JP3002602B2 - Solid electrolytic capacitors - Google Patents

Solid electrolytic capacitors

Info

Publication number
JP3002602B2
JP3002602B2 JP4109337A JP10933792A JP3002602B2 JP 3002602 B2 JP3002602 B2 JP 3002602B2 JP 4109337 A JP4109337 A JP 4109337A JP 10933792 A JP10933792 A JP 10933792A JP 3002602 B2 JP3002602 B2 JP 3002602B2
Authority
JP
Japan
Prior art keywords
paint layer
silver
silver paint
layer
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4109337A
Other languages
Japanese (ja)
Other versions
JPH05283296A (en
Inventor
克彦 河野
Original Assignee
マルコン電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マルコン電子株式会社 filed Critical マルコン電子株式会社
Priority to JP4109337A priority Critical patent/JP3002602B2/en
Publication of JPH05283296A publication Critical patent/JPH05283296A/en
Application granted granted Critical
Publication of JP3002602B2 publication Critical patent/JP3002602B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、陰極導電体としての銀
塗料層構成を改良した固体電解コンデンサに関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolytic capacitor having an improved silver paint layer structure as a cathode conductor.

【0002】[0002]

【従来の技術】一般に、固体電解コンデンサは、図2に
示すように弁作用を有する金属粉末を加圧成形してなる
成形体に、あらかじめ弁作用を有する金属線を陽極リー
ド線21として植立し、真空焼結した陽極体22の表面
に陽極酸化により酸化皮膜23を形成し、この酸化皮膜
23の周面に対向電極として二酸化マンガンなどの半導
体層24を形成し、更に接触抵抗を減じるためにグラフ
ァイト層25を介在させた後、陰極導電体としての銀塗
料層26を形成し、この銀塗料層26にリードフレーム
陰極部27を、前記陽極リード線21にリードフレーム
陽極部28を取着し、しかる後、樹脂外装29を施して
なるものである。
2. Description of the Related Art In general, as shown in FIG. 2, in a solid electrolytic capacitor, a metal wire having a valve action is erected as an anode lead wire 21 in advance on a compact formed by pressing metal powder having a valve action. Then, an oxide film 23 is formed by anodic oxidation on the surface of the vacuum-sintered anode body 22, and a semiconductor layer 24 such as manganese dioxide is formed as a counter electrode on the peripheral surface of the oxide film 23 to further reduce contact resistance. After a graphite layer 25 is interposed therebetween, a silver paint layer 26 as a cathode conductor is formed, and a lead frame cathode portion 27 is attached to the silver paint layer 26, and a lead frame anode portion 28 is attached to the anode lead wire 21. Thereafter, a resin outer casing 29 is applied.

【0003】しかしながら、近年、固体電解コンデンサ
の薄型化が急速に進んだことにより、固体電解コンデン
サ及びコンデンサ素子自体の外部からの衝撃や機械的ス
トレスに対する強度不足が無視できない問題になってき
ている。
However, in recent years, as the thickness of the solid electrolytic capacitor has been rapidly reduced, insufficient strength of the solid electrolytic capacitor and the capacitor element itself against external impact and mechanical stress has become a problem that cannot be ignored.

【0004】すなわち、銀塗料層26形成後のアッセン
ブリ工程において、素子に機械的ストレスが加わること
により引き起こされる陰極導電体としての銀塗料層26
の剥離に起因するtanδ、インピーダンスの増大及び
漏れ電流の増大などの特性劣化及び特性不良を引き起こ
す危険性をもつものとなっている。
That is, in the assembly process after the formation of the silver paint layer 26, the silver paint layer 26 as a cathode conductor caused by applying mechanical stress to the element.
There is a danger of causing characteristic deterioration and characteristic failure such as tan δ, an increase in impedance, and an increase in leakage current due to peeling of the metal.

【0005】また、これら固体電解コンデンサは、製品
化後、各種回路部品に組み込んで使用する訳であるが、
使用中も瞬間的に数百Gを越えるような衝撃を受けた場
合、その衝撃を樹脂外装だけで分散・吸収しきれずに、
結局素子自体にダメージを与えることとなり、漏れ電流
増大などの諸特性の劣化を引き起こすことになり、対策
が必要であった。
Further, these solid electrolytic capacitors are used after being commercialized and incorporated into various circuit components.
If a shock exceeding several hundred G is momentarily received during use, the shock cannot be dispersed and absorbed only with the resin exterior,
Eventually, the element itself will be damaged, and various characteristics such as an increase in leakage current will be degraded.

【0006】従来、これらの問題を解決する手段とし
て、まず、グラファイト層を水溶性又は非水溶性の有機
高分子材と黒鉛粉末によって構成し、150μm以上の
厚さとした陰極導電体としての銀塗料層を形成する技
術、また、陰極導電体としての銀塗料層を構成する材料
のうち、非水溶性高分子材をセルロース系高分子材、シ
リコン系高分子材、ポリアミドなどから形成することに
よって外部からの衝撃や機械的ストレスに対するコンデ
ンサ素子自体の強度を向上させる方法が提案されてい
る。
Conventionally, as a means for solving these problems, a silver paint as a cathode conductor having a graphite layer composed of a water-soluble or water-insoluble organic polymer material and graphite powder and having a thickness of 150 μm or more has been proposed. By forming the water-insoluble polymer material from cellulose-based polymer material, silicon-based polymer material, polyamide, etc. among the materials constituting the silver paint layer as the cathode conductor, There has been proposed a method for improving the strength of the capacitor element itself against shocks from the outside and mechanical stress.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前記の
手段を採用した陰極導電体としての銀塗料層の形成方法
によっても固体電解コンデンサ及びコンデンサ素子自体
の強度不足を完全に補うことはできず、固体電解コンデ
ンサの特性劣化及び特性不良の発生を防ぐ十分な解決手
段にはなり得なかった。
However, even the method of forming a silver paint layer as a cathode conductor employing the above-mentioned means cannot completely compensate for the lack of strength of the solid electrolytic capacitor and the capacitor element itself. It could not be a sufficient solution to prevent the deterioration of characteristics and the occurrence of poor characteristics of electrolytic capacitors.

【0008】本発明は、上記の点に鑑みてなされたもの
で、コンデンサのtanδやインピーダンスを増大させ
ることなく、外部からの衝撃や機械的ストレスに対する
十分な強度を有する固体電解コンデンサを提供すること
を目的とするものである。
The present invention has been made in view of the above points, and provides a solid electrolytic capacitor having sufficient strength against external impact and mechanical stress without increasing tan δ and impedance of the capacitor. It is intended for.

【0009】[0009]

【課題を解決するための手段】本発明による固体電解コ
ンデンサは、陽極リード線を植立した弁作用金属からな
る陽極体に順次、酸化皮膜層,半導体層,グラファイト
層,陰極導電体としての銀塗料層を形成して構成したコ
ンデンサ素子にリードフレームを接着し、かつ樹脂外装
を施してなる固体電解コンデンサにおいて、前記銀塗料
層が銀粉末,銅粉末,非水溶性高分子材,グラファイト
ファイバーからなる第1銀塗料層と、この第1銀塗料層
上に形成した銀粉末,銅粉末,非水溶性高分子材からな
る第2銀塗料層とで構成したことを特徴とするものであ
る。
The solid electrolytic capacitor according to the present invention comprises an anode body composed of a valve action metal having an anode lead implanted thereon, and an oxide film layer, a semiconductor layer, a graphite layer, and silver as a cathode conductor. In a solid electrolytic capacitor in which a lead frame is adhered to a capacitor element formed by forming a paint layer and a resin sheath is applied, the silver paint layer is made of silver powder, copper powder, a water-insoluble polymer material, and graphite fiber. And a second silver paint layer made of a silver powder, a copper powder, and a water-insoluble polymer material formed on the first silver paint layer.

【0010】[0010]

【作用】有機溶剤,非水溶性高分子材,銀粉末,銅粉末
をそれぞれ混合し、十分に攪拌してなる銀塗料にグラフ
ァイトファイバーを混合することにより、非水溶性高分
子材とグラファイトファイバーのファイバーラミネート
構造を有する導電性複合強化材料層が第1銀塗料層とし
て形成される。そして、この第1銀塗料層上に有機溶
剤,非水溶性高分子材,銀粉末,銅粉末をそれぞれ混合
し、十分に攪拌してなる銀塗料が第2銀塗料層として形
成される。これにより従来の1層で構成された銀塗料層
よりもはるかに熱的ストレス、物理的ストレスに強く、
割れや剥離現象のない銀塗料層が得られる。
[Function] By mixing an organic solvent, a water-insoluble polymer material, silver powder, and copper powder, and mixing the graphite fiber with a silver paint that is sufficiently stirred, the water-insoluble polymer material and the graphite fiber are mixed. A conductive composite reinforcing material layer having a fiber laminate structure is formed as a first silver paint layer. Then, an organic solvent, a water-insoluble polymer material, silver powder, and copper powder are mixed on the first silver paint layer, and sufficiently stirred to form a silver paint as a second silver paint layer. This is much more resistant to thermal stress and physical stress than the conventional silver paint layer composed of one layer,
A silver paint layer free from cracking and peeling is obtained.

【0011】[0011]

【実施例】以下、本発明につき実施例を参照して説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments.

【0012】すなわち、図1に示すように、例えばタン
タル粉末を加圧成形した陽極体1にタンタルの陽極リー
ド線2を植立し、高温で真空焼結した後、リン酸水溶液
中にて化成電圧50Vを印加して陽極酸化し、タンタル
の陽極酸化皮膜3を形成し、次に、硝酸マンガン溶液中
に浸漬して前記陽極酸化皮膜3上に硝酸マンガンを付着
させた後、温度250℃〜300℃の恒温焼成炉中で数
分間熱分解して二酸化マンガンからなる半導体層4を形
成する。この硝酸マンガン溶液中への浸漬及び熱分解工
程は、数回繰り返して行う。
That is, as shown in FIG. 1, a tantalum anode lead wire 2 is erected on an anode body 1 obtained by pressing and molding tantalum powder, for example, and vacuum sintering is performed at a high temperature. Anodizing is performed by applying a voltage of 50 V to form an anodic oxide film 3 of tantalum, and then immersed in a manganese nitrate solution to deposit manganese nitrate on the anodic oxide film 3. The semiconductor layer 4 made of manganese dioxide is formed by thermal decomposition for several minutes in a constant temperature firing furnace at 300 ° C. This immersion in the manganese nitrate solution and the thermal decomposition process are repeated several times.

【0013】次に、半導体層4形成後の素子を、水溶性
又は非水溶性の有機高分子材の溶液に平均粒径0.3μ
m以下の黒鉛粉末を懸濁させたグラファイト液に浸漬
し、温度150℃〜220℃の恒温槽中で乾燥し、グラ
ファイト層5を形成する。しかる後、有機溶剤,非水溶
性高分子材,銀粉末,銅粉末と、更に平均直径50μm
以下で長さが0.1mm〜2mmのグラファイトファイ
バーをそれぞれ混合し、十分に攪拌してなる銀塗料に浸
漬し、温度150℃〜200℃で乾燥し陰極導電体とし
ての第1銀塗料層6を形成し、さらに引き続き有機溶
剤,非水溶性高分子材,銀粉末,銅粉末をそれぞれ混合
し、十分に攪拌してなる銀塗料に浸漬し、温度150℃
〜200℃で乾燥し前記第1銀塗料層6上に第2銀塗料
層7を形成してコンデンサ素子8を構成する。その後、
陽極リード線2をリードフレーム陽極部9に溶着すると
ともに、リードフレーム陰極部10となる素子固定部に
導電性接着剤11を介してコンデンサ素子8を構成する
第2銀塗料層7部を接着し、しかる後、トランスファー
モールドを行い、樹脂外装12を施し、この樹脂外装1
2より導出したリードフレーム陽極部9及びリードフレ
ーム陰極部10を折り曲げて完成品としたものである。
Next, the device after the formation of the semiconductor layer 4 is immersed in a solution of a water-soluble or water-insoluble organic polymer material with an average particle diameter of 0.3 μm.
m is immersed in a graphite solution in which graphite powder having a particle size of m or less is suspended, and dried in a thermostat at a temperature of 150 ° C. to 220 ° C. to form a graphite layer 5. Thereafter, an organic solvent, a water-insoluble polymer material, silver powder, copper powder, and an average diameter of 50 μm
Below, graphite fibers each having a length of 0.1 mm to 2 mm are mixed, immersed in a silver paint which is sufficiently stirred, dried at a temperature of 150 ° C. to 200 ° C., and dried in a first silver paint layer 6 as a cathode conductor. Then, the organic solvent, the water-insoluble polymer material, the silver powder, and the copper powder are mixed respectively, immersed in a silver paint which is sufficiently stirred, and heated at a temperature of 150 ° C.
After drying at 200 ° C. to form a second silver paint layer 7 on the first silver paint layer 6, a capacitor element 8 is formed. afterwards,
The anode lead wire 2 is welded to the lead frame anode section 9, and the second silver paint layer 7 constituting the capacitor element 8 is adhered to the element fixing section serving as the lead frame cathode section 10 via the conductive adhesive 11. Thereafter, transfer molding is performed, and a resin sheath 12 is applied.
The lead frame anode part 9 and the lead frame cathode part 10 derived from 2 are bent to obtain a finished product.

【0014】以上のように構成してなる固体電解コンデ
ンサによれば、陰極導電体が有機溶剤,非水溶性高分子
材,銀粉末,銅粉末をそれぞれ混合し、十分に攪拌して
なる銀塗料にグラファイトファイバーを混合することに
より、非水溶性高分子材とグラファイトファイバーのフ
ァイバーラミネート構造を有する導電性複合強化材料層
としての第1銀塗料層と、この第1銀塗料層上に形成し
た有機溶剤,非水溶性高分子材,銀粉末,銅粉末をそれ
ぞれ混合し、十分に攪拌してなる第2銀塗料層とで構成
されているため、従来の1層で構成された銀塗料層より
もはるかに熱的ストレス、物理的ストレスに強く、割れ
や剥離現象のない陰極導電体としての銀塗料層が得ら
れ、漏れ電流、tanδ、インピーダンスなどの初期特
性は元より信頼性に富む優れた効果を得ることができ
る。
According to the solid electrolytic capacitor constructed as described above, the cathode conductor is formed by mixing an organic solvent, a water-insoluble polymer material, silver powder, and copper powder with each other and stirring the mixture sufficiently. The first silver paint layer as a conductive composite reinforcing material layer having a fiber laminate structure of the water-insoluble polymer material and the graphite fiber by mixing the graphite fiber with the organic solvent formed on the first silver paint layer Solvent, water-insoluble polymer material, silver powder, and copper powder are each mixed and sufficiently stirred to form a second silver paint layer. It is also much more resistant to thermal stress and physical stress, and a silver paint layer as a cathode conductor without cracking or peeling phenomenon is obtained, and initial characteristics such as leakage current, tan δ, impedance are more reliable than originally It can be obtained free excellent effect.

【0015】次に、本発明と従来例による特性比較につ
いて述べる。
Next, comparison of characteristics between the present invention and a conventional example will be described.

