JP2999878B2 - Manufacturing method of non-sintered cadmium electrode - Google Patents

Manufacturing method of non-sintered cadmium electrode

Info

Publication number
JP2999878B2
JP2999878B2 JP4016450A JP1645092A JP2999878B2 JP 2999878 B2 JP2999878 B2 JP 2999878B2 JP 4016450 A JP4016450 A JP 4016450A JP 1645092 A JP1645092 A JP 1645092A JP 2999878 B2 JP2999878 B2 JP 2999878B2
Authority
JP
Japan
Prior art keywords
electrode
cadmium
temperature
active material
hydration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4016450A
Other languages
Japanese (ja)
Other versions
JPH05217577A (en
Inventor
浩則 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP4016450A priority Critical patent/JP2999878B2/en
Publication of JPH05217577A publication Critical patent/JPH05217577A/en
Application granted granted Critical
Publication of JP2999878B2 publication Critical patent/JP2999878B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ニッケル−カドミウム
蓄電池などのアルカリ蓄電池に用いられる非焼結式カド
ミウム電極の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a non-sintered cadmium electrode used in an alkaline storage battery such as a nickel-cadmium storage battery.

【0002】[0002]

【従来の技術】上記ニッケル−カドミウム蓄電池などの
アルカリ蓄電池に用いられるカドミウム電極としては、
工程が比較的簡単で且つ製造コストが安いペースト式の
ものが広く用いられている。このようなペースト式カド
ミウム電極の製造方法としては、特公昭58−4899
0号公報に示すように、酸化カドミウム等の活物質粉
末、補強繊維、及び結着剤等を混合して活物質ペースト
を作製し、これを導電芯体に塗着,乾燥するような、所
謂未化成極板の製造方法が知られている。
2. Description of the Related Art Cadmium electrodes used in alkaline storage batteries such as the above-mentioned nickel-cadmium storage batteries include:
Paste-type ones whose processes are relatively simple and whose production costs are low are widely used. A method for producing such a paste-type cadmium electrode is disclosed in JP-B-58-4899.
As disclosed in Japanese Patent Publication No. 0, a so-called active material paste is prepared by mixing an active material powder such as cadmium oxide, a reinforcing fiber, a binder, and the like, and applying the paste to a conductive core and drying the paste. A method for manufacturing an unformed electrode plate is known.

【0003】しかしながら、上記製造方法において、加
圧ローラー等を用いて極板を巻き取る場合には、活物質
ペーストが柔らかいということに起因して、巻き始めに
比べ巻き終わりになるほど加圧の程度が増加する。した
がって、巻き終わりに近づくにしたがって極板厚みが減
少し、これに伴って、巻き終わり程極板多孔度が減少す
る。この結果、このような製造方法にて作製した未化成
極板を用いて電池を作製した場合には、極板に保持され
る電解液の量が化成済みの極板に比べ少なくなると共
に、電池反応が均一に行えなくなるため、電池性能が低
下する。
However, in the above manufacturing method, when the electrode plate is wound using a pressure roller or the like, due to the softness of the active material paste, the degree of pressurization is higher at the end than at the start of the winding. Increase. Therefore, the electrode thickness decreases as the winding ends, and accordingly, the electrode porosity decreases as the winding ends. As a result, when a battery is manufactured using an unformed electrode plate manufactured by such a manufacturing method, the amount of electrolyte held by the electrode plate is smaller than that of the electrode plate already formed, and the battery Since the reaction cannot be performed uniformly, the battery performance decreases.

【0004】そこで、上記極板(酸化カドミウム)をア
ルカリ水溶液中で予備水和するような製造方法が提案さ
れている。このように酸化カドミウムの水和処理を行え
ば、結晶粒径の成長した大きな水酸化カドミウムが形成
されるため、ペースト状活物質内部には比較的大きな空
孔が均一に形成されると共に、極板の機械的強度が向上
する。この結果、極板の巻き取り時には、活物質が圧延
され難くなり、巻き取り方向に対して多孔度が均一にな
ると共に、多孔度が高く維持されることになる。
Therefore, a production method has been proposed in which the electrode plate (cadmium oxide) is pre-hydrated in an alkaline aqueous solution. When the hydration treatment of cadmium oxide is performed in this manner, a large cadmium hydroxide having a crystal grain size grown is formed, so that relatively large pores are uniformly formed inside the paste-like active material, and extremely large cavities are formed. The mechanical strength of the plate is improved. As a result, at the time of winding the electrode plate, the active material is hardly rolled, and the porosity becomes uniform in the winding direction, and the porosity is maintained high.

【0005】[0005]

【発明が解決しようとする課題】ところが、上記水和反
応を完了させるためには、長時間を要する。したがっ
て、水和処理工程におるけコストの低減を図るには、ア
ルカリ水溶液の温度を上げて、短時間で反応を終了させ
る必要がある。しかしながら、高温下で水和を行うと、
生成する活物質の結晶形態が変化したり、或いは急激な
化学反応により活物質が部分的に芯体から脱離するた
め、ブリスターが発生する。この結果、電池特性が低下
するという課題を有していた。
However, it takes a long time to complete the hydration reaction. Therefore, in order to reduce the cost in the hydration treatment step, it is necessary to raise the temperature of the alkaline aqueous solution and terminate the reaction in a short time. However, when hydrated at high temperature,
The crystal form of the generated active material changes, or the active material is partially detached from the core due to a rapid chemical reaction, so that blisters are generated. As a result, there was a problem that the battery characteristics deteriorated.

【0006】本発明は係る現状を考慮してなされたもの
であって、電池性能を低下させることなく製造コストの
低減を図ることができる非焼結式カドミウム電極の製造
方法の提供を目的としている。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above situation, and has as its object to provide a method of manufacturing a non-sintered cadmium electrode which can reduce the manufacturing cost without lowering the battery performance. .

【0007】[0007]

【課題を解決するための手段】本発明は上記目的を達成
するために、主活物質である酸化カドミウムを主体とす
るペーストを導電芯体に塗布して極板を作製する第1ス
テップと、上記極板を10〜50℃のアルカリ水溶液に
浸漬し、上記酸化カドミウムを部分的に予備水和する第
2ステップと、上記極板を60〜90℃のアルカリ水溶
液に浸漬し、上記酸化カドミウムを水和する第3ステッ
プとを有することを特徴とする。
In order to achieve the above object, the present invention provides a first step in which a paste mainly composed of cadmium oxide as a main active material is applied to a conductive core to produce an electrode plate; A second step of immersing the electrode plate in an alkaline aqueous solution at 10 to 50 ° C. and partially prehydrating the cadmium oxide, and immersing the electrode plate in an alkaline aqueous solution at 60 to 90 ° C. to remove the cadmium oxide; And a third step of hydration.

【0008】[0008]

【作用】一般に、主活物質である酸化カドミウムを水酸
化ナトリウム中で水和させると、γ型水酸化カドミウム
が生成する。しかしながら、水和処理を速く完了させる
ためにアルカリ処理の温度を上げると、γ型よりもβ型
の水酸化カドミウムが優先して生成するようになる。
Generally, when cadmium oxide, which is the main active material, is hydrated in sodium hydroxide, γ-type cadmium hydroxide is produced. However, if the temperature of the alkali treatment is increased in order to complete the hydration treatment quickly, β-type cadmium hydroxide is generated preferentially over γ-type.

【0009】ここで、前記γ型水酸化カドミウムは、粒
径の小さい針状結晶であるため、比表面積が大きくなる
が、β型の水酸化カドミウムは、粒径の大きな六方晶系
であるため、比表面積が小さくなる。したがって、β型
の水酸化カドミウムはγ型の水酸化カドミウムに比べて
比べ充電受け入れ性が悪くなると共に、活物質の充電深
度が浅くなり、且つ水素ガス発生が速くなる。
Here, since the γ-type cadmium hydroxide is a needle-like crystal having a small particle size, the specific surface area is large. However, since the β-type cadmium hydroxide is a hexagonal system having a large particle size, , The specific surface area becomes smaller. Therefore, the β-type cadmium hydroxide has a lower charge acceptability than the γ-type cadmium hydroxide, has a smaller charge depth of the active material, and has a faster hydrogen gas generation.

【0010】加えて、γ型の水酸化カドミウムは粒径の
小さい針状結晶であるため、緻密に充填でき、この結果
ブリスターの発生を抑制できる。これに対して、β型水
酸化カドミウムはより大きな結晶として成長するため、
緻密に充填できない。したがって、アルカリ処理の温度
を上げたような急激な化学反応下では、ブリスターが発
生し易くなる。これらのことを考慮すれば、水和で生成
する活物質の形態としてはγ型の水酸化カドミウムであ
るのが好ましい。
[0010] In addition, since γ-type cadmium hydroxide is a needle-like crystal having a small particle size, it can be densely packed, and as a result, blister generation can be suppressed. In contrast, β-cadmium hydroxide grows as larger crystals,
Cannot be filled densely. Therefore, blisters are easily generated under a sudden chemical reaction such as when the temperature of the alkali treatment is increased. Considering these facts, the form of the active material generated by hydration is preferably γ-type cadmium hydroxide.

【0011】このようなことを考慮しつつ、本発明者ら
が実験を行ったところ、水和反応を速めるためアルカリ
処理温度を上げるとβ型水酸化カドミウムが生成する
が、この水和後の結晶形態を決定するのは、酸化カドミ
ウムを最初にアルカリ処理液に浸漬した時の処理温度で
あることを見出した。例えば、最初に浸漬した時の温度
が低温であれば、γ型の結晶核が生成し、その後より高
温で処理して反応スピードを早めても、結晶形態はβ型
とはならず、γ型の結晶として成長することを見いだし
た。具体的なアルカリ処理温度としては、最初に浸漬時
は10〜50℃の範囲であることを要し、その後の浸漬
時は60〜90℃の範囲であることを要することを、実
験により確認した。
In consideration of the above, the present inventors conducted an experiment. When the alkali treatment temperature was increased to accelerate the hydration reaction, β-type cadmium hydroxide was formed. It has been found that the crystal morphology is determined by the processing temperature when cadmium oxide is first immersed in an alkaline processing solution. For example, if the temperature at the time of first immersion is low, γ-type crystal nuclei are generated, and even if the reaction speed is increased by treating at a higher temperature, the crystal form does not become β-type, but γ-type It was found to grow as crystals. As a specific alkali treatment temperature, it was confirmed by an experiment that it was necessary to be in the range of 10 to 50 ° C. at the time of immersion first and to be in the range of 60 to 90 ° C. at the time of subsequent immersion. .

【0012】これらのことから、上記の方法で非焼結式
カドミウム電極を作製すれば、γ型の水酸化カドミウム
が生成されるので、充電受け入れ性の向上や水素ガスの
発生を抑制できると共に、ブリスターの発生も阻止でき
る。加えて、低温でアルカリ処理を行うのは当初のみで
あり、その後は高温でアルカリ処理を行うことができる
ので、水和工程を短時間で完了させることができる。
From these facts, if a non-sintered cadmium electrode is produced by the above-described method, γ-type cadmium hydroxide is generated, so that it is possible to improve the charge acceptability and suppress the generation of hydrogen gas, Blistering can be prevented. In addition, the alkali treatment is performed at a low temperature only at the beginning, and thereafter the alkali treatment can be performed at a high temperature, so that the hydration step can be completed in a short time.

【0013】[0013]

【実施例】【Example】

〔予備実験〕酸化カドミウム粉末80重量%及び金属カ
ドミウム粉末20重量%からなる活物質粉末と、メチル
セルロース溶液と、ナイロン繊維等とを混練してペース
トを作成した後、これを導電芯体に塗着、乾燥して極板
を作成する。次に、このような極板を多数作製した後、
各極板を25%水酸化ナトリウム水溶液(溶液の温度は
0〜90℃の範囲で異ならしめている)で5分間及び1
5分間水和を行い、最後に各極板を水洗,乾燥した。
[Preliminary experiment] An active material powder comprising 80% by weight of cadmium oxide powder and 20% by weight of metal cadmium powder, a methylcellulose solution, and a nylon fiber were kneaded to prepare a paste, which was then applied to a conductive core. Dry and make the plates. Next, after manufacturing many such plates,
Each electrode plate was treated with a 25% aqueous sodium hydroxide solution (solution temperature varied from 0 to 90 ° C.) for 5 minutes and 1 hour.
Hydration was performed for 5 minutes, and finally each electrode plate was washed with water and dried.

【0014】この場合における各極板の水和率を図1に
示し、また15分間の水和で生成したγ型水酸化カドミ
ウムとβ型の水酸化カドミウムとの割合を図2に示す。
図1から明らかなように、水酸化ナトリウムの温度が上
がるにしたがって、水和率も大きくなり、水和反応のス
ピードが速くなっていることが認められる。具体的に
は、短時間で水和反応が満足のいく水準に達するには、
60℃以上の水和温度が必要となる。但し、90℃以上
では、反応スピードが急激過ぎるため結晶形態にかかわ
らず、ブリスターが発生し且つナイロン繊維等の分解も
生じる。これらのことを考慮すると、水酸化ナトリウム
の温度は60〜90℃で行う必要がある。
FIG. 1 shows the hydration rate of each electrode plate in this case, and FIG. 2 shows the ratio between γ-type cadmium hydroxide and β-type cadmium hydroxide formed by hydration for 15 minutes.
As is clear from FIG. 1, it can be seen that as the temperature of sodium hydroxide increases, the hydration rate also increases, and the speed of the hydration reaction increases. Specifically, to reach a satisfactory level of hydration in a short time,
A hydration temperature of 60 ° C. or higher is required. However, at 90 ° C. or higher, blisters are generated and decomposition of nylon fibers and the like is caused regardless of the crystal form because the reaction speed is too rapid. In consideration of these, the temperature of sodium hydroxide needs to be 60 to 90 ° C.

【0015】その一方、図2から明らかなように、水和
時に生成する水酸化カドミウムは、10〜50℃ではγ
型のものが多いが、50℃を超えると徐々にβ型のもの
の割合が増大する。したがって、γ型の水酸化カドミウ
ムを生成させるためには、水酸化ナトリウムの温度は1
0〜50℃の範囲で行う必要がある。これらの実験結果
より、最初にアルカリ溶液に浸漬する際の温度は10〜
50℃の範囲とし、その後にアルカリ溶液に浸漬する際
の温度は60〜90℃の範囲とする必要がある。 〔実施例〕先ず、上記予備実験と同様して活物質を塗着
した極板を作製した後、この極板を20℃の水酸化ナト
リウム水溶液(25%)中で、5分間だけ部分的に予備
水和した後、70℃の水酸化ナトリウム水溶液中で15
分間水和する。この後、この極板を水洗,乾燥して、電
極を作製した。
On the other hand, as is apparent from FIG. 2, cadmium hydroxide produced during hydration is γ at 10 to 50 ° C.
There are many types, but when the temperature exceeds 50 ° C., the ratio of β-type gradually increases. Therefore, in order to generate γ-type cadmium hydroxide, the temperature of sodium hydroxide must be 1
It is necessary to perform in the range of 0 to 50 ° C. From these experimental results, the temperature at the first immersion in the alkaline solution is 10 to
The temperature must be in the range of 50 ° C., and the temperature when subsequently immersed in the alkaline solution must be in the range of 60 to 90 ° C. [Example] First, an electrode plate coated with an active material was prepared in the same manner as in the above-mentioned preliminary experiment, and this electrode plate was partially applied to a sodium hydroxide aqueous solution (25%) at 20 ° C for only 5 minutes. After pre-hydration, the solution was placed in an aqueous sodium hydroxide solution at 70 ° C for 15
Hydrate for a minute. Thereafter, the electrode plate was washed with water and dried to produce an electrode.

【0016】このようにして作製した電極を、以下
(A)電極と称する。この後、この電極を所定の寸法に
切断し、更に公知の焼結式ニッケル陽極と組み合わせ
て、公称容量1.3AHの密閉式アルカリ蓄電池を作製
した。このようにして作製した電池を、以下(a)電池
と称する。 〔比較例〕部分的な予備水和を行わない(即ち、70℃
の水酸化ナトリウム水溶液中で15分間水和するのみ)
他は、上記実施例と同様にして電極及び電池を作製し
た。
The electrode fabricated in this manner is hereinafter referred to as (A) electrode. Thereafter, the electrode was cut into a predetermined size, and further combined with a known sintered nickel anode to produce a sealed alkaline storage battery having a nominal capacity of 1.3 AH. The battery fabricated in this manner is hereinafter referred to as (a) battery. [Comparative Example] No partial prehydration was performed (that is, 70 ° C
Only hydrate for 15 minutes in aqueous sodium hydroxide solution)
Otherwise, an electrode and a battery were manufactured in the same manner as in the above example.

【0017】このようにして作製した電極及び電池を、
以下それぞれ(X)電極,(x)電池と称する。 〔実験1〕上記本発明の(A)電極と比較例の(X)電
極との構造を、X線回折法にて調べたので、その結果を
図3に示す。
The electrode and the battery thus produced are
Hereinafter, they are referred to as (X) electrode and (x) battery, respectively. [Experiment 1] The structures of the electrode (A) of the present invention and the electrode (X) of the comparative example were examined by an X-ray diffraction method, and the results are shown in FIG.

【0018】図3から明らかなように、比較例の(X)
電極ではβ型の水酸化カドミウムが優先して生成してい
るのに対し、本発明の(A)電極では、アルカリ処理の
温度が20℃で生成する結晶形態に依存するため、γ型
の水酸化カドミウムの生成が主体となっていることが認
められる。 〔実験2〕上記本発明の(A)電極と比較例の(X)電
極とにおけるブリスター発生率、及び上記本発明の電極
を用いた(a)電池と比較例の電極を用いた(x)電池
とにおける水素ガス発生量とを調べたので、それらの結
果を表1に示す。尚、水素ガス発生量とは、公称容量の
0.1Cで1週間充電(温度:0℃)した後の水素ガス
の量である。
As is clear from FIG. 3, (X) of the comparative example
In the electrode, β-type cadmium hydroxide is preferentially generated, whereas in the electrode (A) of the present invention, the temperature of the alkali treatment depends on the crystal form generated at 20 ° C., so that the γ-type water It is recognized that cadmium oxide is mainly produced. [Experiment 2] Blister generation rate between the electrode (A) of the present invention and the electrode (X) of the comparative example, and (a) the battery using the electrode of the present invention and the electrode of the comparative example (x) The amount of hydrogen gas generated in the battery was examined. The results are shown in Table 1. The hydrogen gas generation amount is the amount of hydrogen gas after charging (temperature: 0 ° C.) at a nominal capacity of 0.1 C for one week.

【0019】[0019]

【表1】 [Table 1]

【0020】表1から明らかなように、比較例の(X)
電極ではブリスターが多数発生していることが認められ
るのに対して、本発明の(A)電極ではブリスターが認
められない。これは、比較例の(X)電極では、水和処
理の当初より高温のアルカリ溶液に浸漬しているので、
β型の水酸化カドミウムが生成するのに対して、本発明
の(A)電極では、水和処理の当初は低温のアルカリ溶
液に浸漬しているので、γ型の水酸化カドミウムが生成
するという理由によるものと考えられる。
As is clear from Table 1, (X) of Comparative Example
It is recognized that a large number of blisters are generated in the electrode, whereas no blister is recognized in the electrode (A) of the present invention. This is because the electrode (X) of the comparative example is immersed in an alkaline solution having a high temperature from the beginning of the hydration treatment.
In contrast to the formation of β-type cadmium hydroxide, the electrode (A) of the present invention is immersed in a low-temperature alkaline solution at the beginning of the hydration treatment, so that γ-type cadmium hydroxide is generated. This is probably due to the reason.

【0021】また、表1より、比較例の電極を用いた
(x)電池では水素ガス発生量が極めて多くなっている
のに対して、本発明の電極を用いた(a)電池では水素
ガス発生量が極めて少ないことが認められる。これは、
比較例の電極を用いた(x)電池では、電極に生じるβ
型の水酸化カドミウムの充電受け入れ性が悪いのに対し
て、本発明の電極を用いた(a)電池では、電極に生じ
るγ型の水酸化カドミウムの充電受け入れ性が向上する
という理由によるものと考えられる。 〔実験3〕上記本発明の(A)電極と比較例の(X)電
極とにおいて、充放電サイクル数と活物質利用率との関
係を調べたので、その結果を図4に示す。尚、実験条件
は、過剰量の25重量%水酸化カリウム水溶液中におい
て0.3Cの電流で容量の160%まで充電した後、
0.5Cの電流で金属ニッケル対極に対し−1.0Vと
なるまで放電するという条件である。
From Table 1, it can be seen that the (x) battery using the electrode of the comparative example produced an extremely large amount of hydrogen gas, whereas the (a) battery using the electrode of the present invention produced a hydrogen gas. It is recognized that the amount of generation is extremely small. this is,
In the (x) battery using the electrode of the comparative example, β generated at the electrode
On the other hand, in the battery (a) using the electrode of the present invention, the charge acceptability of γ-type cadmium hydroxide generated in the electrode is improved, while the charge acceptability of the cadmium hydroxide of the type is poor. Conceivable. [Experiment 3] The relationship between the number of charge / discharge cycles and the utilization rate of the active material was examined for the electrode (A) of the present invention and the electrode (X) of the comparative example. The results are shown in FIG. The experimental conditions were as follows: after charging to 160% of the capacity with an electric current of 0.3 C in an excessive amount of 25 wt% potassium hydroxide aqueous solution,
The condition is that the battery is discharged at a current of 0.5 C until it reaches -1.0 V with respect to the metal nickel counter electrode.

【0022】図4から明らかなように、比較例の(X)
電極は本発明の(A)電極に比べて、全てのサイクルで
活物質利用率が低くなっていることが認められる。これ
は、比較例の(X)電極では、ブリスターの発生によ
り、芯体と活物質との密着が低下する。したがって、1
サイクル目から活物質の利用率が低くなり、且つサイク
ルにより劣化も大きくなる。これに対して、本発明の
(A)電極では、ブリスターが発生しないので、芯体と
活物質との密着性が良好となる。したがって、1サイク
ル目から活物質の利用率が高く、またサイクルにより劣
化も小さくなるという理由によるものと考えられる。
As is apparent from FIG. 4, (X) of the comparative example
It can be seen that the electrode has lower active material utilization in all cycles than the electrode (A) of the present invention. This is because, in the (X) electrode of the comparative example, the adhesion between the core and the active material is reduced due to the generation of blisters. Therefore, 1
From the cycle, the utilization rate of the active material becomes low, and the deterioration increases with the cycle. On the other hand, in the electrode (A) of the present invention, since no blister is generated, the adhesion between the core and the active material is improved. Therefore, it is considered that the reason is that the utilization rate of the active material is high from the first cycle, and the deterioration decreases with each cycle.

【0023】[0023]

【発明の効果】以上説明したように本発明によれば、γ
型の水酸化カドミウムが生成されるので、充電受け入れ
性の向上や水素ガスの発生を抑制できると共に、ブリス
ターの発生も阻止できる。加えて、低温でアルカリ処理
を行うのは当初のみであり、その後は高温でアルカリ処
理を行うので、水和工程を短時間で終了させることがで
きる。これらのことから、電極性能を低下させることな
く、水和工程の時間短縮を図ることができるといった優
れた効果を奏する。
As described above, according to the present invention, γ
Since cadmium hydroxide of the type is generated, it is possible to improve the charge acceptability, suppress the generation of hydrogen gas, and prevent the generation of blisters. In addition, the alkali treatment is performed at a low temperature only at the beginning, and thereafter the alkali treatment is performed at a high temperature, so that the hydration step can be completed in a short time. From these facts, there is an excellent effect that the time of the hydration step can be reduced without lowering the electrode performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】アルカリ処理温度と水和率との関係を示すグラ
フである。
FIG. 1 is a graph showing a relationship between an alkali treatment temperature and a hydration rate.

【図2】アルカリ処理温度と水和を行った極板のγ型水
酸化カドミウム/β型の水酸化カドミウムの割合を示す
グラフである。
FIG. 2 is a graph showing the alkali treatment temperature and the ratio of γ-type cadmium hydroxide / β-type cadmium hydroxide of a hydrated electrode plate.

【図3】本発明の(A)電極と比較例の(X)電極とに
おけるX線回折図である。
FIG. 3 is an X-ray diffraction diagram of an electrode (A) of the present invention and an electrode (X) of a comparative example.

【図4】本発明の(A)電極と比較例の(X)電極とに
おけるサイクル数と活物質利用率との関係を示すグラフ
である。
FIG. 4 is a graph showing the relationship between the number of cycles and the active material utilization in the electrode (A) of the present invention and the electrode (X) of the comparative example.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 主活物質である酸化カドミウムを主体と
するペーストを導電芯体に塗布して極板を作製する第1
ステップと、 上記極板を10〜50℃のアルカリ水溶液に浸漬し、上
記酸化カドミウムを部分的に予備水和する第2ステップ
と、 上記極板を60〜90℃のアルカリ水溶液に浸漬し、上
記酸化カドミウムを水和する第3ステップと、 を有することを特徴とする非焼結式カドミウム電極の製
造方法。
A first method for producing an electrode plate by applying a paste mainly composed of cadmium oxide as a main active material to a conductive core.
A step of immersing the electrode plate in an alkaline aqueous solution at 10 to 50 ° C. and partially pre-hydrating the cadmium oxide; and immersing the electrode plate in an alkaline aqueous solution at 60 to 90 ° C. A third step of hydrating cadmium oxide; and a method for producing a non-sintered cadmium electrode.
JP4016450A 1992-01-31 1992-01-31 Manufacturing method of non-sintered cadmium electrode Expired - Fee Related JP2999878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4016450A JP2999878B2 (en) 1992-01-31 1992-01-31 Manufacturing method of non-sintered cadmium electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4016450A JP2999878B2 (en) 1992-01-31 1992-01-31 Manufacturing method of non-sintered cadmium electrode

Publications (2)

Publication Number Publication Date
JPH05217577A JPH05217577A (en) 1993-08-27
JP2999878B2 true JP2999878B2 (en) 2000-01-17

Family

ID=11916584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4016450A Expired - Fee Related JP2999878B2 (en) 1992-01-31 1992-01-31 Manufacturing method of non-sintered cadmium electrode

Country Status (1)

Country Link
JP (1) JP2999878B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080377A (en) * 2008-09-29 2010-04-08 Sanyo Electric Co Ltd Manufacturing method of alkaline storage battery cadmium negative electrode

Also Published As

Publication number Publication date
JPH05217577A (en) 1993-08-27

Similar Documents

Publication Publication Date Title
JP2999878B2 (en) Manufacturing method of non-sintered cadmium electrode
JP2786889B2 (en) Method for producing cadmium negative electrode plate for alkaline storage battery
JPS5983347A (en) Sealed nickel-cadmium storage battery
JP2765028B2 (en) Sealed alkaline battery
JP2002203543A (en) Cadmium negative electrode for alkaline battery and its manufacturing method
JP3188000B2 (en) Non-sintered nickel positive electrode
JP3744677B2 (en) Method for producing sintered cadmium negative electrode
JPS58198856A (en) Manufacture of negative cadmium plate for alkaline storage battery
JP3086525B2 (en) Sealed alkaline storage battery and method for manufacturing the same
JP2755690B2 (en) Method for producing cadmium negative electrode plate for alkaline storage battery
JP2925764B2 (en) Manufacturing method of alkaline storage battery
JP2810460B2 (en) Positive plate for alkaline storage battery
JP3691257B2 (en) Method for producing sintered cadmium negative electrode for alkaline storage battery
JPH0410181B2 (en)
JPH10172560A (en) Lithium battery and positive electrode for it
JP3454612B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH0963573A (en) Manufacture of hydrogen storage alloy electrode
JP3163848B2 (en) Cadmium negative plate
JPS63126163A (en) Alkaline storage battery
JPH0232750B2 (en)
JP2786906B2 (en) Manufacturing method of sealed alkaline storage battery
JPH04332469A (en) Manufacture of sintered nickel electrode for alkaline secondary battery
JP2638055B2 (en) Manufacturing method of paste-type cadmium negative electrode for alkaline storage battery
JP2975673B2 (en) Method for producing cadmium negative electrode plate
JPS60146453A (en) Manufacture of nickel electrode for alkaline battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees