JP2998584B2 - Antibacterial fiber or fiber product and its manufacturing method - Google Patents

Antibacterial fiber or fiber product and its manufacturing method

Info

Publication number
JP2998584B2
JP2998584B2 JP1939195A JP1939195A JP2998584B2 JP 2998584 B2 JP2998584 B2 JP 2998584B2 JP 1939195 A JP1939195 A JP 1939195A JP 1939195 A JP1939195 A JP 1939195A JP 2998584 B2 JP2998584 B2 JP 2998584B2
Authority
JP
Japan
Prior art keywords
fiber
fine particles
antibacterial
silver
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1939195A
Other languages
Japanese (ja)
Other versions
JPH08209531A (en
Inventor
伸治 菅
貴明 酒井
弘喜 肥後橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP1939195A priority Critical patent/JP2998584B2/en
Publication of JPH08209531A publication Critical patent/JPH08209531A/en
Application granted granted Critical
Publication of JP2998584B2 publication Critical patent/JP2998584B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は繊維表面に抗菌性金属又
は金属化合物微粒子が強固に固着した抗菌性繊維材料に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antimicrobial fiber material in which fine particles of an antimicrobial metal or metal compound are firmly fixed on the fiber surface.

【0002】[0002]

【従来の技術】従来の抗菌性を有する有機高分子材料
は、金属または金属イオンを無機担体に担持した抗菌剤
を有機高分子材料に混練したもの(例えば、特開平4−
254412号公報、特開平4−300302号公報、
特開平4−321628号公報)がある。あるいは有機
高分子材料に水性金属あるいは金属化合物ゾルを高濃度
に含浸したもの(例えば、特開昭64−68478号公
報)がある。
2. Description of the Related Art Conventionally, an organic polymer material having antibacterial properties is obtained by kneading an organic polymer material with an antibacterial agent having a metal or metal ion supported on an inorganic carrier (for example, Japanese Patent Application Laid-Open No.
254412, JP-A-4-300302,
JP-A-4-321628). Alternatively, there is an organic polymer material in which an aqueous metal or metal compound sol is impregnated at a high concentration (for example, JP-A-64-68478).

【0003】[0003]

【発明が解決しようとする課題】従来の合成繊維では直
径 0.5μmの無機イオン交換体に銀イオンを固定化した
抗菌性粉末を原料に混合した後、これを溶融後紡糸して
抗菌性繊維を得る方法が取られている。天然繊維または
再生繊維の場合には、合成繊維の様な練り込み型の抗菌
処理が不可能である。上記合成繊維の抗菌繊維と天然繊
維を混紡とすることにより、ある程度抗菌性を持たせる
ことは可能だが 100%天然繊維には適用できない。従っ
て、天然繊維または再生繊維に抗菌性を付与するには、
抗菌剤を塗布する等の表面処理が必要である。一般に抗
菌剤は有機系抗菌剤と無機系抗菌剤に大別される。有機
系抗菌剤は安全性に問題があるものも少なくない。ま
た、繊維製造工程の熱処理で該有機系抗菌剤の熱分解温
度あるいは沸点以上での熱処理が行なわれる場合には実
用に耐えない。近年、熱安定性のよい銀イオン系の無機
イオン交換体が上市されているが、機械的粉砕では 0.5
μm程度が限界である。該無機イオン交換体を使用した
際には繊維の風合いを損なう事を免れえない。更に塗布
の際に均一に分散するには十分とは言えない。更に、使
用条件によっては光により変色する場合もある。本発明
の目的は、以上の問題点を解決するためのものであっ
て、すなわち粒子径 500nm以下の抗菌性金属又は金属化
合物微粒子を用いることにより、該微粒子が均一に分布
し、該抗菌性金属又は金属化合物の使用量を最小限にで
き、併せて抗菌活性を阻害することのない高分子重合体
により強固に該微粒子が保持された抗菌性繊維又は繊維
製品が得られることを見いだした。
In a conventional synthetic fiber, an antibacterial powder in which silver ions are immobilized on an inorganic ion exchanger having a diameter of 0.5 μm is mixed with a raw material, which is then melted and spun to obtain an antibacterial fiber. The way to get is taken. In the case of natural fibers or regenerated fibers, kneading-type antibacterial treatment like synthetic fibers is impossible. By blending the above synthetic fiber antibacterial fiber and natural fiber, it is possible to impart antibacterial properties to some extent, but it cannot be applied to 100% natural fiber. Therefore, to impart antibacterial properties to natural or regenerated fibers,
Surface treatment such as applying an antibacterial agent is required. Generally, antibacterial agents are roughly classified into organic antibacterial agents and inorganic antibacterial agents. Many organic antibacterial agents have safety problems. Further, when the heat treatment in the fiber production process is performed at a temperature higher than the thermal decomposition temperature or the boiling point of the organic antibacterial agent, it is not practical. In recent years, silver ion-based inorganic ion exchangers with good thermal stability have been put on the market.
The limit is about μm. When the inorganic ion exchanger is used, it is inevitable that the texture of the fiber is impaired. Furthermore, it cannot be said that it is sufficient to uniformly disperse the particles during coating. Further, the color may be changed by light depending on use conditions. An object of the present invention is to solve the above problems, that is, by using antimicrobial metal or metal compound fine particles having a particle diameter of 500 nm or less, the fine particles are uniformly distributed, and the antimicrobial metal Alternatively, it has been found that the amount of the metal compound used can be minimized, and at the same time, an antibacterial fiber or a fiber product in which the fine particles are firmly retained by a high molecular polymer which does not inhibit the antibacterial activity can be obtained.

【0004】[0004]

【課題を解決するための手段】本発明は、粒子径 500nm
以下の抗菌性を有する金属又は金属化合物の微粒子を含
有する高分子重合体を保持せしめたことを特徴とする抗
菌性を有する繊維又は繊維製品であり、また粒子径 500
nm以下の抗菌性を有する金属又は金属化合物の微粒子を
含有する高分子重合体の前駆体に繊維又は繊維製品を浸
漬した後乾燥するか、又は該前駆体を繊維又は繊維製品
に噴霧した後乾燥することを特徴とする抗菌性を有する
繊維又は繊維製品の製法である。
Means for Solving the Problems The present invention has a particle diameter of 500 nm.
A fiber or a fiber product having antibacterial properties characterized by holding a polymer containing fine particles of a metal or a metal compound having antibacterial properties, and a particle size of 500
Drying after immersing the fiber or fiber product in a precursor of a high molecular polymer containing fine particles of a metal or a metal compound having antimicrobial properties of nm or less, or drying after spraying the precursor on the fiber or fiber product And a method for producing a fiber or a fiber product having antibacterial properties.

【0005】本発明における抗菌性を有する金属又は金
属化合物微粒子は、粒子径が 500nm以下、好ましくは 2
00nm以下、更に好ましくは 100nm〜 0.5nmのものが用い
られ、金属、金属化合物の例としては銀、銅、ハロゲン
化銀、酸化銀、硫化銀、酸化銅、亜酸化銅、硫化銅など
が挙げられ、これらの1種又は2種以上の混合微粒子が
用いられる。抗菌性を有する微粒子の粒子径が 500nmを
越えると繊維又は繊維製品の表面積当たりの微粒子個数
が少なくなり、抗菌性が低下する。
The metal or metal compound fine particles having antibacterial properties according to the present invention have a particle diameter of 500 nm or less, preferably 2 nm or less.
100 nm or less, more preferably 100 nm ~ 0.5 nm is used, examples of metals, metal compounds include silver, copper, silver halide, silver oxide, silver sulfide, copper oxide, cuprous oxide, copper sulfide and the like And one or more of these mixed fine particles are used. When the particle size of the fine particles having antibacterial properties exceeds 500 nm, the number of fine particles per surface area of the fiber or the fiber product decreases, and the antibacterial properties decrease.

【0006】本発明に用いられる繊維は何でもよく、天
然繊維、再生繊維、合成繊維等があり、具体的には天然
繊維としては綿、カポック、亜麻、大麻、ラミー、ジュ
ート、マニラ麻、サイザル麻、ヤシ、ビンロウジュ、羊
毛、アルパカ、カシミヤ、モヘヤ、絹等が挙げられる。
また、再生繊維としてはレーヨン、キュプラ等が挙げら
れる。合成繊維としてはナイロン、ポリエステル、アク
リル、アセテート、ポリプロピレン等が挙げられる。ま
た、繊維製品とは、これら繊維を少なくとも1種以上含
む織物、編み物もしくは不織布等をいう。
[0006] The fiber used in the present invention may be any kind of natural fiber, regenerated fiber, synthetic fiber and the like. Specifically, natural fibers include cotton, kapok, flax, hemp, ramie, jute, manila hemp, sisal hemp, and the like. Palm, areca, wool, alpaca, cashmere, mohair, silk and the like.
Rayon, cupra, and the like are examples of the regenerated fiber. Examples of the synthetic fibers include nylon, polyester, acrylic, acetate, and polypropylene. In addition, a fiber product refers to a woven fabric, a knitted fabric, a nonwoven fabric, or the like containing at least one kind of these fibers.

【0007】本発明における高分子重合体とは天然、合
成を問わない。微粒子の抗菌活性を阻害せず、繊維の風
合いを低下させないものであれば特に制限はない。例え
ば、熱硬化性樹脂としては、フェノール樹脂、エポキシ
樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ユリア
樹脂、メラミン樹脂、ウレタン樹脂、シリコーン樹脂、
ジアリルフタレート樹脂などがあり、熱加塑性樹脂とし
てはポリエチレン、ポリプロピレン、ポリスチレン、ポ
リ塩化ビニル、ポリ塩化ビニリデン等のポリオレフィ
ン、及びポリ酢酸ビニル、ポリビニールアルコール、ポ
リビニルアセタール、ポリメチルメタクリレート、ポリ
アクリルアミド、ポリエーテル、ポリアクリロニトリ
ル、ポリフルオロエチレン、ポリエーテル、ポリカーボ
ネート、ナイロン、ポリイミド、ポリアミド、ポリスル
ホン、ABS樹脂、AS樹脂等が挙げられる。また、こ
れらの熱可塑性重合体及び熱硬化性重合体の組み合わせ
で用いても良く、上記重合体の主鎖を構成要素とする共
重合高分子重合体を用いても良い。また、高分子重合体
の前駆体とは媒体が液体のものであり、水系エマルショ
ン(高分子重合体分散体)、水溶性高分子重合体を含有
した水溶液、非水系エマルション(高分子重合体分散
体)、非水溶媒に溶解する高分子重合体を含有した非水
溶液などが挙げられる。
The high-molecular polymer in the present invention may be natural or synthetic. There is no particular limitation as long as the antibacterial activity of the fine particles is not inhibited and the texture of the fiber is not reduced. For example, as thermosetting resins, phenolic resins, epoxy resins, unsaturated polyester resins, alkyd resins, urea resins, melamine resins, urethane resins, silicone resins,
There are diallyl phthalate resin and the like, and as thermoplastic resin, polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyolefin such as polyvinylidene chloride, and polyvinyl acetate, polyvinyl alcohol, polyvinyl acetal, polymethyl methacrylate, polyacrylamide, polyacrylamide Examples include ether, polyacrylonitrile, polyfluoroethylene, polyether, polycarbonate, nylon, polyimide, polyamide, polysulfone, ABS resin, and AS resin. Further, a combination of these thermoplastic polymers and thermosetting polymers may be used, or a copolymer having a main chain of the above-mentioned polymer as a component may be used. The precursor of a high molecular polymer is a liquid medium, and is an aqueous emulsion (high molecular polymer dispersion), an aqueous solution containing a water-soluble high polymer, and a non-aqueous emulsion (high polymer dispersion). And a non-aqueous solution containing a high molecular polymer soluble in a non-aqueous solvent.

【0008】上記前駆体中の高分子重合体の濃度は 0.0
01〜40重量%、好ましくは 0.001〜10重量%である。繊
維又は繊維製品への高分子重合体の保持方法及び保持量
により最適濃度が選択されるが、40重量%を越えると均
一な保持が困難となる。また前駆体に配合される抗菌性
微粒子の量は高分子重合体に対して重量比で 1〜 20,00
0ppm、好ましくは 1〜5,000ppmである。 20,000ppmを越
えると微粒子が塊となり抗菌性は飽和し経済性に乏し
い。
[0008] The concentration of the high polymer in the precursor is 0.0
It is from 0.01 to 40% by weight, preferably from 0.001 to 10% by weight. The optimum concentration is selected depending on the method and amount of holding the high-molecular polymer on the fiber or fiber product, but if it exceeds 40% by weight, uniform holding becomes difficult. The amount of the antimicrobial fine particles to be mixed with the precursor is 1 to 20,00 by weight ratio with respect to the polymer.
0 ppm, preferably 1 to 5,000 ppm. If it exceeds 20,000 ppm, the fine particles will be agglomerated and the antibacterial property will be saturated, and the economic efficiency will be poor.

【0009】本発明の製造方法としては種々の手法が取
りうる。例えば繊維又は繊維製品を抗菌性微粒子を含有
する高分子重合体の前駆体に浸漬し、乾燥、必要に応じ
て熱処理を施す浸漬法や繊維又は繊維製品に抗菌性微粒
子を含有する高分子重合体の前駆体を噴霧し乾燥後、必
要に応じて熱処理を施す噴霧法等既存の製造手法を組み
合わせて製造が可能である。
Various methods can be adopted as the manufacturing method of the present invention. For example, a dipping method in which fibers or textile products are immersed in a precursor of a high molecular polymer containing antimicrobial fine particles, dried, and optionally subjected to a heat treatment, or a high molecular polymer containing antimicrobial fine particles in fibers or fiber products It can be manufactured by combining existing manufacturing methods such as a spraying method in which the precursor is sprayed, dried and then heat-treated as necessary.

【0010】抗菌性微粒子の保持量は、繊維又は繊維製
品に対して重量比で 0.1〜400ppm、好ましくは 0.1〜10
0ppmである。保持量が400ppmを越えると微粒子が塊とな
り抗菌性は飽和し経済性に乏しい。高分子重合体の保持
量は、繊維又は繊維製品に対して重量比で0.01〜20重量
%の範囲で選ばれる。高分子重合体は抗菌性微粒子を繊
維又は繊維製品の表面に強固に固着せしめる機能を有す
るが、保持量が20重量%を越えると繊維又は繊維製品の
風合いを損なう恐れがあるので好ましくない。
The amount of the retained antimicrobial fine particles is 0.1 to 400 ppm, preferably 0.1 to 10 ppm by weight based on the weight of the fiber or fiber product.
It is 0 ppm. If the retained amount exceeds 400 ppm, the fine particles will be agglomerated and the antibacterial properties will be saturated, resulting in poor economic efficiency. The holding amount of the high molecular weight polymer is selected in the range of 0.01 to 20% by weight based on the weight of the fiber or the fiber product. The high molecular weight polymer has a function of firmly fixing the antibacterial fine particles to the surface of the fiber or the fiber product. However, if the holding amount exceeds 20% by weight, the feeling of the fiber or the fiber product may be impaired, which is not preferable.

【0011】本発明において抗菌性を有する金属又は金
属化合物の微粒子を含有する高分子重合体の前駆体の調
製は以下のようにして行なうことができる。水系エマル
ション又は水溶液の場合には、高分子重合体の水系エマ
ルション又は水溶液に抗菌性を有する金属又は金属化合
物の微粒子の水分散液を混合することによって調製され
る。該微粒子の水分散液は公知の方法によって調製され
る。例えば、日本化学会編の新実験化学講座18巻、界面
とコロイド、第 319〜 340頁(発行丸善社、1977年)の
記載を応用して行なうことができる。また非水系エマル
ション又は非水溶液の場合には、高分子重合体の非水系
エマルション又は非水溶液に抗菌性を有する金属又は金
属化合物の微粒子の非水分散液を混合することによって
調製される。
In the present invention, a precursor of a high molecular polymer containing fine particles of a metal or a metal compound having antibacterial properties can be prepared as follows. In the case of an aqueous emulsion or aqueous solution, it is prepared by mixing an aqueous emulsion or aqueous solution of a polymer with an aqueous dispersion of fine particles of a metal or metal compound having antibacterial properties. The aqueous dispersion of the fine particles is prepared by a known method. For example, this can be carried out by applying the description in New Chemical Chemistry, Vol. 18, edited by The Chemical Society of Japan, Interfaces and Colloids, pp. 319-340 (published by Maruzensha, 1977). In the case of a non-aqueous emulsion or non-aqueous solution, it is prepared by mixing a non-aqueous dispersion of fine particles of a metal or a metal compound having antibacterial properties with a non-aqueous emulsion or non-aqueous solution of a polymer.

【0012】高分子重合体の非水系エマルション又は非
水溶液の媒体としての非水液体は、特に限定されない
が、通常ベンゼン、トルエン、キシレン等の芳香族炭化
水素系溶媒、四塩化炭素、クロロホルム等の塩素化炭化
水素系溶媒、ノルマルヘキサン、シクロヘキサン等の脂
肪族もしくは脂環族炭化水素系溶媒、エタノール、ジエ
チルエーテル、メチルイソブチルケトン、酢酸エチル等
のアルコール類、エーテル類、ケトン類、エステル類等
が挙げられる。水系エマルション又は非水系エマルショ
ンは公知の方法によって調製される。例えば、高分子学
会編のポリマーコロイド、第 1〜32頁(発行共立出版
社、1989年)の記載を応用して行なうことができる。
The non-aqueous emulsion of the high-molecular polymer or the non-aqueous liquid as a medium for the non-aqueous solution is not particularly limited, but is usually an aromatic hydrocarbon solvent such as benzene, toluene and xylene, and carbon tetrachloride and chloroform. Chlorinated hydrocarbon solvents, aliphatic or alicyclic hydrocarbon solvents such as normal hexane and cyclohexane, alcohols such as ethanol, diethyl ether, methyl isobutyl ketone, and ethyl acetate, ethers, ketones, esters, etc. No. The aqueous emulsion or the non-aqueous emulsion is prepared by a known method. For example, it can be carried out by applying the description in Polymer Colloid, edited by the Society of Polymer Science, pages 1 to 32 (published by Kyoritsu Shuppan, 1989).

【0013】本発明の抗菌性を有する金属又は金属化合
物微粒子の非水分散液の調製は、特開平5−27171
8号公報に記載されている非水液体中に該金属又は金属
化合物微粒子が分散した非水分散液を使用すると好都合
である。該非水分散液は金属又は金属化合物微粒子の水
分散液を界面活性剤の存在下、水と相分離する非水液体
と接触させ、その接触前及び/又は接触後に水溶性無機
酸塩及び/又は水溶性有機酸塩を添加し、該微粒子を水
分散液から非水液体中に移動させ、この2相混合物より
非水分散液を分離することによって得られる。このよう
にして得られた非水分散液を用いてさらに上記操作を繰
返すことにより金属又は金属微粒子の濃度の高い非水分
散液を調製することができる。
The preparation of the non-aqueous dispersion of the metal or metal compound fine particles having antibacterial properties of the present invention is disclosed in Japanese Patent Application Laid-Open No. 5-27171.
It is convenient to use a non-aqueous dispersion in which the fine particles of the metal or metal compound are dispersed in a non-aqueous liquid described in JP-A No. 8 (1993). The non-aqueous dispersion is prepared by bringing an aqueous dispersion of fine particles of a metal or a metal compound into contact with a non-aqueous liquid which is phase-separated from water in the presence of a surfactant, and before and / or after the contact, It is obtained by adding a water-soluble organic acid salt, moving the fine particles from the aqueous dispersion into the non-aqueous liquid, and separating the non-aqueous dispersion from the two-phase mixture. By repeating the above operation using the thus obtained non-aqueous dispersion, a non-aqueous dispersion having a high concentration of metal or metal fine particles can be prepared.

【0014】本発明に使用される上記水と相分離する非
水液体は、特に限定されないが、通常ベンゼン、トルエ
ン、キシレン等の芳香族炭化水素系溶媒、四塩化炭素、
クロロホルム等の塩素化炭化水素系溶媒、ノルマルヘキ
サン、シクロヘキサン等の脂肪族もしくは脂環族炭化水
素系溶媒、ジエチルエーテル、メチルイソブチルケト
ン、酢酸エチル等のエーテル類、ケトン類、エステル類
等が好ましく用いられる。
The non-aqueous liquid phase-separated from water used in the present invention is not particularly limited, but is usually an aromatic hydrocarbon solvent such as benzene, toluene and xylene, carbon tetrachloride,
Chlorinated hydrocarbon solvents such as chloroform, normal hexane, aliphatic or alicyclic hydrocarbon solvents such as cyclohexane, ethers such as diethyl ether, methyl isobutyl ketone, and ethyl acetate, ketones, and esters are preferably used. Can be

【0015】上記抗菌性を有する金属又は金属化合物微
粒子の非水分散液は、具体的には以下のようにして製造
される。金属又は金属化合物微粒子水分散液の所定量を
採取し、これに界面活性剤を水分散液の水の量に対し、
0.01〜 5重量%、好ましくは0.05〜 0.5重量%になるよ
うに添加する。これに水分散液の容量の0.01〜50倍、好
ましくは0.05〜10倍の非水液体を加えて15分〜 8時間、
好ましくは 2〜 6時間、混合撹拌し非水液体を水分散液
中に(又は逆でもよい)分散し乳化させる。この場合、
温度は 0〜90℃、好ましくは20〜60℃の範囲で一定に保
つことが望ましい。その後、水溶性無機酸塩及び/又は
実質的に界面活性作用を有さない水溶性有機酸塩を水分
散液の水の量に対し、 0.005〜30重量%、好ましくは0.
01〜15重量%になるように添加し、30秒〜30分間、好ま
しくは 1〜 2分間撹拌を加える。これにより実質的に全
部の金属又は金属化合物微粒子が水相より非水液体相へ
移動する。その後、 2時間〜2日間静置すると微粒子の
分散していない水相と微粒子の分散した非水液体相とが
上下二相に分離するので分液ロートを用いるか、あるい
は非水液体相の吸い出しにより、微粒子の分散した非水
液体を容易に得ることができる。
The non-aqueous dispersion of the metal or metal compound fine particles having antibacterial properties is specifically produced as follows. A predetermined amount of the metal or metal compound fine particle aqueous dispersion is sampled, and a surfactant is added thereto to the amount of water in the aqueous dispersion,
It is added in an amount of 0.01 to 5% by weight, preferably 0.05 to 0.5% by weight. To this is added a non-aqueous liquid of 0.01 to 50 times, preferably 0.05 to 10 times the volume of the aqueous dispersion, and 15 minutes to 8 hours,
The mixture is stirred for preferably 2 to 6 hours, and the non-aqueous liquid is dispersed in the aqueous dispersion (or vice versa) and emulsified. in this case,
It is desirable to keep the temperature constant in the range of 0 to 90 ° C, preferably 20 to 60 ° C. Thereafter, the water-soluble inorganic acid salt and / or the water-soluble organic acid salt having substantially no surfactant effect is added in an amount of 0.005 to 30% by weight, preferably 0.1 to 30% by weight, based on the amount of water in the aqueous dispersion.
It is added so as to have a concentration of 01 to 15% by weight, and the mixture is stirred for 30 seconds to 30 minutes, preferably for 1 to 2 minutes. Thereby, substantially all of the metal or metal compound fine particles move from the aqueous phase to the non-aqueous liquid phase. After that, if left for 2 hours to 2 days, the aqueous phase in which the fine particles are not dispersed and the non-aqueous liquid phase in which the fine particles are dispersed are separated into upper and lower two phases. Thereby, a non-aqueous liquid in which fine particles are dispersed can be easily obtained.

【0016】この方法において用いられる水溶性無機酸
塩及び/又は水溶性有機酸塩の例としては、水溶性のア
ンモニウム、リチウム、ナトリウム、カリウム、マグネ
シウム、カルシウム、ストロンチウム、バリウム、アル
ミニウム、ランタン等の硫酸塩、ハロゲン化物、酢酸
塩、硝酸塩、炭酸塩、クエン酸塩及び酒石酸塩等が挙げ
られる。
Examples of the water-soluble inorganic acid salt and / or water-soluble organic acid salt used in this method include water-soluble ammonium, lithium, sodium, potassium, magnesium, calcium, strontium, barium, aluminum, lanthanum and the like. Sulfate, halide, acetate, nitrate, carbonate, citrate, tartrate and the like.

【0017】[0017]

【実施例】以下実施例、比較例により本発明を具体的に
説明するが、本発明はこれらに限定されるものではな
い。
EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples.

【0018】実施例1 銀濃度0.16wt%、銀平均粒子径 8nmの銀微粒子水分散液
0.19gを自己架橋型アクリル共重合体水性エマルション
(ヘキスト合成(株)製、モビニール 963、固形分濃度
46wt%) 6.52gと共に水 293.29gに加えてコーティング
液300g(アクリル共重合体濃度 1wt%、固形分中の銀濃
度100ppm)を調製した。綿 100%のパイル地綿布帛 10g
を該コーティング液に室温で 5分間浸漬した後、ローラ
ーにて過剰に付着した該コーティング液を除去した。該
布帛を 8時間風乾後、乾燥器にて150℃ 2分間加熱し、
徐冷した。該布帛の重量増加は 0.2wt%であった。該綿
布帛の手触りは元の布帛と同様であった。電子顕微鏡に
て該布帛を観察すると、該布帛表面付近に平均粒子径 8
nmの銀微粒子が均一に分散していた。蛍光X線分析によ
り綿布帛に対する銀の重量比を測定した。銀微粒子の綿
布帛に対する重量比は0.2ppmであった。該布帛をシェー
クフラスコ法にて抗菌試験に供した。密閉容器中に該試
料及び試験菌(黄色ブドウ球菌 Staphylococcus aureu
s IFO12732)の懸濁緩衝液を加えて、 150回/分、90分
振盪し、振盪後の生菌数を計数し、加えた懸濁液中の菌
数に対する菌の減少率(%)を求めた。表1に結果を示
した。優れた抗菌性が確認された。10回洗濯した後に、
再度シェークフラスコ法にて抗菌試験に供した。表1に
結果を示した。10回洗濯後も同様に優れた抗菌性が確認
された。
Example 1 Aqueous dispersion of silver fine particles having a silver concentration of 0.16 wt% and a silver average particle diameter of 8 nm
0.19 g of a self-crosslinking acrylic copolymer aqueous emulsion (manufactured by Hoechst Gosei KK, Movinyl 963, solid content concentration
In addition to 6.52 g of water and 293.29 g of water, 300 g of a coating solution (acrylic copolymer concentration 1 wt%, silver concentration in solids 100 ppm) was prepared. 100% cotton pile cotton fabric 10g
Was immersed in the coating solution at room temperature for 5 minutes, and the coating solution excessively adhered was removed with a roller. After air-drying the fabric for 8 hours, heated in a dryer at 150 ° C for 2 minutes,
Cooled slowly. The weight increase of the fabric was 0.2 wt%. The feel of the cotton fabric was similar to the original fabric. When the cloth was observed with an electron microscope, the average particle size was 8 near the surface of the cloth.
The silver fine particles of nm were uniformly dispersed. The weight ratio of silver to cotton fabric was measured by X-ray fluorescence analysis. The weight ratio of the silver fine particles to the cotton fabric was 0.2 ppm. The fabric was subjected to an antibacterial test by a shake flask method. Place the sample and test bacteria (Staphylococcus aureu) in a closed container.
s IFO12732), and the mixture was shaken at 150 times / minute for 90 minutes. The number of viable cells after the shaking was counted, and the reduction rate (%) of the number of cells relative to the number of cells in the added suspension was determined. I asked. Table 1 shows the results. Excellent antibacterial properties were confirmed. After washing 10 times,
The sample was again subjected to an antibacterial test by the shake flask method. Table 1 shows the results. Even after 10 washes, excellent antibacterial properties were confirmed.

【0019】比較例1 銀濃度 3.8wt%、平均粒子径 800nmの市販の銀系抗菌剤
0.38gを実施例1と同様に自己架橋型アクリル重合体水
性エマルション(ヘキスト合成(株)製、モビニール 9
63) 6.52gと共に水 293.10gに加えてコーティング液30
0g(アクリル共重合体濃度 1wt%、固形分中の銀濃度 4
272ppm)を調製した。実施例1と同じ綿100%のパイル
地綿布帛 10gを該コーティング液に室温で 5分間撹拌し
ながら浸漬した後、ローラーにて過剰に付着した該コー
ティング液を除去した。該布帛を8時間風乾後、乾燥器
にて 150℃ 2分間加熱し、徐冷した。該布帛の重量増加
は0.21wt%であった。該綿布帛の手触りは元の布帛と同
様であった。電子顕微鏡にて該布帛を観察すると、該布
帛表面付近に平均粒子径 800nmの銀系抗菌剤がまばらに
分散していた。蛍光X線分析により綿布帛に対する銀の
重量比を測定した。銀の綿布帛に対する重量比は9ppmで
あった。該布帛を実施例1と同様にシェークフラスコ法
にて抗菌試験に供した。表1に結果を示した。抗菌性は
ほとんど確認されなかった。
Comparative Example 1 Commercially available silver-based antibacterial agent having a silver concentration of 3.8 wt% and an average particle diameter of 800 nm.
0.38 g of a self-crosslinking acrylic polymer aqueous emulsion (manufactured by Hoechst Gosei Co., Ltd., Movinyl 9) as in Example 1
63) Coating liquid 30 in addition to 293.10 g of water with 6.52 g
0g (acrylic copolymer concentration 1wt%, silver concentration in solids 4
272 ppm). After 10 g of 100% cotton pile cotton fabric as in Example 1 was immersed in the coating solution with stirring at room temperature for 5 minutes, the excessive coating solution was removed with a roller. The fabric was air-dried for 8 hours, then heated at 150 ° C. for 2 minutes in a dryer, and gradually cooled. The weight increase of the fabric was 0.21 wt%. The feel of the cotton fabric was similar to the original fabric. When the cloth was observed with an electron microscope, silver antibacterial agents having an average particle diameter of 800 nm were sparsely dispersed near the surface of the cloth. The weight ratio of silver to cotton fabric was measured by X-ray fluorescence analysis. The weight ratio of silver to cotton fabric was 9 ppm. The fabric was subjected to an antibacterial test by a shake flask method in the same manner as in Example 1. Table 1 shows the results. Antimicrobial properties were hardly confirmed.

【0020】比較例2 自己架橋型アクリル重合体水性エマルション(ヘキスト
合成(株)製、モビニール 963)を使用しない以外は実
施例1と同様にコ−ティング液300gを調製した。実施例
1と同じ綿 100%のパイル地綿布帛 10gを該コーティン
グ液に室温で 5分間浸漬した後、ローラーにて過剰に付
着した該コーティング液を除去した。該布帛を 8時間風
乾後、乾燥器にて 150℃ 2分間加熱し、徐冷した。該綿
布帛の手触りは元の布帛と同様であった。電子顕微鏡に
て該布帛を観察すると、該布帛表面付近に平均粒子径 8
nmの銀微粒子が均一に分散していた。蛍光X線分析によ
り綿布帛に対する銀の重量比を測定した。銀微粒子の綿
布帛に対する重量比は0.2ppmであった。該布帛を実施例
1と同様にシェークフラスコ法にて抗菌試験に供した。
表1に結果を示した。優れた抗菌性が確認された。10回
洗濯した後に、再度シェークフラスコ法にて抗菌試験に
供した。表1に結果を示した。10回洗濯後は抗菌性が確
認されなかった。
Comparative Example 2 A coating liquid (300 g) was prepared in the same manner as in Example 1 except that an aqueous emulsion of a self-crosslinking acrylic polymer (manufactured by Hoechst Gosei KK, Movinyl 963) was not used. After 10 g of 100% cotton pile cotton fabric as in Example 1 was immersed in the coating solution for 5 minutes at room temperature, the excessive coating solution was removed with a roller. The fabric was air-dried for 8 hours, heated at 150 ° C. for 2 minutes in a dryer, and gradually cooled. The feel of the cotton fabric was similar to the original fabric. When the cloth was observed with an electron microscope, the average particle size was 8 near the surface of the cloth.
The silver fine particles of nm were uniformly dispersed. The weight ratio of silver to cotton fabric was measured by X-ray fluorescence analysis. The weight ratio of the silver fine particles to the cotton fabric was 0.2 ppm. The fabric was subjected to an antibacterial test by a shake flask method in the same manner as in Example 1.
Table 1 shows the results. Excellent antibacterial properties were confirmed. After washing 10 times, it was again subjected to the antibacterial test by the shake flask method. Table 1 shows the results. After washing 10 times, no antibacterial property was confirmed.

【0021】実施例2 銀濃度0.20wt%、銀平均粒子径 8nmの銀微粒子キシレン
分散液 0.19gをアクリル樹脂3gと共にキシレン 293.29g
に加えて十分撹拌混合してコーティング液300g(アクリ
ル樹脂濃度 1wt%、固形分中の銀濃度126ppm)を調製し
た。羊毛 100%の毛糸(極太) 10gを該コーティング液
に室温で 5分間浸漬した後、遠心器にて300rpm 1分間処
理して過剰に付着した該コーティング液を除去した。該
毛糸を 8時間風乾後、アスピレーターにて減圧処理し
た。該毛糸の重量増加は0.08wt%であった。該毛糸は、
縮みもなく、手触りは元の毛糸と同様であった。電子顕
微鏡にて該毛糸を観察すると、該毛糸表面付近に平均粒
子径 8nmの銀微粒子が均一に分散していた。蛍光X線分
析により毛糸に対する銀の重量比を測定した。銀微粒子
の毛糸に対する重量比は0.1ppmであった。該毛糸を実施
例1と同様にシェークフラスコ法にて抗菌試験に供し
た。表1に結果を示した。優れた抗菌性が確認された。
10回洗濯した後に、再度シェークフラスコ法にて抗菌試
験に供した。表1に結果を示した。10回洗濯後も同様に
優れた抗菌性が確認された。
Example 2 0.19 g of a silver fine particle xylene dispersion having a silver concentration of 0.20 wt% and a silver average particle diameter of 8 nm was mixed with 3 g of an acrylic resin in 293.29 g of xylene.
And 300 g of a coating liquid (acrylic resin concentration: 1 wt%, silver concentration in solid content: 126 ppm) was prepared by sufficiently stirring and mixing. 10 g of 100% wool yarn (extremely thick) was immersed in the coating solution for 5 minutes at room temperature, and then treated with a centrifuge at 300 rpm for 1 minute to remove the excessively adhered coating solution. The yarn was air-dried for 8 hours and then subjected to a reduced pressure treatment with an aspirator. The weight increase of the wool was 0.08 wt%. The yarn is
There was no shrinkage and the hand was similar to the original yarn. Observation of the wool with an electron microscope revealed that silver fine particles having an average particle diameter of 8 nm were uniformly dispersed near the surface of the wool. The weight ratio of silver to wool was measured by fluorescent X-ray analysis. The weight ratio of the silver fine particles to the wool was 0.1 ppm. The wool was subjected to an antibacterial test by the shake flask method in the same manner as in Example 1. Table 1 shows the results. Excellent antibacterial properties were confirmed.
After washing 10 times, it was again subjected to the antibacterial test by the shake flask method. Table 1 shows the results. Even after 10 washes, excellent antibacterial properties were confirmed.

【0022】実施例3 銀濃度0.16wt%、銀平均粒子径 8nmの銀微粒子分散液
0.38gをフッ素樹脂水性エマルション(明成化学工業
(株)製、アサヒガードAG-471、フッ素樹脂濃度 2.3wt
%) 130.43gとともに水 169.19gに加えてコーティング
液300g(アクリル共重合体濃度 1wt%、固形分中の銀濃
度200ppm)を調製した。綿 100%の平織物綿布帛 10gを
該コーティング液に室温で20分間浸漬した後、ローラー
にて過剰に付着した該コーティング液を除去した。該布
帛を 8時間風乾後、乾燥器にて 120℃10分間、続いて 1
70℃30秒間加熱し、徐冷した。該布帛の重量増加は 2wt
%であった。該綿布帛の手触りは元の布帛と同様であっ
た。電子顕微鏡にて該布帛を観察すると、該布帛表面付
近に平均粒子径 8nmの銀微粒子が均一に分散していた。
蛍光X線分析により綿布帛に対する銀の重量比を測定し
た。銀微粒子の綿布帛に対する重量比は4ppmであった。
該綿布より 5cm角の試験片を得て、抗菌試験を行った。
大腸菌及び黄色ブドウ球菌を滅菌リン酸緩衝液に浮遊さ
せて菌数濃度が約 105/mlとなるように調製した。試験
片上に各菌液 1mlを滴下した後、25℃で18時間保存し
た。18時間後に試験片上の試験菌液を SCDLP培地10mlで
洗い出し、洗い出し液中の生菌数を SCDLP寒天培地を用
いた混釈平板培養法(35℃、 2日間)により測定した。
結果を表2に示した。優れた抗菌性が確認された。
Example 3 Silver fine particle dispersion having a silver concentration of 0.16 wt% and a silver average particle diameter of 8 nm
0.38 g of fluororesin aqueous emulsion (Asahigard AG-471, manufactured by Meisei Chemical Co., Ltd., fluororesin concentration 2.3 wt
%) Along with 130.43 g, 169.19 g of water was added to prepare 300 g of a coating solution (acrylic copolymer concentration 1 wt%, silver concentration in solids 200 ppm). After immersing 10 g of 100% cotton plain woven cotton fabric in the coating solution at room temperature for 20 minutes, the coating solution excessively adhered was removed with a roller. The fabric was air-dried for 8 hours, then dried at 120 ° C for 10 minutes, followed by drying for 1 hour.
The mixture was heated at 70 ° C. for 30 seconds and gradually cooled. The weight increase of the fabric is 2wt
%Met. The feel of the cotton fabric was similar to the original fabric. When the cloth was observed with an electron microscope, silver fine particles having an average particle diameter of 8 nm were uniformly dispersed near the surface of the cloth.
The weight ratio of silver to cotton fabric was measured by X-ray fluorescence analysis. The weight ratio of the silver fine particles to the cotton fabric was 4 ppm.
A 5 cm square test piece was obtained from the cotton cloth and subjected to an antibacterial test.
E. coli and S. aureus were suspended in sterile phosphate buffer solution was prepared so that the cell count density of about 10 5 / ml. After 1 ml of each bacterial solution was dropped on the test piece, it was stored at 25 ° C. for 18 hours. After 18 hours, the test bacterial solution on the test piece was washed out with 10 ml of SCDLP medium, and the number of viable bacteria in the wash solution was measured by a pour plate method (35 ° C., 2 days) using SCDLP agar medium.
The results are shown in Table 2. Excellent antibacterial properties were confirmed.

【0023】実施例4 酸化銅濃度0.12wt%、酸化銅平均粒子径 200nmの酸化銅
微粒子トルエン分散液5.0gをポリメタクリル酸メチル 1
2gと共にトルエン278.0gに加えてコーティング液300g
(ポリメタクリル酸メチル濃度 4wt%、固形分中の酸化
銅濃度500ppm)を調製した。麻 100%の平織物麻布帛 1
0gを該コーティング液に室温で 5分間浸漬した後、ロー
ラーにて過剰に付着した該コーティング液を除去した。
該麻布帛を8時間風乾後、アスピレーターにて減圧処理
した。該麻布帛の重量増加は 2.8wt%であった。該麻布
帛は、縮みもなく、手触りは元の麻布帛と同様であっ
た。電子顕微鏡にて該麻布帛を観察すると、該麻布帛表
面付近に平均粒子径 200nmの酸化銅微粒子が均一に分散
していた。蛍光X線分析により麻布帛に対する酸化銅の
重量比を測定した。酸化銅微粒子の麻布帛に対する重量
比は 14ppmであった。該麻布帛を実施例1と同様にシェ
ークフラスコ法にて抗菌試験に供した。表1に結果を示
した。優れた抗菌性が確認された。10回洗濯した後に、
再度シェークフラスコ法にて抗菌試験に供した。表1に
結果を示した。10回洗濯後も同様に優れた抗菌性が確認
された。
Example 4 5.0 g of a copper oxide fine particle toluene dispersion having a copper oxide concentration of 0.12 wt% and a copper oxide average particle diameter of 200 nm was mixed with polymethyl methacrylate 1
300g of coating liquid in addition to 278.0g of toluene together with 2g
(Poly (methyl methacrylate) concentration: 4 wt%, copper oxide concentration in solid content: 500 ppm) were prepared. 100% hemp plain woven linen cloth 1
After immersing 0 g in the coating solution at room temperature for 5 minutes, the coating solution excessively adhered was removed with a roller.
The linen cloth was air-dried for 8 hours and then subjected to a reduced pressure treatment with an aspirator. The weight increase of the linen fabric was 2.8 wt%. The linen cloth did not shrink and the hand was similar to the original linen cloth. Observation of the linen cloth with an electron microscope revealed that copper oxide fine particles having an average particle diameter of 200 nm were uniformly dispersed near the surface of the linen cloth. The weight ratio of copper oxide to hemp cloth was measured by X-ray fluorescence analysis. The weight ratio of the copper oxide fine particles to the hemp cloth was 14 ppm. The linen cloth was subjected to an antibacterial test by a shake flask method in the same manner as in Example 1. Table 1 shows the results. Excellent antibacterial properties were confirmed. After washing 10 times,
The sample was again subjected to an antibacterial test by the shake flask method. Table 1 shows the results. Even after 10 washes, excellent antibacterial properties were confirmed.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【発明の効果】本発明によれば、各種の繊維又は繊維製
品表面に粒子径が 500nm以下の抗菌性微粒子を高分子重
合体をバインダーとして微量固着せしめることにより、
繊維の風合い等の審美性を損なわず、抗菌性を付与する
ことが可能である。従来の無機イオン交換体を使用する
抗菌剤と比較して、無機イオン交換体が不要で有効成分
のみを表面に必要最小限配合するため、より安価とな
る。従って、本発明による抗菌性繊維又は繊維製品は、
医療、家庭用品、建築、電子工業等様々な分野での利用
が期待される。
According to the present invention, an antimicrobial fine particle having a particle diameter of 500 nm or less is fixed to a surface of various fibers or textile products by using a high molecular polymer as a binder in a small amount.
It is possible to impart antibacterial properties without impairing the aesthetics such as the texture of the fiber. Compared with a conventional antibacterial agent using an inorganic ion exchanger, an inorganic ion exchanger is unnecessary, and only the effective ingredient is blended on the surface as much as possible. Therefore, the antibacterial fiber or textile product according to the present invention,
It is expected to be used in various fields such as medical care, household goods, construction, and the electronics industry.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) D06M 11/83 Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) D06M 11/83

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 粒子径 500nm以下の抗菌性を有する金属
又は金属化合物微粒子を含有する高分子重合体を保持せ
しめたことを特徴とする抗菌性を有する繊維又は繊維製
品。
1. A fiber or a fiber product having antibacterial properties, wherein the fiber or the fiber product has a polymer containing fine particles of metal or metal compound having antibacterial properties with a particle diameter of 500 nm or less.
【請求項2】 抗菌性を有する金属又は金属化合物微粒
子が銀、銅、ハロゲン化銀、酸化銀、硫化銀、酸化銅、
亜酸化銅、硫化銅より選ばれた少なくとも1種以上の微
粒子である請求項1記載の繊維又は繊維製品。
2. Metal or metal compound fine particles having antibacterial properties are silver, copper, silver halide, silver oxide, silver sulfide, copper oxide,
The fiber or fiber product according to claim 1, which is at least one type of fine particles selected from cuprous oxide and copper sulfide.
【請求項3】 抗菌性を有する金属又は金属化合物微粒
子の保持量が繊維又は繊維製品に対して重量比で0.1ppm
以上であることを特徴とする請求項1又は2記載の繊維
又は繊維製品。
3. The holding amount of the metal or metal compound fine particles having antibacterial properties is 0.1 ppm by weight relative to the fiber or fiber product.
The fiber or fiber product according to claim 1 or 2, wherein:
【請求項4】 請求項1〜3いずれか記載の抗菌性を有
する繊維又は繊維製品の製法であって、粒子径 500nm以
下の抗菌性を有する金属又は金属化合物微粒子を含有す
る高分子重合体の前駆体に繊維又は繊維製品を浸漬した
後乾燥することを特徴とする製法。
4. The method for producing an antibacterial fiber or a fiber product according to claim 1, wherein the high molecular weight polymer or the metal compound fine particle has an antibacterial property having a particle diameter of 500 nm or less. A production method characterized by dipping a fiber or a fiber product in a precursor and then drying.
【請求項5】 請求項1〜3いずれか記載の抗菌性を有
する繊維又は繊維製品の製法であって、粒子径 500nm以
下の抗菌性を有する金属又は金属化合物微粒子を含有す
る高分子重合体の前駆体を繊維又は繊維製品に噴霧した
後乾燥することを特徴とする製法。
5. The method for producing a fiber or a fiber product having antibacterial properties according to any one of claims 1 to 3, wherein the high molecular weight polymer contains fine particles of metal or metal compound having antibacterial properties with a particle diameter of 500 nm or less. A production method characterized in that a precursor is sprayed onto a fiber or a fiber product and then dried.
【請求項6】 前駆体が上記高分子重合体の水系エマル
ション、水溶液、非水系エマルション及び非水溶液から
選ばれたものである請求項4又は5記載の製法。
6. The method according to claim 4, wherein the precursor is selected from an aqueous emulsion, an aqueous solution, a non-aqueous emulsion, and a non-aqueous solution of the polymer.
JP1939195A 1995-02-07 1995-02-07 Antibacterial fiber or fiber product and its manufacturing method Expired - Fee Related JP2998584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1939195A JP2998584B2 (en) 1995-02-07 1995-02-07 Antibacterial fiber or fiber product and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1939195A JP2998584B2 (en) 1995-02-07 1995-02-07 Antibacterial fiber or fiber product and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH08209531A JPH08209531A (en) 1996-08-13
JP2998584B2 true JP2998584B2 (en) 2000-01-11

Family

ID=11997993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1939195A Expired - Fee Related JP2998584B2 (en) 1995-02-07 1995-02-07 Antibacterial fiber or fiber product and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2998584B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060068024A1 (en) * 2004-09-27 2006-03-30 Schroeder Kurt M Antimicrobial silver halide composition
WO2006111991A1 (en) * 2005-04-21 2006-10-26 Sicem Industriale S.P.A. Method and composition for obtaining odor-suppressing textile products and textile products, namely garments, thus obtained
CN103741242A (en) * 2013-12-04 2014-04-23 太仓荣文合成纤维有限公司 Cuprous oxide base antibacterial fibers and preparation method thereof
JP6832058B2 (en) * 2015-11-04 2021-02-24 旭化成株式会社 Antibacterial member
KR102196651B1 (en) * 2019-10-14 2020-12-31 농업회사법인 (주)헴프앤알바이오 Particle of hemp having improved antimicrobial activity and method for preparing the same
WO2022139011A1 (en) * 2020-12-22 2022-06-30 농업회사법인 (주)헴프앤알바이오 Fiber comprising cannabis sativa l. particle, and manufacturing method therefor
JP2024027385A (en) * 2022-08-17 2024-03-01 共同印刷株式会社 Fiber and fabric

Also Published As

Publication number Publication date
JPH08209531A (en) 1996-08-13

Similar Documents

Publication Publication Date Title
KR20080005549A (en) Textiles containing at least one layer of polymeric nanofibres and method of production of the layer of polymeric nanofibres from the polymer solution through electrostatic spinning
JP2998584B2 (en) Antibacterial fiber or fiber product and its manufacturing method
DE112005002676T5 (en) Fiber fabric with VOC removal function
KR102353483B1 (en) Method of making fiber comprising metal nanoparticles
WO2010054304A2 (en) Conjugated polyelectrolyte capsules: light-activated antimicrobials
US20210002817A1 (en) Ceramic coated antibacterial fabric, and method for manufacturing the same
JP3003473B2 (en) Antibacterial organic polymer material
EP2756846A1 (en) Antimicrobial cellulose material and process of its production
JP2013185292A (en) Antibacterial processing agent for fiber, method for producing the same and method for producing antibacterial fiber
CN104411878B (en) Manufacture antitoxin cellulose fiber and fiber medium
JP5441255B2 (en) Method for fixing photocatalyst particles to fiber surface
WO2014200377A2 (en) Process for obtaining nanoparticles of silica incorporating hydrophilic products or water miscible and process for their immobilization and encapsulation when applied to textile fibres
JP3606638B2 (en) Antibacterial textile product and method for producing the same
WO2012049978A1 (en) Antibacterial fiber treatment agent, manufacturing method thereof, and antibacterial fiber manufacturing method
US5268168A (en) Antibacterial and deodorant processing agent and processing method using same
JP3338604B2 (en) Method for producing deodorant / antibacterial acrylic synthetic fiber
JP3687191B2 (en) Antibacterial / antifungal PAN-based polymer particles, emulsion thereof, and method for producing the same
KR920006382B1 (en) A process for the preparation of antibiotic polyester fibers
EP2646538B1 (en) Polycationic colloid particles, process for preparing them and use thereof for modifying substrates
JP2703624B2 (en) Deodorant acrylic composite fiber and method for producing the same
JP3912578B2 (en) Moisture absorption / water absorption exothermic structure for interlining
DE60123780T2 (en) ANTIMICROBIAL TRANSFER SUBSTRATES AND METHOD FOR THEIR USE
JPH03121145A (en) Cellulosic composition with ion exchange capability
JPH0987924A (en) Deodorizing/antimicrobial acrylic synthetic yarn and its production
CN110790971B (en) Bacterial cellulose/quaternary ammonium salt compound composite membrane and preparation method and application thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees