JP2999446B2 - Magnetic recording medium and magnetic recording / reproducing system - Google Patents
Magnetic recording medium and magnetic recording / reproducing systemInfo
- Publication number
- JP2999446B2 JP2999446B2 JP5208398A JP5208398A JP2999446B2 JP 2999446 B2 JP2999446 B2 JP 2999446B2 JP 5208398 A JP5208398 A JP 5208398A JP 5208398 A JP5208398 A JP 5208398A JP 2999446 B2 JP2999446 B2 JP 2999446B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic recording
- recording medium
- sfd
- value
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Magnetic Record Carriers (AREA)
- Magnetic Heads (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高周波を用いた磁
気記録・再生システムと該システムに適した磁気記録媒
体に関する。The present invention relates to a magnetic recording / reproducing system using a high frequency and a magnetic recording medium suitable for the system.
【0002】[0002]
【従来の技術】磁気記録媒体として、支持体上に真空蒸
着法等により形成した強磁性金属薄膜からなる磁性層を
形成したいわゆる金属薄膜型の磁気記録媒体が知られて
いる。このタイプの磁気記録媒体は、磁性層にバインダ
ーを含まないことから、単位体積当たりの磁性体の量が
多い(すなわち磁性材料の密度が高い)ため、高密度記
録に有望であるとされている。このような金属薄膜を形
成する磁性材料としては、Co系、Co−Ni系、Co
−Cr系等の強磁性金属(合金)が用いられている。2. Description of the Related Art As a magnetic recording medium, a so-called metal thin film type magnetic recording medium in which a magnetic layer composed of a ferromagnetic metal thin film formed on a support by a vacuum deposition method or the like is known. This type of magnetic recording medium is considered to be promising for high-density recording because the magnetic layer contains no binder and therefore has a large amount of magnetic substance per unit volume (that is, the density of the magnetic material is high). . Magnetic materials for forming such a metal thin film include Co-based, Co-Ni-based, and Co-based.
-A ferromagnetic metal (alloy) such as Cr is used.
【0003】今日研究が進められている高精度テレビジ
ョン方式(いわゆるハイビジョン方式)は、従来の方式
に比べて非常に高画質であり、これを鮮明に記録するた
めには更なる高密度化が要求されるが、蒸着型の磁気記
録媒体はハイビジョン方式に対応する高密度記録に有望
であるとされている。[0003] The high-precision television system (so-called high-vision system), which is being studied today, has a much higher image quality than the conventional system. Although required, a vapor deposition type magnetic recording medium is considered to be promising for high-density recording corresponding to a high-vision system.
【0004】[0004]
【発明が解決しようとする課題】高密度記録を達成する
ためには、高周波、例えば20MHz以上の周波数を用
い、高いC/Nを達成することが必要であり、従来の蒸
着型の磁気記録媒体では磁性層を多層にしてそれに対処
していた。しかしながら、このような方法では十分満足
の行く性能が得られない上に、高価な磁性金属の消費量
が増え、歩留りが低下するという問題がある。その他に
も磁性材料や磁性層の厚さなど種々の観点から高周波記
録に対応し得る蒸着型の磁気記録媒体が検討されている
が、未だ十分なものは見出されていない。In order to achieve high-density recording, it is necessary to achieve a high C / N by using a high frequency, for example, a frequency of 20 MHz or more. Has dealt with it by making the magnetic layer multilayer. However, there is a problem that such a method does not provide sufficiently satisfactory performance, increases the consumption of expensive magnetic metal, and lowers the yield. In addition, vapor deposition type magnetic recording media capable of coping with high-frequency recording have been studied from various viewpoints such as the thickness of a magnetic material and the thickness of a magnetic layer, but no satisfactory magnetic recording medium has been found yet.
【0005】[0005]
【課題を解決するための手段】本発明者らは、上記のよ
うな状況に鑑み鋭意研究した結果、磁性層における保磁
力のばらつきの程度を示すSFD(switching field dis
tribution)値がC/N特性に大きな影響を及ぼすという
知見を得、更にSFD値のうち媒体長手方向のSFD値
が特定値以下のときにより望ましいC/N特性が得られ
ることを見出し、本発明を完成するに至った。Means for Solving the Problems The inventors of the present invention have conducted intensive studies in view of the above situation, and as a result, have found that the SFD (switching field distortion) indicating the degree of variation of the coercive force in the magnetic layer.
(distribution) value has a great influence on the C / N characteristics, and it has been found that more desirable C / N characteristics can be obtained when the SFD value in the longitudinal direction of the medium among the SFD values is equal to or less than a specific value. Was completed.
【0006】すなわち本発明は、支持体と、該支持体上
に真空成膜法により形成された金属薄膜型の磁性層とを
有する磁気記録媒体であって、長手方向のSFD(switc
hingfield distribution)値が0.8以下であること特
徴とする磁気記録媒体と、該磁気記録媒体と20MHz
以上の記録周波数を用いる磁気記録・再生システムを提
供するものである。That is, the present invention relates to a magnetic recording medium having a support and a metal thin-film type magnetic layer formed on the support by a vacuum film forming method, wherein the SFD (switc
(hingfield distribution) value is 0.8 or less, and said magnetic recording medium and 20 MHz
An object of the present invention is to provide a magnetic recording / reproducing system using the above recording frequencies.
【0007】[0007]
【発明の実施の形態】本発明の磁気記録媒体は、長手方
向のSFD値が0.8以下であり、0.7以下が好まし
い。このSFD値は、図1のような磁気ヒステリシスB
Hループにおいて、微分曲線の半値幅ΔHを微分曲線の
ピークにおける磁界(Hp)で割ったもの(SFD=Δ
H/Hp)である。DESCRIPTION OF THE PREFERRED EMBODIMENTS The magnetic recording medium of the present invention has a longitudinal SFD value of 0.8 or less, preferably 0.7 or less. This SFD value is equal to the magnetic hysteresis B as shown in FIG.
In the H loop, the half value width ΔH of the differential curve divided by the magnetic field (Hp) at the peak of the differential curve (SFD = Δ
H / Hp).
【0008】本発明のように、長手方向のSFD値が
0.8以下であると高いC/Nが得られる理由は明らか
でないが、次のように考えられる。すなわち、長手方向
のSFD値が0.8以下であると、保磁力のばらつきが
小さく、ノイズが低下すると共に、出力を阻害する因子
が低くなるため出力も増加し、結果としてC/Nが高く
なったためである。The reason why a high C / N is obtained when the SFD value in the longitudinal direction is 0.8 or less as in the present invention is not clear, but is considered as follows. That is, when the SFD value in the longitudinal direction is 0.8 or less, the variation in coercive force is small, the noise is reduced, and the factor that hinders the output is reduced, so that the output is increased. As a result, the C / N is increased. Because it became.
【0009】本発明の磁気記録媒体において、垂直方向
のSFD値が2.5以下、特に2.3以下であり、更に
長手方向のSFD値(a)と垂直方向のSFD値(b)
の比(a)/(b)が0.25以上、特に0.3以上で
あると、20MHzを超える記録周波数を用い、更には
ヘッドギャップ長が0.2μm未満の再生ヘッドを用い
る磁気記録・再生システムにおいてより良好なC/N特
性が得られる。なお、媒体の長手方向、垂直方向を、磁
気テープを例に図2に示した。In the magnetic recording medium of the present invention, the SFD value in the vertical direction is 2.5 or less, particularly 2.3 or less, and the SFD value in the longitudinal direction (a) and the SFD value in the vertical direction (b)
When the ratio (a) / (b) is 0.25 or more, particularly 0.3 or more, a magnetic recording / reproducing method using a recording frequency exceeding 20 MHz and further using a reproducing head having a head gap length of less than 0.2 μm. Better C / N characteristics can be obtained in the reproduction system. The longitudinal direction and the perpendicular direction of the medium are shown in FIG. 2 using a magnetic tape as an example.
