid in the measurement tube 11 is obtained.

【0020】[0020]

【発明の効果】以上説明したように、本発明は、振動す
る測定管内に測定流体を流し、その流れと測定管の角振
動によって生じるコリオリ力により、測定管を変形振動
させるコリオリ質量流量計において、前記測定流体が流
れる測定管と、該測定管を挟んで平行に設けられた2個
の振動補助棒と、前記測定管と該振動補助棒の一端が固
定された第1振動体支持部と、前記測定管と前記振動補
助棒の他端が固定された第2振動体支持部と、前記第1
振動体支持部と該第2振動体支持部の涙れ振動の節とな
る個所にそれぞれ一端が接続された接続ばねと、該接続
ばねの他端が接続されると共に前記測定管の両端がそれ
ぞれ接続された管路と、前記2個の振動捕助棒の中央部
分を連結する連結棒と、該連結棒の中央部分と前記測定
管の中央部分との間に設けられ前記測定管と前記振動補
助棒で構成される面に直交する方向に加振する振動子
と、前記測定管の該振動子と前記振動体支持部の取り付
け位置との間に設けられた振動検出センサとを具備した
ことを特徴とするコリオリ質量流量計を構成した。
As described above, the present invention relates to a Coriolis mass flowmeter which deforms and vibrates a measuring tube by flowing a measuring fluid into a vibrating measuring tube and causing Coriolis force generated by the flow and the angular vibration of the measuring tube. A measurement pipe through which the measurement fluid flows, two vibration auxiliary rods provided in parallel with the measurement pipe interposed therebetween, and a first vibrating body support portion to which one end of the measurement pipe and the vibration auxiliary rod is fixed. A second vibrating body supporting portion to which the other end of the measuring tube and the vibration auxiliary rod are fixed;
A connection spring having one end connected to each of the vibrating body supporting portions and a portion of the second vibrating body supporting portion that serves as a node of tearing vibration, and the other end of the connecting spring being connected and both ends of the measuring tube being respectively connected A connected pipe, a connecting rod connecting a central part of the two vibration-aid rods, and a connecting rod provided between the central part of the connecting rod and a central part of the measuring pipe. A vibrator that vibrates in a direction perpendicular to a plane formed by an auxiliary rod; and a vibration detection sensor provided between the vibrator of the measurement tube and a mounting position of the vibrating body support. A Coriolis mass flowmeter was characterized.

【0021】この結果、第1振動体支持部と第2振動体
支持部の捻れ振動の節となる個所にそれぞれ一端が接続
された接続ばねと、接続ばねの他端が接続されると共に
測定管の両端がそれぞれ接続された管路とが設けられた
ので、測定管の振動が外部(管路)に伝わるのを防止で
きる。振動系の両端からの振動エネルギーの散逸を無く
すことで、余計な加振力を掛けずに済み、外部からのエ
ネルギー供給量を低く抑えることができる。更に、測定
管の上下流の振動エネルギーの散逸量のアンバランスが
無くなることで、温度や流量等の変化にも安定した零点
とスパンを維持できる効果がある。
As a result, a connection spring having one end connected to each of the torsional vibration nodes of the first vibrator support and the second vibrator support is connected, and the other end of the connection spring is connected to the measuring tube. Is provided with a pipe line to which both ends are connected, so that the vibration of the measuring pipe can be prevented from being transmitted to the outside (pipe line). By eliminating the dissipation of the vibration energy from both ends of the vibration system, it is not necessary to apply an extra excitation force, and the amount of external energy supply can be suppressed. Furthermore, since there is no imbalance in the amount of vibration energy dissipated upstream and downstream of the measurement tube, there is an effect that a stable zero point and span can be maintained even when the temperature or flow rate changes.

【0022】従って、本発明によれば、測定管の振動を
管路に伝えず、測定管の上下流における固定端条件のア
ンバランスが、ゼロ点変動に影響を与えることが少ない
コリオリ質量流量計を実現することが出来る。
Therefore, according to the present invention, the Coriolis mass flowmeter which does not transmit the vibration of the measuring tube to the pipe line and the imbalance of the fixed end conditions upstream and downstream of the measuring tube hardly affects the zero point fluctuation. Can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の要部構成説明図である。FIG. 1 is an explanatory diagram of a main part configuration of an embodiment of the present invention.

【図2】図1の動作説明図である。FIG. 2 is an operation explanatory diagram of FIG. 1;

【図3】本発明の他の実施例の要部構成説明図である。FIG. 3 is an explanatory diagram of a main part configuration of another embodiment of the present invention.

【図4】図3の動作説明図である。FIG. 4 is an operation explanatory diagram of FIG. 3;

【図5】従来より一般に使用されている従来例の構成説
明図である。
FIG. 5 is an explanatory diagram of a configuration of a conventional example generally used in the related art.

【図6】従来より一般に使用されている他の従来例の構
成説明図である。
FIG. 6 is an explanatory view of the configuration of another conventional example generally used in the prior art.

【図7】図6の動作説明図である。FIG. 7 is an operation explanatory diagram of FIG. 6;

【図8】図6の動作説明図である。FIG. 8 is an operation explanatory diagram of FIG. 6;

【符号の説明】[Explanation of symbols]

11…測定管 12…振動補助棒 13…第1振動体支持部 14…第2振動体支持部 15…接続ばね 16…連結棒 17…振動子 18…振動検出センサ 19…フランジ 21…チューブ A…管路 B…部分 DESCRIPTION OF SYMBOLS 11 ... Measuring pipe 12 ... Vibration auxiliary rod 13 ... 1st vibrating body support part 14 ... 2nd vibrating body support part 15 ... Connection spring 16 ... Connection rod 17 ... Vibrator 18 ... Vibration detection sensor 19 ... Flange 21 ... Tube A ... Pipe B ... part

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】振動する測定管内に測定流体を流し、その
流れと測定管の角振動によって生じるコリオリ力によ
り、測定管を変形振動させるコリオリ質量流量計におい
て、 前記測定流体が流れる測定管と、 該測定管を挟んで平行に設けられた2個の振動捕助棒
と、 前記測定管と該振動補助棒の一端が固定された第l振動
体支持部と、 前記測定管と前記振動補動棒の他端が固定された第2振
動体支持部と、 前記第1振動体支持部と該第2振動体支持部の捻れ振動
の節となる個所にそれぞれ一端が接続された接続ばね
と、 該接続ばねの他端が接続されると共に前記測定管の両端
がそれぞれ接続された管路と、 前記2個の振動補助棒の中央部分を連結する連結棒と、 該連結棒の中央部分と前記測定管の中央部分との間に設
けられ前記測定管と前記振動補助棒で構成される面に直
交する方向に加振する振動子と、 前記測定管の該振動子と前記振動体支持部の取り付け位
置との間に設けられた振動検出センサとを具備したこと
を特徴とするコリオリ質量流量計。
1. A Coriolis mass flowmeter for causing a measurement fluid to flow in a vibrating measurement tube, and deforming and vibrating the measurement tube by Coriolis force generated by the flow and the angular vibration of the measurement tube. Two vibration-aid bars provided in parallel with the measurement tube interposed therebetween; an l-th vibrator support portion to which one end of the measurement tube and the vibration-aid rod is fixed; the measurement tube and the vibration assist A second vibrator support having the other end of the rod fixed thereto; a connection spring having one end connected to each of the first vibrator support and a portion of the second vibrator support which serves as a node of torsional vibration; The other end of the connection spring is connected and both ends of the measuring tube
Are respectively connected, a connecting rod connecting the central portions of the two vibration assisting rods, and provided between the central portion of the connecting rod and the central portion of the measuring tube. A vibrator that vibrates in a direction perpendicular to a plane formed by the vibration auxiliary rod; and a vibration detection sensor provided between the vibrator of the measurement tube and a mounting position of the vibrating body support. A Coriolis mass flowmeter, characterized in that:
JP4261995A 1992-09-30 1992-09-30 Coriolis mass flowmeter Expired - Lifetime JP3003420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4261995A JP3003420B2 (en) 1992-09-30 1992-09-30 Coriolis mass flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4261995A JP3003420B2 (en) 1992-09-30 1992-09-30 Coriolis mass flowmeter

Publications (2)

Publication Number Publication Date
JPH06109513A JPH06109513A (en) 1994-04-19
JP3003420B2 true JP3003420B2 (en) 2000-01-31

Family

ID=17369554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4261995A Expired - Lifetime JP3003420B2 (en) 1992-09-30 1992-09-30 Coriolis mass flowmeter

Country Status (1)

Country Link
JP (1) JP3003420B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6487917B1 (en) * 2000-05-02 2002-12-03 Micro Motion, Inc. Low thermal stress balance bar for a coriolis flowmeter

Also Published As

Publication number Publication date
JPH06109513A (en) 1994-04-19

Similar Documents

Publication Publication Date Title
RU2205370C2 (en) Method of balancing flexibility of tube and balance beam in coriolis flow meter with straight tube and coriolis flow meter for realization of this method
EP0733886B1 (en) Coriolis mass flowmeter
CA1293392C (en) Single tube parallel flow coriolis mass flow sensor
RU2292014C2 (en) Vibration type measuring converter, coriolis mass flowmeter and method of operation of measuring converter
US4895031A (en) Sensor mounting for coriolis mass flow rate meter
JP5193185B2 (en) Coriolis flow meter with a single flow conduit, method of operation, and method of manufacture
RU2273827C2 (en) Measuring transformer of oscillations
US8215184B2 (en) Coriolis flow meter with an improved balance system
US6782764B2 (en) Coriolis mass flowmeter
EP0235274A1 (en) Sensor mounting for vibrating structures.
KR101563863B1 (en) A flow meter including a balance member
JP4939408B2 (en) Split balance weights to eliminate density effects on flow
JP3327325B2 (en) Coriolis mass flowmeter
JPH04291119A (en) Colioris mass flowmeter
JP3003420B2 (en) Coriolis mass flowmeter
JP2993294B2 (en) Coriolis mass flowmeter
JP4015852B2 (en) Method and apparatus for Coriolis flowmeter with balance bar to increase accuracy
KR20020000772A (en) A low thermal stress case connect link for a straight tube coriolis flowmeter
JP3336927B2 (en) Coriolis mass flowmeter
JPH0341319A (en) Coriolis mass flowmeter
JP3757559B2 (en) Coriolis mass flow meter
JPH08219841A (en) Coriolis flow meter
JPH0526709A (en) Coriolis mass flowmeter
JP2000018994A (en) Coriolis mass flowmeter
JP2023515054A (en) A mode-splitting resonator for the balance bar of a Coriolis flowmeter

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040608

Free format text: JAPANESE INTERMEDIATE CODE: A131

A601 Written request for extension of time

Effective date: 20040908

Free format text: JAPANESE INTERMEDIATE CODE: A601

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20040913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050222