【0016】すなわち、上記実施例にて述べた構成から
なる本発明(A)と、上記本発明と同一の材料を用い、
同一の工程を経てグラファイト層まで形成した後、有機
溶剤,非水溶性高分子材,銀粉末,銅粉末をそれぞれ混
合し、十分に攪拌してなる銀塗料に浸漬し、温度150
℃〜200℃で乾燥し、陰極導電体として1層からなる
銀塗料層を形成し、その後、再び上記本発明と同一の手
段を講じ完成品とした従来例(B)による試料1000
個ずつについての初期特性不良状況を調べた結果、表1
に示すようになり、また、本発明(A),従来例(B)
とも前述した手段によって得た試料100個ずつについ
て、MIL−STD−202Fに規定する、試験法21
3Bの試験条件Cにより行った衝撃試験回数−漏れ電流
を調べた結果、図3に示すようになった。
That is, the present invention (A) having the structure described in the above embodiment and the same material as that of the present invention are used.
After forming the graphite layer through the same process, an organic solvent, a water-insoluble polymer material, silver powder, and copper powder are mixed, respectively, and immersed in a silver paint which is sufficiently stirred.
C. to 200.degree. C. to form a silver paint layer consisting of one layer as a cathode conductor. Thereafter, the same means as in the present invention described above was again taken to complete the sample 1000 according to the conventional example (B).
Table 1 shows the results of examining the initial characteristic failure status for each piece.
The present invention (A) and the conventional example (B)
In each of the 100 samples obtained by the above-mentioned means, the test method 21 specified in MIL-STD-202F was used.
As a result of examining the number of impact tests performed under the test condition C of 3B-leakage current, the result was as shown in FIG.

【0017】なお、試料の定格は本発明(A),従来例
(B)とも4V−10μFである。
The rating of the sample is 4 V-10 μF in both the present invention (A) and the conventional example (B).

【0018】[0018]

【表1】 [Table 1]

【0019】表1から明らかなように、本発明(A)に
よるものは従来例(B)と比較してtanδやインピー
ダンス特性は皆無で、また漏れ電流特性改善に大きく寄
与することがわかる。
As is clear from Table 1, the device according to the present invention (A) has no tan δ and no impedance characteristics as compared with the conventional example (B), and greatly contributes to the improvement of the leakage current characteristics.

【0020】また、図3から明らかなように、従来例
(B)のものは、衝撃試験の回数を重ねる毎に漏れ電流
の増大がみられるのに対し、本発明(A)のものは前記
衝撃試験を繰り返しても漏れ電流の増大は認められず、
本発明の有効性が実証された。
Further, as is apparent from FIG. 3, in the case of the conventional example (B), the leakage current increases every time the impact test is repeated, whereas in the case of the present invention (A), the leakage current increases. No increase in leakage current was observed even after repeated impact tests,
The effectiveness of the present invention has been demonstrated.

【0021】[0021]

【発明の効果】以上述べたように、本発明による固体電
解コンデンサによれば、コンデンサのtanδやインピ
ーダンスを増大させることなく、外部からの衝撃や機械
的ストレスによっても漏れ電流特性劣化のない固体電解
コンデンサを得ることができる。
As described above, according to the solid electrolytic capacitor of the present invention, without increasing the tan δ and impedance of the capacitor, the solid electrolytic capacitor is free from deterioration of leakage current characteristics even by external impact or mechanical stress. A capacitor can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による固体電解コンデンサを示す正断面
図である。
FIG. 1 is a front sectional view showing a solid electrolytic capacitor according to the present invention.

【図2】従来例による固体電解コンデンサを示す正断面
図である。
FIG. 2 is a front sectional view showing a conventional solid electrolytic capacitor.

【図3】固体電解コンデンサの衝撃試験回数−漏れ電流
特性曲線図である。
FIG. 3 is a characteristic curve diagram of the number of impact tests versus leakage current of a solid electrolytic capacitor.

【符号の説明】[Explanation of symbols]

1 陽極体 2 陽極リード線 3 陽極酸化皮膜 4 半導体層 5 グラファイト層 6 第1銀塗料層 7 第2銀塗料層 8 コンデンサ素子 11 導電性接着剤 12 樹脂外装 DESCRIPTION OF SYMBOLS 1 Anode body 2 Anode lead wire 3 Anodized film 4 Semiconductor layer 5 Graphite layer 6 First silver paint layer 7 Second silver paint layer 8 Capacitor element 11 Conductive adhesive 12 Resin exterior

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 陽極リード線を植立した弁作用金属から
なる陽極体に順次、酸化皮膜層,半導体層,グラファイ
ト層,陰極導電体としての銀塗料層を形成して構成した
コンデンサ素子にリードフレームを接着し、かつ樹脂外
装を施してなる固体電解コンデンサにおいて、前記銀塗
料層が銀粉末,銅粉末,非水溶性高分子材,グラファイ
トファイバーからなる第1銀塗料層と、この第1銀塗料
層上に形成した銀粉末,銅粉末,非水溶性高分子材から
なる第2銀塗料層とで構成したことを特徴とする固体電
解コンデンサ。
An anode lead is implanted on a valve body made of a valve action metal, and an oxide film layer, a semiconductor layer, a graphite layer, and a silver paint layer as a cathode conductor are sequentially formed on the anode body to lead the capacitor element. In a solid electrolytic capacitor in which a frame is adhered and a resin sheath is applied, the silver paint layer has a first silver paint layer made of silver powder, copper powder, a water-insoluble polymer material, and graphite fiber; A solid electrolytic capacitor comprising a silver powder, a copper powder, and a second silver paint layer made of a water-insoluble polymer material formed on the paint layer.
JP4109337A 1992-04-01 1992-04-01 Solid electrolytic capacitors Expired - Fee Related JP3002602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4109337A JP3002602B2 (en) 1992-04-01 1992-04-01 Solid electrolytic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4109337A JP3002602B2 (en) 1992-04-01 1992-04-01 Solid electrolytic capacitors

Publications (2)

Publication Number Publication Date
JPH05283296A JPH05283296A (en) 1993-10-29
JP3002602B2 true JP3002602B2 (en) 2000-01-24

Family

ID=14507674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4109337A Expired - Fee Related JP3002602B2 (en) 1992-04-01 1992-04-01 Solid electrolytic capacitors

Country Status (1)

Country Link
JP (1) JP3002602B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19846936C1 (en) * 1998-10-12 2000-03-30 Siemens Matsushita Components Tantalum electrolytic condenser for use in SMD elements has the increase in residual current under undesirable conditions prevented by inclusion of filler particles in moisture protection layer

Also Published As

Publication number Publication date
JPH05283296A (en) 1993-10-29

Similar Documents

Publication Publication Date Title
US5621608A (en) Solid electrolytic capacitor having two solid electrolyte layers and method of manufacturing the same
EP2631925A2 (en) Solid electrolytic capacitor with interlayer crosslinking
JP3881480B2 (en) Solid electrolytic capacitor and manufacturing method thereof
US20030081374A1 (en) Solid electrolytic capacitor and method for preparing the same
US6442016B2 (en) Solid-state electrolytic capacitor
JP3002602B2 (en) Solid electrolytic capacitors
EP0487085A2 (en) Method for fabricating solid electrolytic capacitors using an organic conductive layer
US5938797A (en) Low impedance solid electrolytic capacitor and method for fabricating the same
JP2615712B2 (en) Manufacturing method of solid electrolytic capacitor
JP3171693B2 (en) Solid electrolytic capacitors
JP3171692B2 (en) Solid electrolytic capacitors
JP2950665B2 (en) Solid electrolytic capacitors
US3314124A (en) Method of manufacturing solid electrolytic capacitor
JPH09119000A (en) Manufacture of electronic parts and barrel plating device
JP3331566B2 (en) Method for forming terminal electrodes of chip-type electronic components
JP5337943B2 (en) Solid electrolytic capacitor and manufacturing method thereof
EP0768686A2 (en) Solid electrolytic capacitor and fabrication method thereof
JP2001035752A (en) Solid electrolytic capacitor
JPS58110028A (en) Method of producing solid electrolytic condenser
JPH10242000A (en) Tantalum solid electrolytic capacitor element and tantalum solid electrolytic capacitor
JPH02267915A (en) Manufacture of solid-state electrolytic capacitor
JP3391364B2 (en) Manufacturing method of tantalum solid electrolytic capacitor
JPH06140278A (en) Laminated ceramic capacitor
JP3546451B2 (en) Method for manufacturing solid electrolytic capacitor
JP2000340460A (en) Solid electrolytic capacitor and its manufacture

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees