JP2993294B2 - Coriolis mass flowmeter - Google Patents

Coriolis mass flowmeter

Info

Publication number
JP2993294B2
JP2993294B2 JP4261993A JP26199392A JP2993294B2 JP 2993294 B2 JP2993294 B2 JP 2993294B2 JP 4261993 A JP4261993 A JP 4261993A JP 26199392 A JP26199392 A JP 26199392A JP 2993294 B2 JP2993294 B2 JP 2993294B2
Authority
JP
Japan
Prior art keywords
vibration
measuring
measuring tube
rod
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4261993A
Other languages
Japanese (ja)
Other versions
JPH06109512A (en
Inventor
紀和 大沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOKOKAWA DENKI KK
Original Assignee
YOKOKAWA DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOKOKAWA DENKI KK filed Critical YOKOKAWA DENKI KK
Priority to JP4261993A priority Critical patent/JP2993294B2/en
Publication of JPH06109512A publication Critical patent/JPH06109512A/en
Application granted granted Critical
Publication of JP2993294B2 publication Critical patent/JP2993294B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、測定管は1本でシンプ
ル且つ流体抵抗が少ない構造でありながら、測定管の振
動を管路に伝えず、測定管の上下流における固定端条件
のアンバランスが、ゼロ点変動に影響を与えることが少
ないコリオリ質量流量計に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a measuring pipe having a simple structure with a small fluid resistance, which does not transmit vibration of the measuring pipe to a pipe line, and which is used to adjust the fixed end conditions at the upstream and downstream of the measuring pipe. The present invention relates to a Coriolis mass flowmeter in which balance does not affect zero point fluctuation.

【0002】[0002]

【従来の技術】図5は、従来より一般に使用されている
従来例の構成説明図で、例えば、特開平4−27092
2号、発明の名称「コリオリ質量流量計」に示されてい
る。図において、1はフランジ2に、両端が取付けられ
た測定管である。フランジ2は管路Aへ測定管1を取付
けるためのものである。3は測定管1の中央部に設けら
れた振動子である。4,5は測定管1の両側にそれぞれ
設けられた振動検出センサである。
2. Description of the Related Art FIG. 5 is a diagram for explaining the structure of a conventional example generally used in the prior art.
No. 2, the title of the invention "Coriolis Mass Flow Meter". In the figure, reference numeral 1 denotes a measuring tube having both ends attached to a flange 2. The flange 2 is for attaching the measuring pipe 1 to the pipe A. Reference numeral 3 denotes a vibrator provided at the center of the measuring tube 1. Reference numerals 4 and 5 denote vibration detection sensors provided on both sides of the measuring tube 1, respectively.

【0003】以上の構成において、測定管1に測定流体
が流され、振動子3が駆動される。振動子3の振動方向
の角速度『ω』、測定流体の流速『V』(以下『』で囲
まれた記号はベクトル量を表す。)とすると、 Fc=―2m『ω』×『V』 のコリオリ力が働く、コリオリ力に比例した振動の振幅
を測定すれば、質量流量が測定出来る。
In the above configuration, a measurement fluid is caused to flow through the measurement tube 1, and the vibrator 3 is driven. Assuming that the angular velocity in the vibration direction of the vibrator 3 is “ω” and the flow velocity of the measurement fluid is “V” (hereinafter, the symbol surrounded by “” indicates a vector quantity), Fc = −2 m “ω” × “V” The mass flow rate can be measured by measuring the amplitude of the vibration in which the Coriolis force acts and which is proportional to the Coriolis force.

【0004】図6は従来より一般に使用されている他の
従来例の構成説明図である。本従来例では、更に、ノイ
ズを低減し、信号を大きくとるために、測定管1を2管
式にし、ノイズを打消すようにしたものである。
FIG. 6 is an explanatory view of the structure of another conventional example which has been generally used. In this conventional example, in order to further reduce the noise and increase the signal, the measurement tube 1 is of a two-tube type so as to cancel the noise.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この様
な装置においては、図5従来例では、測定管1は近似的
に両端固定条件で振動するが、どうしても固定部は完全
な固定端にならず、わずかに振動してしまう。これで
は、振動が管路Aに伝わり、上下流端のわずかな固定条
件の相違、例えば溶接強度等、により、対称性が崩れ、
零点がずれ易くなる。一方、図6従来例では、2本の測
定管が互いに反対方向に振動することで、分岐部で力が
打ち消しあって、図7,8に示す如く、音叉の原理によ
り振動が外に漏れにくい構造となつている。しかし、分
岐点の無い測定管1本の構造はとれなくなる。
However, in such an apparatus, in the conventional example shown in FIG. 5, the measuring tube 1 vibrates approximately under the condition that both ends are fixed. However, the fixed portion does not necessarily have a completely fixed end. , Will vibrate slightly. In this case, the vibration is transmitted to the pipe A, and the symmetry is broken due to a slight difference in the fixing conditions of the upstream and downstream ends, for example, welding strength and the like.
The zero point easily shifts. On the other hand, in the conventional example shown in FIG. 6, the two measuring tubes vibrate in opposite directions, so that the forces cancel each other out at the branch portion, and as shown in FIGS. It has a structure. However, the structure of one measuring tube having no branch point cannot be taken.

【0006】本発明は、この問題点を解決するものであ
る。本発明の目的は、測定管は1本でシンプル且つ流体
抵抗が少ない構造でありながら、測定管の振動をケース
に伝えず、測定管の上下流における固定端条件のアンバ
ランスが、ゼロ点変動に影響を与えることが少ないコリ
オリ質量流量計を提供するにある。
The present invention solves this problem. An object of the present invention is to provide a single measuring tube having a simple structure with low fluid resistance, but not transmitting the vibration of the measuring tube to the case, and the unbalance of the fixed end conditions at the upstream and downstream of the measuring tube to zero point fluctuation. The present invention provides a Coriolis mass flow meter that does not significantly affect the flow rate.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に、本発明は、振動する測定管内に測定流体を流し、そ
の流れと測定管の角振動によって生じるコリオリ力によ
り、測定管を変形振動させるコリオリ質量流量計におい
て、前記測定流体が流れる測定管と、該測定管を挟んで
平行に設けられた2個の振動補助棒と、前記測定管と該
振動補助棒の一端が固定された第1振動体支持部と、前
記測定管と前記振動補助棒の他端が固定された第2振動
体支持部と、前記第1振動体支持部と該第2振動体支持
部の振動の節となる個所に設けられ一端が管路に接続さ
れた支持部と、前記測定管と前記振動補助棒との中央部
分を振動子を介して接続し該振動子により軸方向に加振
される加振棒と、前記測定管の該加振棒と前記振動体支
持部の取り付け位置との間に設けられた振動検出センサ
とを具備したことを特徴とするコリオリ質量流量計を構
成したものである。
In order to achieve this object, the present invention provides a method of flowing a measuring fluid into a vibrating measuring tube, and deforming the measuring tube by a Coriolis force generated by the flow and the angular vibration of the measuring tube. In the Coriolis mass flowmeter to be measured, a measurement pipe through which the measurement fluid flows, two vibration auxiliary rods provided in parallel with the measurement pipe interposed therebetween, and one end of the measurement pipe and one end of the vibration auxiliary rod are fixed. (1) a vibrator support, a second vibrator support to which the other end of the measuring tube and the vibration auxiliary rod are fixed, a first vibrator support and a node of vibration of the second vibrator support; A supporting portion provided at a predetermined location, one end of which is connected to a pipe, and a vibrator which is connected to a central portion of the measuring tube and the vibration auxiliary rod via a vibrator and is vibrated in an axial direction by the vibrator. A rod, and a mounting position of the vibrating rod of the measurement tube and the vibrating body supporting portion. Is obtained by constituting the Coriolis mass flowmeter, characterized by comprising a vibration detecting sensor provided between the.

【0008】[0008]

【作用】以上の構成において、測定管に測定流体が流さ
れ、振動子が駆動されると、コリオリ力が働く、このコ
リオリ力に比例した振動の振幅を測定すれば、質量流量
が測定出来る。而して、第1振動体支持部と第2振動体
支持部の振動の節となる個所に設けられ一端が管路に接
続された支持部とが設けられているので、外部に漏れる
エネルギーを削減することができる。以下、実施例に基
づき詳細に説明する。
In the above arrangement, when the measuring fluid is flowed through the measuring tube and the vibrator is driven, the Coriolis force acts. By measuring the amplitude of the vibration proportional to the Coriolis force, the mass flow rate can be measured. Thus, since the first vibrator support portion and the second vibrator support portion are provided at portions that serve as nodes of vibration and have one end connected to the pipeline, energy leaking to the outside can be reduced. Can be reduced. Hereinafter, a detailed description will be given based on embodiments.

【0009】[0009]

【実施例】図1は、本発明の一実施例の要部構成説明図
である。11は、測定流体が流れる直管状の測定管であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory diagram of a main portion of an embodiment of the present invention. Reference numeral 11 denotes a straight measurement tube through which a measurement fluid flows.

【0010】12は、測定管11を挟んで平行に設けら
れた2個の振動補助棒である。13は、測定管11と振
動補助棒12の一端が固定される第1振動体支持部であ
る。14は、測定管11と振動補助棒12の他端が固定
される第2振動体支持部である。
Reference numeral 12 denotes two vibration auxiliary rods provided in parallel with the measuring tube 11 interposed therebetween. Reference numeral 13 denotes a first vibrating body support to which one ends of the measuring tube 11 and the vibration auxiliary rod 12 are fixed. Reference numeral 14 denotes a second vibrating body support to which the other ends of the measuring tube 11 and the vibration auxiliary rod 12 are fixed.

【0011】15は、第1振動体支持部13と第2振動
体支持部14の振動の節となる個所に設けられた回転軸
受である。16は、振動補助棒12と第1振動体支持部
13と第2振動体支持部14で構成される平而に直交し
て、軸受15に挿入配置され少なくとも一端が管路Aに
接続された支持軸である。而して、回転軸受15と支持
軸16とにより、支持部160が構成される。17は、
測定管11と振動捕助棒12との中央部分を振動子18
を介して接続し、振動子18により軸方向に加振される
加振棒である。19は、測定管11の加振棒17と振動
体支持部13、14の取り付け位置との間に設けられた
振動検出センサである。21は、支持軸16の他端が接
続され、管路(図示せず)Aに接続されたフランジであ
る。22は、測定管11とフランジ21を連通するチュ
ーブである。チューブ22は、熱膨張と振動の影響を測
定管11とフランジ21のお互いに伝えない様な柔らか
い材質が用いられている。
Reference numeral 15 denotes a rotary bearing provided at a location that serves as a node of vibration between the first vibrating body support 13 and the second vibrating body support 14. Reference numeral 16 is orthogonal to a plane composed of the vibration assisting rod 12, the first vibrating body supporting portion 13, and the second vibrating body supporting portion 14, and is inserted into the bearing 15 and at least one end thereof is connected to the conduit A. It is a support shaft. Thus, the rotary bearing 15 and the support
The shaft 16 forms a support part 160. 17 is
The central portion between the measuring tube 11 and the vibration assisting rod 12 is
And a vibrating rod that is vibrated in the axial direction by the vibrator 18. Reference numeral 19 denotes a vibration detection sensor provided between the vibrating rod 17 of the measuring tube 11 and the mounting positions of the vibrating body supports 13 and 14. Reference numeral 21 denotes a flange to which the other end of the support shaft 16 is connected and which is connected to a pipe (not shown) A. Reference numeral 22 denotes a tube that connects the measurement tube 11 and the flange 21. The tube 22 is made of a soft material that does not transmit the influence of thermal expansion and vibration to the measurement tube 11 and the flange 21.

【0012】以上の構成において、測定管11に測定流
体が流され、振動子18が駆動されると、コリオリ力が
働く、このコリオリ力に比例した測定管11の振動の振
幅を測定すれば、質量流量が測定出来る。而して、第1
振動体支持部13と第2振動体支持部14の振動の節と
なる個所Bに設けられた回転軸受15と、振動補助棒1
2と第1振動体支持部13と第2振動体支持部14で構
成される平面に直交して、軸受15に挿入配置され少な
くとも一端が管路Aに接続された支持軸16が設けられ
ているので、外部に漏れるエネルギーを削減することが
できる。
In the above configuration, when a measuring fluid is caused to flow through the measuring tube 11 and the vibrator 18 is driven, a Coriolis force acts. By measuring the amplitude of the vibration of the measuring tube 11 in proportion to the Coriolis force, Mass flow rate can be measured. Thus, the first
A rotating bearing 15 provided at a location B which serves as a node of vibration between the vibrating body support portion 13 and the second vibrating body support portion 14;
A support shaft 16 which is inserted into the bearing 15 and has at least one end connected to the pipe A is provided orthogonal to a plane formed by the second, first vibrator support portions 13 and second vibrator support portions 14. Energy can be reduced.

【0013】すなわち、図1に示す如く、X,Y,Z軸
方向を決めると、測定管11は、振動子18により加振
棒17を介して、Y方向に振動する。振動子18は、振
動補助棒12に連結されているので、測定管11に力を
加えると、反力が振動補助棒12に加わる。この結果、
測定管11と振動補助棒12は、図2に実線で示す如
く、測定管11がY軸方向に最大変形した時に、両側の
振動補助棒12は、Y軸負方向に最大変形する。
That is, as shown in FIG. 1, when the X, Y, and Z axis directions are determined, the measuring tube 11 is vibrated in the Y direction by the vibrator 18 via the vibrating rod 17. Since the vibrator 18 is connected to the auxiliary vibration rod 12, when a force is applied to the measuring tube 11, a reaction force is applied to the auxiliary vibration rod 12. As a result,
As shown by a solid line in FIG. 2, when the measuring tube 11 is deformed to the maximum in the Y-axis direction, the vibration assisting rods 12 on both sides are deformed to the maximum in the negative Y-axis direction.

【0014】すなわち、測定管11の振幅をA1、振動
補助棒12の振幅をA2(A1,A2>0)とすると、両
者のY方向の振動は、以下の如く表わせる。 測定管11 :Y11=A1Sin(ωT) 振動補助棒12:Y12=A2Sin(ωT+π)
That is, assuming that the amplitude of the measuring tube 11 is A 1 and the amplitude of the vibration assisting rod 12 is A 2 (A 1 , A 2 > 0), the vibration in the Y direction of both can be expressed as follows. Measuring tube 11: Y 11 = A 1 Sin (ωT) Vibration auxiliary rod 12: Y 12 = A 2 Sin (ωT + π)

【0015】次に、振動体支持部13,14の動きは、
測定管11と振動補助棒12の動きに伴い、図2に示す
如く、振動を行う。回転軸受15が取り付けられている
個所では、並進運動成分は零に近いが、Z軸回りの回転
成分が発生する。この回転成分は、回転軸受16で吸収
されるので、外部に振動が伝わるのを防止することがで
きる。
Next, the movements of the vibrating body supporting portions 13 and 14 are as follows.
With the movement of the measuring tube 11 and the vibration auxiliary rod 12, vibration is performed as shown in FIG. At the location where the rotary bearing 15 is mounted, the translational motion component is close to zero, but a rotary component around the Z axis is generated. Since the rotation component is absorbed by the rotation bearing 16, it is possible to prevent the transmission of vibration to the outside.

【0016】要するに、振動子18がY軸方向に振動す
る力により、振動系部分は、Y軸方向併進運動成分とZ
軸回転成分が生ずる。測定管11と振動補助棒12とが
Y軸方向の互いに反対方向に振動するので、Y軸方向併
進運動成分は、振動体支持部13,14にて打ち消し合
い消滅する。Z軸回転成分は、振動体支持部13,14
の中央部では存在するが回転軸受15で吸収される。
In short, the vibrator 18 is caused to vibrate in the Y-axis direction by the force of the vibrator 18 so that the vibrating system portion has a Y-axis translational motion component and Z
An axial rotation component occurs. Since the measuring tube 11 and the vibration assisting rod 12 vibrate in directions opposite to each other in the Y-axis direction, the translational components in the Y-axis direction cancel each other out at the vibrating body supports 13 and 14 and disappear. The Z-axis rotation components are
Are present in the central portion, but are absorbed by the rotary bearing 15.

【0017】この結果、測定管11の振動が外部(フラ
ンジ19)に伝わるのを防止できる。振動系の両端から
の振動エネルギーの散逸を無くすことで、余計な加振力
を掛けずに済み、外部からのエネルギー供給量を低く抑
えることができる。更に、測定管11の上下流の振動エ
ネルギーの散逸量のアンバランスが無くなることで、温
度や流量等の変化にも安定した零点とスパンを維持でき
る効果がある。
As a result, it is possible to prevent the vibration of the measuring tube 11 from being transmitted to the outside (flange 19). By eliminating the dissipation of the vibration energy from both ends of the vibration system, it is not necessary to apply an extra excitation force, and the amount of external energy supply can be suppressed. Further, since there is no imbalance in the amount of vibration energy dissipated upstream and downstream of the measurement tube 11, there is an effect that a zero point and a span that are stable even when the temperature or the flow rate changes can be maintained.

【0018】結局、3本音叉の構造を採用することによ
り、測定管を2本の平行管や曲管を使用するまでもな
く、1本の直管式のまま、上記の効果を得ることができ
る。図3は、本発明の他の実施例の要部構成説明図、図
4は動作概念図である。本実施例においては、振動補助
棒12の中央部分を分断したのものである。このような
装置に於いては、測定管11内の測定流体による温度変
化等に基づき、測定管11と振動補助棒12との熱膨張
差から応力が発生する事が少ないものが得られる。
After all, by adopting the structure of three tuning forks, the above-mentioned effects can be obtained without using two parallel pipes or curved pipes for the measurement pipe and keeping one straight pipe type. it can. FIG. 3 is an explanatory diagram of a main part configuration of another embodiment of the present invention, and FIG. 4 is a conceptual diagram of operation. In this embodiment, the center part of the vibration assisting rod 12 is divided. In such an apparatus, an apparatus in which stress is hardly generated due to a difference in thermal expansion between the measurement pipe 11 and the vibration assisting rod 12 based on a temperature change or the like due to a measurement fluid in the measurement pipe 11 can be obtained.

【0019】[0019]

【発明の効果】以上説明したように、本発明は、振動す
る測定管内に測定流体を流し、その流れと測定管の角振
動によって生じるコリオリ力により、測定管を変形振動
させるコリオリ質量流量計において、前記測定流体が流
れる測定管と、該測定管を挟んで平行に設けられた2個
の振動補助棒と、前記測定管と該振動補助棒の一端が固
定された第1振動体支持部と、前記測定管と前記振動補
助棒の他端が固定された第2振動体支持部と、前記第1
振動体支持部と該第2振動体支持部の振動の節となる個
所に設けられ一端が管路に接続された支持部と、前記測
定管と前記振動補助棒との中央部分を振動子を介して接
続し該振動子により軸方向に加振される加振棒と、前記
測定管の前記加振棒と前記振動体支持部の取り付け位置
との間に設けられた振動検出センサとを具備したことを
特徴とするコリオリ質量流量計を構成した。
As described above, the present invention relates to a Coriolis mass flowmeter which deforms and vibrates a measuring tube by flowing a measuring fluid into a vibrating measuring tube and causing Coriolis force generated by the flow and the angular vibration of the measuring tube. A measurement pipe through which the measurement fluid flows, two vibration auxiliary rods provided in parallel with the measurement pipe interposed therebetween, and a first vibrating body support portion to which one end of the measurement pipe and the vibration auxiliary rod is fixed. A second vibrating body supporting portion to which the other end of the measuring tube and the vibration auxiliary rod are fixed;
The vibrator support part and the support part, which is provided at a location that becomes a node of vibration of the second vibrator support part and one end of which is connected to a pipe, and the central part of the measuring tube and the vibration auxiliary rod are connected to a vibrator. A vibrating rod connected through the vibrator and vibrated in the axial direction by the vibrator; and a vibration detection sensor provided between the vibrating rod of the measurement tube and a mounting position of the vibrating body support. Thus, a Coriolis mass flowmeter was constructed.

【0020】この結果、第1振動体支持部と第2振動体
支持部の振動の節となる個所に設けられ一端が管路に接
続された支持部が設けられているので、測定管の振動が
外部(フランジ)に伝わるのを防止できる。振動系の両
端からの振動エネルギーの散逸を無くすことで、余計な
加振力を掛けずに済み、外部からのエネルギー供給量を
低く抑えることができる。更に、測定管の上下流の振動
エネルギーの散逸量のアンバランスが無くなることで、
温度や流量等の変化にも安定した零点とスパンを維持で
きる効果がある。
As a result, since the first vibrating body support portion and the second vibrating body support portion are provided at the portions that serve as nodes of vibration and have one end connected to the conduit, the vibration of the measuring tube is provided. Can be prevented from being transmitted to the outside (flange). By eliminating the dissipation of the vibration energy from both ends of the vibration system, it is not necessary to apply an extra excitation force, and the amount of external energy supply can be suppressed. Furthermore, by eliminating the imbalance in the amount of vibration energy dissipated upstream and downstream of the measurement tube,
There is an effect that a stable zero point and span can be maintained even when the temperature or the flow rate changes.

【0021】従って、本発明によれば、測定管の振動を
管路に伝えず、測定管の上下流における固定端条件のア
ンバランスが、ゼロ点変動に影響を与えることが少ない
コリオリ質量流量計を実現することが出来る。
Therefore, according to the present invention, the Coriolis mass flowmeter which does not transmit the vibration of the measuring tube to the pipeline, and the imbalance of the fixed end conditions upstream and downstream of the measuring tube hardly affects the zero point fluctuation. Can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の要部構成説明図である。FIG. 1 is an explanatory diagram of a main part configuration of an embodiment of the present invention.

【図2】図1の動作説明図である。FIG. 2 is an operation explanatory diagram of FIG. 1;

【図3】本発明の他の実施例の要部構成説明図である。FIG. 3 is an explanatory diagram of a main part configuration of another embodiment of the present invention.

【図4】図3の動作説明図である。FIG. 4 is an operation explanatory diagram of FIG. 3;

【図5】従来より一般に使用されている従来例の構成説
明図である。
FIG. 5 is an explanatory diagram of a configuration of a conventional example generally used in the related art.

【図6】従来より一般に使用されている他の従来例の構
成説明図である。
FIG. 6 is an explanatory view of the configuration of another conventional example generally used in the prior art.

【図7】図6の動作説明図である。FIG. 7 is an operation explanatory diagram of FIG. 6;

【図8】図6の動作説明図である。FIG. 8 is an operation explanatory diagram of FIG. 6;

【符号の説明】[Explanation of symbols]

11…測定管 12…振動補助棒 13…第1振動体支持部 14…第2振動体支持部 15…回転軸受 16…支持軸 17…加振棒 18…振動子 19…振動検出センサ 21…フランジ 22…チューブ DESCRIPTION OF SYMBOLS 11 ... Measuring pipe 12 ... Vibration auxiliary rod 13 ... 1st vibrating body support part 14 ... 2nd vibrating body support part 15 ... Rotating bearing 16 ... Support shaft 17 ... Exciting rod 18 ... Vibrator 19 ... Vibration detection sensor 21 ... Flange 22 ... Tube

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】振動する測定管内に測定流体を流し、その
流れと測定管の角振動によって生じるコリオリ力によ
り、測定管を変形振動させるコリオリ質量流量計におい
て、 前記測定流体が流れる測定管と、 該測定管を挟んで平行に設けられた2個の振動補助棒
と、 前記測定管と該振動補助棒の一端が固定された第1振動
体支持部と、 前記測定管と前記振動補助棒の他端が固定された第2振
動体支持部と、 前記第1振動体支持部と該第2振動体支持部の振動の節
となる個所に設けられ一端が管路に接続された支持
と、 前記測定管と前記振動補助棒との中央部分を振動子を介
して接続し該振動子により軸方向に加振される加振棒
と、 前記測定管の該加振棒と前記振動体支持部の取り付け位
置との間に設けられた振動検出センサとを具備したこと
を特徴とするコリオリ質量流量計。
1. A measuring fluid is passed through a vibrating measuring tube, and
Due to Coriolis force generated by flow and angular vibration of the measuring tube
And a Coriolis mass flow meter that deforms and vibrates the measurement tube
A measuring pipe through which the measuring fluid flows, and two vibration assisting rods provided in parallel with the measuring pipe interposed therebetween.
A first vibration in which one end of the measuring tube and one end of the vibration assisting rod are fixed.
A body support, and a second vibration to which the other ends of the measurement tube and the vibration auxiliary rod are fixed.
A moving body supporting portion; a node of vibration of the first vibrating body supporting portion and the second vibrating body supporting portion
Support where one end is connected to a conduitDepartment
And a central portion between the measuring tube and the vibration assist rod via a vibrator.
And a vibrating rod that is vibrated in the axial direction by the vibrator
Mounting position of the vibrating rod of the measuring tube and the vibrating body support portion
And a vibration detection sensor provided between the
A Coriolis mass flowmeter characterized by the following.
JP4261993A 1992-09-30 1992-09-30 Coriolis mass flowmeter Expired - Lifetime JP2993294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4261993A JP2993294B2 (en) 1992-09-30 1992-09-30 Coriolis mass flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4261993A JP2993294B2 (en) 1992-09-30 1992-09-30 Coriolis mass flowmeter

Publications (2)

Publication Number Publication Date
JPH06109512A JPH06109512A (en) 1994-04-19
JP2993294B2 true JP2993294B2 (en) 1999-12-20

Family

ID=17369523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4261993A Expired - Lifetime JP2993294B2 (en) 1992-09-30 1992-09-30 Coriolis mass flowmeter

Country Status (1)

Country Link
JP (1) JP2993294B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350207A (en) * 2001-05-29 2002-12-04 Kazumasa Onishi Coriolis flowmeter
JP6345150B2 (en) * 2015-04-16 2018-06-20 マイクロ・モーション・インコーポレーテッドMicro Motion Incorporated Multi-flow conduit flow meter
JP2017146313A (en) * 2017-06-01 2017-08-24 マイクロ・モーション・インコーポレーテッドMicro Motion Incorporated Multiple flow conduit flow meter

Also Published As

Publication number Publication date
JPH06109512A (en) 1994-04-19

Similar Documents

Publication Publication Date Title
US4895031A (en) Sensor mounting for coriolis mass flow rate meter
RU2205370C2 (en) Method of balancing flexibility of tube and balance beam in coriolis flow meter with straight tube and coriolis flow meter for realization of this method
JP5205474B2 (en) Coriolis flow meter with improved balance system
EP0733886B1 (en) Coriolis mass flowmeter
CA1293392C (en) Single tube parallel flow coriolis mass flow sensor
US6782764B2 (en) Coriolis mass flowmeter
EP0235274A1 (en) Sensor mounting for vibrating structures.
AU2004319616B2 (en) Method and apparatus for force balancing
JP4481544B2 (en) Coriolis flow meter balance bar
JP4939408B2 (en) Split balance weights to eliminate density effects on flow
JP2993294B2 (en) Coriolis mass flowmeter
JPH0769205B2 (en) Coriolis mass flowmeter unaffected by density changes
JPH1130543A (en) Coriolis mass flowmeter
JP4015852B2 (en) Method and apparatus for Coriolis flowmeter with balance bar to increase accuracy
JP3003420B2 (en) Coriolis mass flowmeter
JP3336927B2 (en) Coriolis mass flowmeter
JP3058094B2 (en) Mass flow meter
JP3475786B2 (en) Coriolis mass flowmeter
JP3757559B2 (en) Coriolis mass flow meter
RU2316734C2 (en) Method and device for balancing coriolis flow meter
JP2004117087A (en) Coriolis mass flowmeter
JP2023515054A (en) A mode-splitting resonator for the balance bar of a Coriolis flowmeter
CA1282614C (en) Sensor mounting for coriolis mass flow rate meter
RU2351901C2 (en) Method and means for equalisation
JP2000046616A (en) Coriolis mass flowmeter