【0010】SFD値は、対象となる磁気記録媒体の磁
気ヒステリシスBHループ(長手方向もしくは垂直方向
のもの)から容易に算出することができる。本発明にお
いて、SFD値を上記範囲とするには、いろいろな方法
が挙げられるが、いくつか例を挙げると、 1.真空蒸着法において、金属蒸気流の乱れを防ぐよう
コントロールする 2.スパッタ法において、フィルム(基材)を大きく傾
斜し、付着量をコントロールする などが挙げられる。現在市販されているHi−8用蒸着
テープ、DVC用蒸着テープ、データストレッチ用蒸着
テープなどの蒸着型磁気テープのSFD値は、長手方向
で0.95以上、垂直方向で2.7以上であり、これら
の値が適正値でないため、高域での高いC/Nが得られ
ていない。The SFD value can be easily calculated from the magnetic hysteresis BH loop (longitudinal or vertical) of the target magnetic recording medium. In the present invention, various methods can be used to adjust the SFD value to the above range. Some examples are as follows. 1. In vacuum evaporation, control to prevent disturbance of metal vapor flow. In the sputtering method, the film (substrate) is largely inclined to control the amount of adhesion. At present, the SFD values of vapor-deposited magnetic tapes such as a vapor deposition tape for Hi-8, a vapor deposition tape for DVC, and a vapor deposition tape for data stretching are 0.95 or more in the longitudinal direction and 2.7 or more in the vertical direction. Since these values are not proper values, a high C / N in a high frequency band is not obtained.
【0011】本発明の磁気記録媒体の磁性層は強磁性金
属薄膜型のものであり、通常の蒸着やスパッタ等の真空
成膜法により形成されるが、SFD値が本発明の範囲と
なるように成膜条件を調節する必要がある。金属薄膜型
の磁性層を形成する磁性材料としては、通常の金属薄膜
型の磁気記録媒体の製造に用いられる強磁性金属材料が
挙げられ、例えばCo、Ni、Fe等の強磁性金属、ま
た、Fe−Co、Fe−Ni、Co−Ni、Fe−Co
−Ni、Fe−Cu、Co−Cu、Co−Au、Co−
Y、Co−La、Co−Pr、Co−Gd、Co−S
m、Co−Pt、Ni−Cu、Mn−Bi、Mn−S
b、Mn−Al、Fe−Cr、Co−Cr、Ni−C
r、Fe−Co−Cr、Ni−Co−Cr等の強磁性合
金が挙げられる。また、蒸着中に酸素、窒素、二酸化炭
素等のガスやこれらの混合ガスをイオン化して照射す
る、いわゆるイオンアシストによる蒸着法により酸化物
系、窒素化物系、炭化物系の磁性膜を形成してもよい。The magnetic layer of the magnetic recording medium of the present invention is of a ferromagnetic metal thin film type, and is formed by a normal vacuum film forming method such as vapor deposition or sputtering, so that the SFD value falls within the range of the present invention. It is necessary to adjust the film forming conditions. Examples of the magnetic material for forming the metal thin film type magnetic layer include ferromagnetic metal materials used in the manufacture of ordinary metal thin film type magnetic recording media, for example, ferromagnetic metals such as Co, Ni, and Fe, Fe-Co, Fe-Ni, Co-Ni, Fe-Co
-Ni, Fe-Cu, Co-Cu, Co-Au, Co-
Y, Co-La, Co-Pr, Co-Gd, Co-S
m, Co-Pt, Ni-Cu, Mn-Bi, Mn-S
b, Mn-Al, Fe-Cr, Co-Cr, Ni-C
and ferromagnetic alloys such as r-Fe-Co-Cr and Ni-Co-Cr. Oxide, nitrogen, and carbide magnetic films are formed by a so-called ion-assisted deposition method in which a gas such as oxygen, nitrogen, or carbon dioxide or a mixed gas thereof is ionized and irradiated during deposition. Is also good.
【0012】高密度記録のためには磁性層は、斜め蒸着
又はスパッタにより支持体上に形成することが好まし
い。斜め蒸着の方法は特に限定されず、従来公知の方法
に準ずる。蒸着の際の真空度は10-4〜10-7Torr
程度である。また、スパッタ法を用いる場合の真空度は
10-2〜10-5Torr程度である。蒸着による磁性層
は単層構造でも多層構造の何れでも良く、特に、酸素な
どの酸化性ガスを導入して磁性層表面に酸化物を形成す
ることにより、耐久性の向上を図ることができる。磁性
層の厚さは限定しないが、50〜500nmが好まし
く、特に80〜300nmが好ましい。また磁性層は一
層でも多層構造でもよい。For high-density recording, the magnetic layer is preferably formed on a support by oblique evaporation or sputtering. The method for oblique deposition is not particularly limited, and follows a conventionally known method. The degree of vacuum at the time of vapor deposition is 10 -4 to 10 -7 Torr
It is about. The degree of vacuum when using the sputtering method is about 10 −2 to 10 −5 Torr. The magnetic layer formed by vapor deposition may have either a single layer structure or a multilayer structure. In particular, by introducing an oxidizing gas such as oxygen to form an oxide on the surface of the magnetic layer, the durability can be improved. The thickness of the magnetic layer is not limited, but is preferably from 50 to 500 nm, particularly preferably from 80 to 300 nm. The magnetic layer may have a single layer or a multilayer structure.
【0013】磁性層上には厚さが1〜50nmの保護膜
が設けられる。保護膜を構成する材料として、炭素系薄
膜、Al等の金属の酸化物、窒化物、あるいは炭化物な
どの他、SiC等、及びそれを含む化合物などが考えら
れる。特に、ダイヤモンドライクカーボンからなる保護
膜が好ましい。A protective film having a thickness of 1 to 50 nm is provided on the magnetic layer. Examples of the material constituting the protective film include carbon-based thin films, oxides, nitrides, and carbides of metals such as Al, as well as SiC and compounds containing the same. In particular, a protective film made of diamond-like carbon is preferable.
【0014】磁性層もしくは保護膜の表面には、潤滑
剤、特にパーフルオロポリエーテル等のフッ素系潤滑剤
からなる厚さが0.5〜5nmの潤滑層が設けられる。
潤滑剤としては、例えばカルボキシル基変性パーフルオ
ロポリエーテル、アルコール変性パーフルオロポリエー
テルが挙げられ、その分子量は500〜50000のも
のが好ましい。具体的には、モンテカチーニ社の商品名
FOMBLIN Z DIACやFOMBLIN Z
DOL、ダイキン工業社の商品名デムナムSA等があ
る。更に、フッ化アルキル基とアルキル基もしくはアル
ケニル基とを有する化合物なども使用できる。本発明の
磁気記録媒体を構成する支持体は、磁性あるいは非磁性
いずれのものでも良い。一般的には非磁性である。支持
体としては、ポリエチレンテレフタレート(PET)、
ポリエチレンナフタレート(PEN)等のポリエステ
ル、ポリアミド、ポリイミド、ポリスルフォン、ポリカ
ーボネート、ポリプロピレン等のオレフィン系の樹脂、
セルロース系の樹脂、塩化ビニル系の樹脂等の有機材料
(樹脂)が用いられる。支持体の厚さとしては1〜30
0μm、特に1〜10μmが好ましい。尚、支持体の表
面には、磁性層との密着性を向上させる為のアンダーコ
ート層が適宜設けられる。On the surface of the magnetic layer or the protective film, there is provided a lubricating layer having a thickness of 0.5 to 5 nm made of a lubricating agent, particularly a fluorine-based lubricating agent such as perfluoropolyether.
Examples of the lubricant include carboxyl group-modified perfluoropolyether and alcohol-modified perfluoropolyether, and those having a molecular weight of 500 to 50,000 are preferable. More specifically, FOMBLIN Z DIAC or FOMBLIN Z trade name of Montecatini Co., Ltd.
DOL, Daikin Industries' trade name Demnum SA, and the like. Further, compounds having a fluorinated alkyl group and an alkyl group or an alkenyl group can also be used. The support constituting the magnetic recording medium of the present invention may be either magnetic or non-magnetic. Generally, it is non-magnetic. As the support, polyethylene terephthalate (PET),
Polyesters such as polyethylene naphthalate (PEN), olefinic resins such as polyamide, polyimide, polysulfone, polycarbonate, and polypropylene;
An organic material (resin) such as a cellulose resin and a vinyl chloride resin is used. The thickness of the support is 1 to 30
0 μm, particularly preferably 1 to 10 μm. Incidentally, an undercoat layer for improving the adhesion to the magnetic layer is appropriately provided on the surface of the support.
【0015】支持体の他面(裏面)には、バックコート
膜が設けられる。例えば、蒸着法、直流スパッタ法、交
流スパッタ法、高周波スパッタ法、直流マグネトロンス
パッタ法、高周波マグネトロンスパッタ法、イオンビー
ムスパッタ法などのメッキ手段によりバックコート膜が
設けられる。又、カーボンブラック及びバインダを含有
する塗料を塗布することによってバックコート膜を設け
ることもできる。On the other surface (back surface) of the support, a back coat film is provided. For example, the back coat film is provided by a plating method such as a vapor deposition method, a DC sputtering method, an AC sputtering method, a high-frequency sputtering method, a DC magnetron sputtering method, a high-frequency magnetron sputtering method, and an ion beam sputtering method. Further, a back coat film can be provided by applying a paint containing carbon black and a binder.
【0016】[0016]
【実施例】以下実施例にて本発明を説明するが、本発明
はこれらの実施例に限定されるものではない。EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.
【0017】実施例1 (1)磁気テープの製造 Co−Pt−Ni−Cr−B(82:5:5:3、原子
比)のターゲットを用い、RFマグネトロンスパッタ装
置を用い、アルゴンと窒素(90:10、体積比)の混
合ガス中で、真空度5×10-3Torrで、厚さ4.3
μmのポリアミドフィルム上に、厚さ0.15μmの磁
性層を連続的に成膜した。フィルムの走行速度は2.5
m/分、スパッタ出力4kWとし、フィルムはターゲッ
トに対して、走行方向を基準に、23°傾斜させた。Example 1 (1) Production of magnetic tape Using a target of Co-Pt-Ni-Cr-B (82: 5: 5: 3, atomic ratio), using an RF magnetron sputtering apparatus, argon and nitrogen ( 90:10, volume ratio), at a degree of vacuum of 5 × 10 −3 Torr and a thickness of 4.3.
A magnetic layer having a thickness of 0.15 μm was continuously formed on a μm polyamide film. The running speed of the film is 2.5
m / min, the sputter output was 4 kW, and the film was inclined by 23 ° with respect to the target with respect to the running direction.
【0018】次いで、磁性層上にECRプラズマCVD
法により厚さが0.01μm、ダイヤモンドライクカー
ボン薄膜からなる保護層を形成した。更に、この保護層
上にパーフルオロポリエーテル〔商品名デムナムSA:
ダイキン工業製〕を厚さが0.002μmとなるように
付着して潤滑層を形成した。また、このフィルムの磁性
層形成面と反対の面に、カーボンブラックと結合剤を含
有する塗料を厚さ0.5μm(乾燥厚)となるように塗
布してバックコート層を形成した。Next, ECR plasma CVD is performed on the magnetic layer.
A protective layer made of a diamond-like carbon thin film having a thickness of 0.01 μm was formed by the method. Further, a perfluoropolyether [trade name: Demnum SA:
(Manufactured by Daikin Industries, Ltd.) to a thickness of 0.002 μm to form a lubricating layer. A coating containing carbon black and a binder was applied on the surface of the film opposite to the surface on which the magnetic layer was formed to a thickness of 0.5 μm (dry thickness) to form a back coat layer.
【0019】上記により得られた、磁性層、保護層、潤
滑層及びバックコート層が形成されたフィルムを8mm
巾に裁断し、カセットケースにローディングしHi−8
型のビデオテープを得た。The film obtained above on which the magnetic layer, protective layer, lubricating layer and back coat layer are formed is 8 mm thick.
Cut to width, load into cassette case and Hi-8
A videotape of the type was obtained.
【0020】(2)性能評価 上記で得られたビデオテープについて、SFD値、C/
N特性を以下の方法で評価した。また、その結果を表1
に示す。(2) Performance evaluation The SFD value, C / C
The N characteristics were evaluated by the following method. Table 1 shows the results.
Shown in
【0021】・SFD値の測定法 ビデオテープの長手方向、垂直方向のSFD値を、試料
振動型磁力計〔理研電子株式会社製、model BH
V−50(VSM−MH測定システム、微分演算機能付
き)〕を用いて算出した。最大外部磁界は10kOe印
加して測定を行った。Measurement method of SFD value The SFD value in the longitudinal direction and the vertical direction of the video tape was measured using a sample vibration type magnetometer [model BH manufactured by Riken Denshi Co., Ltd.
V-50 (VSM-MH measurement system, with differential calculation function)]. The maximum external magnetic field was measured by applying 10 kOe.
【0022】・C/Nの測定法 市販のHi8VTRドライブを改造した評価機を用いて
発信器から正弦波信号を2MHzから30MHzまで表
1のように入力し、次いでスペクトルアナライザーを用
いて、表1に示す各ヘッドギャップ長の再生ヘッドで再
生したときの出力を測定し、これをCとする。次いで、
測定した出力Cに対して、1MHz低い周波数のノイズ
レベルを測定し、これをNとする。C/Nはこの比であ
る。表1には、比較例1のC/Nを基準(0dB)とす
る相対値を示した。C / N measurement method A sine wave signal from a transmitter is input as shown in Table 1 from a transmitter using an evaluator modified from a commercially available Hi8 VTR drive as shown in Table 1, and then a spectrum analyzer is used to input a sine wave signal as shown in Table 1. The output at the time of reproducing with the reproducing head of each head gap length shown in FIG. Then
With respect to the measured output C, a noise level at a frequency lower by 1 MHz is measured, and this is set to N. C / N is this ratio. Table 1 shows relative values based on C / N of Comparative Example 1 as a reference (0 dB).
【0023】実施例2 実施例1において、スパッタ出力を2.8kW、真空度
を9×10-3Torrとし、フィルムはターゲットに対
して、走行方向を基準に、13°傾斜させた。それ以外
は実施例1と同様にしてビデオテープを作製し、実施例
1と同様の評価を行なった。その結果を表1に示す。Example 2 In Example 1, the sputter output was 2.8 kW, the degree of vacuum was 9 × 10 −3 Torr, and the film was inclined by 13 ° with respect to the target with respect to the running direction. Otherwise, a video tape was produced in the same manner as in Example 1, and the same evaluation as in Example 1 was performed. Table 1 shows the results.
【0024】比較例1 実施例1において、フィルムを−40℃に冷却し、スパ
ッタ出力を1.6kW、真空度を3×10-2Torrと
し、フィルムはターゲットに対して、走行方向を基準
に、4°傾斜させた。それ以外は実施例1と同様にして
ビデオテープを作製し、実施例1と同様の評価を行なっ
た。その結果を表1に示す。Comparative Example 1 In Example 1, the film was cooled to -40 ° C., the sputter output was set to 1.6 kW, the degree of vacuum was set to 3 × 10 −2 Torr, and the film was moved with respect to the target based on the running direction. , 4 °. Otherwise, a video tape was produced in the same manner as in Example 1, and the same evaluation as in Example 1 was performed. Table 1 shows the results.
【0025】実施例3 真空蒸着法により、厚さ6.3μmのPETフィルム上
に厚さ150nmの強磁性金属薄膜型の磁性層を形成し
た。このときの蒸着源はCo、Cr、Siであり、3つ
の電子銃を用いて酸素を通気しながら450nm/分の
成膜レートで蒸着した。また、成膜時にはフィルムを−
3℃に冷却した。磁性層の組成をオージェ電子分光法に
より測定したところ、Co、Cr、Si、Oの比率は、
それぞれ、60原子%、16原子%、3原子%、11原
子%であった。次いで、実施例1と同様に保護層、潤滑
層、バックコート層を形成し、ビデオテープを得、実施
例1と同様の評価を行なった。その結果を表1に示す
が、評価は比較例2を基準(0dB)とする相対値で示
した。Example 3 A ferromagnetic metal thin film type magnetic layer having a thickness of 150 nm was formed on a PET film having a thickness of 6.3 μm by a vacuum evaporation method. The deposition sources at this time were Co, Cr, and Si, and vapor deposition was performed at a deposition rate of 450 nm / min while oxygen was passed using three electron guns. Also, when forming the film,
Cooled to 3 ° C. When the composition of the magnetic layer was measured by Auger electron spectroscopy, the ratio of Co, Cr, Si, and O was
They were 60 at%, 16 at%, 3 at%, and 11 at%, respectively. Next, a protective layer, a lubricating layer, and a back coat layer were formed in the same manner as in Example 1, a video tape was obtained, and the same evaluation as in Example 1 was performed. The results are shown in Table 1, and the evaluation was shown as a relative value using Comparative Example 2 as a reference (0 dB).
【0026】比較例2 実施例3において、フィルムの冷却温度を−35℃とし
た以外は同様にしてビデオテープを得、実施例1と同様
の評価を行なった。その結果を表1に示す。Comparative Example 2 A video tape was obtained in the same manner as in Example 3 except that the cooling temperature of the film was -35 ° C., and the same evaluation as in Example 1 was performed. Table 1 shows the results.
【0027】[0027]
【表1】 [Table 1]
【0028】[0028]
【発明の効果】本発明によれば、特に20MHzを超え
る記録周波数を用いる磁気記録・再生システムにおいて
優れたC/N特性を示す金属薄膜型の磁気記録媒体が得
られる。According to the present invention, it is possible to obtain a metal thin film type magnetic recording medium exhibiting excellent C / N characteristics particularly in a magnetic recording / reproducing system using a recording frequency exceeding 20 MHz.
【図1】SFD値の測定方法を示す概念図である。FIG. 1 is a conceptual diagram showing a method for measuring an SFD value.
【図2】磁気テープの長手方向、垂直方向を示す概略図
である。FIG. 2 is a schematic view showing a longitudinal direction and a vertical direction of a magnetic tape.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮村 猛史 栃木県芳賀郡市貝町赤羽2606 花王株式 会社研究所内 (72)発明者 永井 智 栃木県芳賀郡市貝町赤羽2606 花王株式 会社研究所内 (56)参考文献 特開 平8−171716(JP,A) 特開 平9−97413(JP,A) (58)調査した分野(Int.Cl.7,DB名) G11B 5/66 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Takeshi Miyamura 2606 Kabane-cho, Akaga-cho, Haga-gun, Tochigi Prefecture Inside Kao Co., Ltd. References JP-A-8-171716 (JP, A) JP-A-9-97413 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G11B 5/66
Claims (6)
り形成された金属薄膜型の磁性層とを有する磁気記録媒
体であって、長手方向のSFD(switching field distr
ibution)値が0.8以下であり、垂直方向のSFD値が
2.5以下であること特徴とする磁気記録媒体。1. A magnetic recording medium comprising a support and a metal thin-film type magnetic layer formed on the support by a vacuum film forming method, wherein the magnetic recording medium has a longitudinal switching field distance (SFD).
Ibution) value Ri der 0.8, SFD value in the vertical direction
2.5 The magnetic recording medium according to der Rukoto features below.
り形成された金属薄膜型の磁性層とを有する磁気記録媒
体であって、長手方向のSFD(switching field distr
ibution)値が0.8以下であり、長手方向のSFD値
(a)と垂直方向のSFD値(b)の比(a)/(b)
が0.25以上であること特徴とする磁気記録媒体。2. A support and a vacuum film forming method on the support.
Recording medium having a thin metal film type magnetic layer formed
The body and the longitudinal SFD (switching field distr
ibution) value is 0.8 or less, SFD value in the longitudinal direction
Ratio (a) / (b) between (a) and SFD value (b) in the vertical direction
Is 0.25 or more .
り形成された金属薄膜型の磁性層とを有する磁気記録媒
体であって、長手方向のSFD(switching field distr
ibution)値が0.8以下であり、垂直方向のSFD値が
2.5以下でり、長手方向のSFD値(a)と垂直方向
のSFD値(b)の比(a)/(b)が0.25以上で
あること特徴とする磁気記録媒体。3. A support and a vacuum film forming method on the support.
Recording medium having a thin metal film type magnetic layer formed
The body and the longitudinal SFD (switching field distr
ibution) value is 0.8 or less and the vertical SFD value is
2.5 or less, the SFD value (a) in the longitudinal direction and the vertical direction
The ratio (a) / (b) of the SFD value (b) is 0.25 or more
A magnetic recording medium according to claim 1.
〜3の何れか1項記載の磁気記録媒体。4. The method according to claim 1, wherein the vacuum film forming method is a vacuum evaporation method.
The magnetic recording medium according to any one of claims 1 to 3, wherein
録媒体と、20MHz以上の記録周波数を用いる磁気記
録・再生システム。5. A magnetic recording / reproducing system using the magnetic recording medium according to claim 1 and a recording frequency of 20 MHz or more.
ップ長が0.2μm未満である請求項5記載の磁気記録
・再生システム。6. The magnetic recording / reproducing system according to claim 5, wherein the head gap length of the reproducing head of the system is less than 0.2 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5208398A JP2999446B2 (en) | 1998-03-04 | 1998-03-04 | Magnetic recording medium and magnetic recording / reproducing system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5208398A JP2999446B2 (en) | 1998-03-04 | 1998-03-04 | Magnetic recording medium and magnetic recording / reproducing system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11250437A JPH11250437A (en) | 1999-09-17 |
JP2999446B2 true JP2999446B2 (en) | 2000-01-17 |
Family
ID=12904942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5208398A Expired - Lifetime JP2999446B2 (en) | 1998-03-04 | 1998-03-04 | Magnetic recording medium and magnetic recording / reproducing system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2999446B2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7132192B2 (en) * | 2019-08-09 | 2022-09-06 | 富士フイルム株式会社 | Magnetic recording medium and magnetic recording/reproducing device |
JP7441963B2 (en) * | 2020-09-30 | 2024-03-01 | 富士フイルム株式会社 | Magnetic recording media, magnetic tape cartridges, and magnetic recording and reproducing devices |
US11869552B2 (en) | 2021-09-29 | 2024-01-09 | Fujifilm Corporation | Magnetic tape, magnetic tape cartridge, and magnetic tape device |
US11869557B2 (en) | 2021-09-29 | 2024-01-09 | Fujifilm Corporation | Magnetic tape having characterized magnetic layer surface, magnetic tape cartridge, and magnetic tape device |
US11887637B2 (en) | 2021-09-29 | 2024-01-30 | Fujifilm Corporation | Magnetic tape having characterized magnetic layer surface, magnetic tape cartridge, and magnetic tape device |
US11900977B2 (en) | 2021-09-29 | 2024-02-13 | Fujifilm Corporation | Magnetic tape having characterized magnetic layer surface, magnetic tape cartridge, and magnetic tape device |
US11854586B2 (en) | 2021-09-29 | 2023-12-26 | Fujifilm Corporation | Magnetic tape having characterized magnetic layer surface, magnetic tape cartridge, and magnetic tape device |
US11869553B2 (en) | 2021-09-29 | 2024-01-09 | Fujifilm Corporation | Magnetic tape having characterized magnetic layer surface, magnetic tape cartridge, and magnetic tape device |
JP2023049190A (en) * | 2021-09-29 | 2023-04-10 | 富士フイルム株式会社 | Magnetic tape, magnetic tape cartridge, and magnetic tape device |
US11869558B2 (en) | 2021-09-29 | 2024-01-09 | Fujifilm Corporation | Magnetic tape having characterized magnetic layer surface, magnetic tape cartridge, and magnetic tape device |
JP2023049189A (en) * | 2021-09-29 | 2023-04-10 | 富士フイルム株式会社 | Magnetic tape, magnetic tape cartridge, and magnetic tape device |
JP2023050108A (en) | 2021-09-29 | 2023-04-10 | 富士フイルム株式会社 | Magnetic tape, magnetic tape cartridge, and magnetic tape device |
-
1998
- 1998-03-04 JP JP5208398A patent/JP2999446B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH11250437A (en) | 1999-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2999446B2 (en) | Magnetic recording medium and magnetic recording / reproducing system | |
US5798135A (en) | Method for producing a magnetic recording medium having a carbon protective layer | |
EP0573026B1 (en) | Magnetic recording medium and method for producing the same | |
US4604293A (en) | Process for producing magnetic recording medium | |
JP2004046928A (en) | Magnetic recording medium | |
JP3080722B2 (en) | Magnetic recording medium and method of manufacturing the same | |
JPH11250436A (en) | Magnetic recording medium | |
EP0444571B1 (en) | Magnetic transfer system | |
EP0583722A1 (en) | Magnetic recording medium and method for producing the same | |
JP2756241B2 (en) | Magnetic recording media | |
JPH0341898B2 (en) | ||
JPH08273140A (en) | Perpendicular magnetic recording medium and its production | |
JP4219444B2 (en) | Magnetic recording medium and support thereof | |
JPH10334441A (en) | Magnetic recording medium | |
JPH1074319A (en) | Manufacture of magnetic recording medium and manufacturing device therefor | |
JP3491778B2 (en) | Magnetic recording media | |
JPH09212844A (en) | Magnetic recording medium | |
JP2004039195A (en) | Magnetic recording medium | |
JPH08315347A (en) | Thin film perpendicular magnetic recording medium | |
JPH09204628A (en) | Magnetic recording medium | |
JP2005339648A (en) | Magnetic recording medium | |
JP2004039078A (en) | Magnetic recording medium | |
JPH103639A (en) | Magnetic recording medium | |
JPH097157A (en) | Magnetic recording medium | |
JPH0954938A (en) | Magnetic recording medium |