JP3003473B2 - Antibacterial organic polymer material - Google Patents

Antibacterial organic polymer material

Info

Publication number
JP3003473B2
JP3003473B2 JP5241390A JP24139093A JP3003473B2 JP 3003473 B2 JP3003473 B2 JP 3003473B2 JP 5241390 A JP5241390 A JP 5241390A JP 24139093 A JP24139093 A JP 24139093A JP 3003473 B2 JP3003473 B2 JP 3003473B2
Authority
JP
Japan
Prior art keywords
fine particles
polymer material
organic polymer
metal
antibacterial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5241390A
Other languages
Japanese (ja)
Other versions
JPH0797767A (en
Inventor
英史 平井
貴明 酒井
伸治 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP5241390A priority Critical patent/JP3003473B2/en
Publication of JPH0797767A publication Critical patent/JPH0797767A/en
Application granted granted Critical
Publication of JP3003473B2 publication Critical patent/JP3003473B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は抗菌性有機高分子材料に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antibacterial organic polymer material.

【0002】[0002]

【従来の技術】従来の抗菌性を有する有機高分子材料
は、金属または金属イオンを無機坦体に坦持した抗菌剤
を有機高分子材料に混練したもの(例えば、特開平4−
254412号公報、特開平4−300302号公報、
特開平4−321628号公報)がある。あるいは有機
高分子材料に水性金属あるいは金属化合物ゾルを含浸し
たもの(例えば、特開昭64−68478号公報)があ
る。
2. Description of the Related Art Conventionally, an organic polymer material having antibacterial properties is obtained by kneading an organic polymer material with an antibacterial agent in which a metal or a metal ion is carried on an inorganic carrier (for example, Japanese Patent Application Laid-Open No.
254412, JP-A-4-300302,
JP-A-4-321628). Alternatively, there is an organic polymer material impregnated with an aqueous metal or metal compound sol (for example, JP-A-64-68478).

【0003】[0003]

【発明が解決しようとする課題】しかし上記の抗菌性有
機高分子材料では次のような問題が挙げられる。まず金
属または金属イオンを無機坦体に坦持した抗菌剤を有機
高分子材料に混練したものでは、該抗菌剤混練に際して
無機坦体により肌触り等の感触が混練しない場合に比べ
て変化して該有機高分子材料の手ざわり性等の特質が失
われるだけでなく、抗菌性が発揮される有機材料表面以
外の材料内部にも抗菌剤が存在するため抗菌剤の効率的
な使用が難しい。この抗菌剤の場合、金属イオン坦持量
は無機坦体に対して0.5〜3wt%であり、各種高分
子材料に該抗菌剤を通常約1wt%配合しているので、
高分子材料に対する金属イオンの配合率は0.005〜
0.03wt%程度である。また、水性の金属または金
属化合物ゾルを有機高分子材料に含浸する場合、使用す
る界面活性剤等により微粒子表面が被覆され、微粒子が
本来有する抗菌性を十分発揮できない等の問題点があ
る。
However, the above-mentioned antibacterial organic polymer material has the following problems. First, in the case where an antibacterial agent in which a metal or a metal ion is carried on an inorganic carrier is kneaded with an organic polymer material, the feel such as the touch due to the inorganic carrier changes during kneading of the antibacterial agent as compared with a case where it is not kneaded. Not only does the organic polymer material lose its texture and other properties, but it is difficult to use the antimicrobial agent efficiently because the antimicrobial agent is present inside the material other than the surface of the organic material exhibiting antimicrobial properties. In the case of this antibacterial agent, the metal ion carrying amount is 0.5 to 3 wt% with respect to the inorganic carrier, and since the antibacterial agent is generally blended with various polymer materials at about 1 wt%,
The mixing ratio of metal ions to the polymer material is 0.005 to
It is about 0.03 wt%. In addition, when an aqueous polymer or metal compound sol is impregnated into an organic polymer material, the surface of the fine particles is coated with a surfactant or the like to be used, and there is a problem that the antibacterial properties inherent to the fine particles cannot be sufficiently exhibited.

【0004】本発明の目的は、以上の問題点を解決する
ためのものであって、すなわち実質的に界面活性剤に覆
われていない抗菌力を有する金属または金属化合物微粒
子を有機高分子材料の表面に固着した抗菌性有機高分子
材料を提供することにある。
[0004] An object of the present invention is to solve the above-mentioned problems, that is, a metal or metal compound fine particle having an antibacterial activity, which is not substantially covered with a surfactant, is formed of an organic polymer material. An object of the present invention is to provide an antibacterial organic polymer material fixed to a surface.

【0005】[0005]

【課題を解決するための手段】本発明者らは、水と相溶
しない非水溶媒中に抗菌作用を有する金属または金属化
合物微粒子を分散させた分散液を各種有機高分子材料と
接触させることにより該微粒子を実質的に界面活性剤に
覆われていない状態で有機高分子材料表面に固着させ、
十分な抗菌効果と抗菌持続性を有する抗菌性有機高分子
材料を提供できることを見いだし、本発明を完成した。
上記該微粒子を該有機高分子材料表面に固着させる手段
としては本発明者らによる方法が挙げられる(特願平5
ー60834号、特願平5−135691号)。
Means for Solving the Problems The present inventors contact a dispersion liquid in which fine particles of a metal or a metal compound having an antibacterial action are dispersed in a non-aqueous solvent incompatible with water, with various organic polymer materials. By fixing the fine particles to the surface of the organic polymer material in a state not substantially covered with a surfactant,
The present inventors have found that an antibacterial organic polymer material having a sufficient antibacterial effect and antibacterial durability can be provided, and have completed the present invention.
As a means for fixing the fine particles on the surface of the organic polymer material, there is a method by the present inventors (Japanese Patent Application No. Hei.
No. 60834, Japanese Patent Application No. 5-135691).

【0006】本発明における抗菌性を有する金属または
金属化合物としては、古くから知られる銀、銅、亜鉛、
亜酸化銅または酸化亜鉛等が挙げられる。また、これら
のうちから1種または2種以上を採用することに制限は
ない。該金属または金属化合物微粒子の粒径は1〜10
00nmの範囲である。更に好ましくは1〜30nmの範囲
である。また、該微粒子の有機高分子材料への担持量は
該有機高分子材料に対して0.001〜5wt%の範囲で
ある。
The antibacterial metal or metal compound used in the present invention includes silver, copper, zinc,
Examples thereof include cuprous oxide and zinc oxide. In addition, there is no limitation on adopting one or more of these. The metal or metal compound particles have a particle size of 1 to 10
It is in the range of 00 nm. More preferably, it is in the range of 1 to 30 nm. The amount of the fine particles supported on the organic polymer material is in the range of 0.001 to 5% by weight based on the organic polymer material.

【0007】本発明における分散液としての非水溶媒
は、有機高分子材料を変質させなければ特に限定されな
いが、例えば芳香族溶媒としてキシレン、トルエン、ベ
ンゼン等、塩素系溶媒として四塩化炭素、クロロホル
ム、また炭化水素系溶媒としてシクロヘキサン、ノルマ
ルヘキサン等の各種非水溶媒が挙げられる。
The non-aqueous solvent used as the dispersion in the present invention is not particularly limited as long as the organic polymer material is not altered. For example, xylene, toluene, benzene and the like are used as aromatic solvents, and carbon tetrachloride and chloroform are used as chlorinated solvents. Examples of the hydrocarbon-based solvent include various non-aqueous solvents such as cyclohexane and normal hexane.

【0008】本発明に使用される水と相分離する非水液
体に分散した該微粒子を製造するには種々の方法が採用
される。例えば、10〜50Torr のヘリウム中で金属
を加熱蒸発させ、アルゴンガスで金属蒸気を導き途中で
非水液体蒸気を混入しこの混合物を液体窒素の冷却トラ
ップ中で凝縮させ、それを加熱融解して分散液とする方
法(ガス中蒸発法)、真空中においてガス状態の金属あ
るいは金属化合物を酸素等と反応させ(気相反応法)、
得られた微粒子を非水溶媒に分散させる方法、また油溶
性界面活性剤を用いて少量の水を含む非水液体中で逆ミ
セルのマイクロエマルジョンを作る場合、このマイクロ
エマルジョン粒子内には微量の水が取り込まれており、
マイクロエマルジョン粒子は水と相分離する多量の非水
液体中に分散しているので、この微量水中に貴金属塩を
溶解させておき、還元剤を加えることにより分散液とす
る方法(マイクロエマルジョン法)等が知られている。
Various methods are employed for producing the fine particles dispersed in a non-aqueous liquid which is phase-separated from water used in the present invention. For example, a metal is heated and evaporated in helium at 10 to 50 Torr, a metal vapor is introduced with argon gas, a non-aqueous liquid vapor is mixed in the middle, and this mixture is condensed in a liquid nitrogen cooling trap, and then heated and melted. A method of forming a dispersion liquid (evaporation method in gas), a method of reacting a metal or a metal compound in a gaseous state with oxygen or the like in a vacuum (gas phase reaction method),
When dispersing the obtained fine particles in a non-aqueous solvent, or when making a reverse micelle microemulsion in a non-aqueous liquid containing a small amount of water using an oil-soluble surfactant, a trace amount of microemulsion particles are contained in the microemulsion particles. Water is taken in,
Since microemulsion particles are dispersed in a large amount of non-aqueous liquid that separates with water, a method of dissolving a noble metal salt in this trace water and adding a reducing agent to form a dispersion (microemulsion method) Etc. are known.

【0009】また最近では、貴金属塩を水溶液から抽出
剤を用いて非水液体相に移動させ、これを水相に加えた
還元剤により還元することにより、貴金属微粒子の分散
液とする方法(抽出法)も試みられている。
Recently, a method of preparing a dispersion of noble metal fine particles by transferring a noble metal salt from an aqueous solution to a non-aqueous liquid phase using an extractant and reducing the same with a reducing agent added to the aqueous phase (extraction method) Law) has also been attempted.

【0010】特に好ましい方法として本発明者の中の1
人の発明にかかわる次の方法が挙げられる(特願平4ー
358518号)。すなわち金属微粒子及び/又は金属
化合物微粒子の水分散液を界面活性剤の存在下、水と相
分離する非水液体を接触させ、その接触前及び/又は接
触後に、水溶性無機酸塩及び/又は水溶性有機酸塩を添
加し、微粒子を水分散液より非水液体中に移動させ、こ
の二相混合物より非水分散液を単離することができる。
本法によれば簡便な操作で特殊な装置を必要とせず、大
量又は高濃度の金属又は金属化合物微粒子の非水分散液
を容易に調製することができる。
A particularly preferred method is one of the present inventors.
The following method according to the invention of a human being can be mentioned (Japanese Patent Application No. 4-358518). That is, in the presence of a surfactant, an aqueous dispersion of metal fine particles and / or metal compound fine particles is brought into contact with a non-aqueous liquid that separates from water, and before and / or after the contact, a water-soluble inorganic acid salt and / or A water-soluble organic acid salt is added to move the fine particles from the aqueous dispersion into the non-aqueous liquid, and the non-aqueous dispersion can be isolated from the two-phase mixture.
According to this method, a large amount or high concentration of a non-aqueous dispersion of metal or metal compound fine particles can be easily prepared by a simple operation without requiring a special device.

【0011】このようにして得られた非水分散液に分散
する微粒子の粒径は用いる水分散液中の粒径と実質的に
同様であり、1nm〜1μmの範囲である。更に好まし
くは1nm〜30nmの範囲である。そして均一に分散
される微粒子濃度は約0.05〜500mmol/lで
ある。
The particle size of the fine particles dispersed in the non-aqueous dispersion thus obtained is substantially the same as the particle size in the aqueous dispersion used, and is in the range of 1 nm to 1 μm. More preferably, it is in the range of 1 nm to 30 nm. The concentration of the fine particles uniformly dispersed is about 0.05 to 500 mmol / l.

【0012】本発明に使用される有機高分子材料として
は、セルロース、でんぷん等の天然高分子物質、ポリス
チレン、ナイロン、ポリアセタール等の合成高分子物質
が挙げられる。該セルロースとしては、木綿、亜麻、黄
麻、羊毛、絹等の天然高分子物質、レーヨン、キュプラ
等の再生高分子物質、アセテート等の半合成高分子物質
を挙げることができる。非水溶媒を用いるので水溶性物
質、例えば溶性でんぷん、ヒドロキシプロピルセルロー
ス等を担体として使用することもできる。坦体の形状と
しては、特に制限はないが、膜状、粉体状、ウィスカー
状、ファイバー状、布帛状、ハニカム状等が挙げられ、
多孔体あよび非多孔体のいずれであってもよい。これら
の1種あるいは2種以上の混合物、複合物及び成型体に適
用可能である。
Examples of the organic polymer material used in the present invention include natural polymer materials such as cellulose and starch, and synthetic polymer materials such as polystyrene, nylon and polyacetal. Examples of the cellulose include natural polymer substances such as cotton, flax, jute, wool, and silk; regenerated polymer substances such as rayon and cupra; and semi-synthetic polymer substances such as acetate. Since a non-aqueous solvent is used, a water-soluble substance such as soluble starch and hydroxypropylcellulose can also be used as a carrier. The shape of the carrier is not particularly limited, and includes a film shape, a powder shape, a whisker shape, a fiber shape, a fabric shape, a honeycomb shape, and the like.
Any of a porous body and a non-porous body may be used. The present invention is applicable to a mixture, a composite, and a molded article of one or more of these.

【0013】[0013]

【実施例】次に実施例、比較例により本発明を具体的に
説明するが、本発明はこれらに限定されるものではな
い。なお金属または金属化合物微粒子分散液の調製方法
は前記の特願平4−358518号に基づいて行なっ
た。その具体的な態様は次のとおりである。
Next, the present invention will be described specifically with reference to examples and comparative examples, but the present invention is not limited to these examples. The metal or metal compound fine particle dispersion was prepared according to Japanese Patent Application No. 4-358518. The specific mode is as follows.

【0014】微粒子水分散液の所定量を採取し、これに
界面活性剤を水分散液の水の量に対し、0.01〜5重
量%、好ましくは0.05〜0.5重量%になるように添
加する。これに水分散液の容量の0.01〜50倍、好
ましくは0.05〜10倍の非水液体を加えて15分〜
8時間、好ましくは2〜6時間、混合攪拌し非水液体を
水分散液中に(又は逆でもよい)分散し乳化させる。こ
の場合、温度は0〜90℃、好ましくは20〜60℃の
範囲で一定に保つことが望ましい。その後、水溶性無機
酸塩及び/又は実質的に界面活性作用を有さない水溶性
有機酸塩を水分散液の水の量に対し、0.005〜30
重量%、好ましくは0.01〜15重量%になるように
添加し、30秒〜30分間、好ましくは1〜2分間攪拌
を加える。これにより実質的に全部の金属微粒子が水相
より非水液体相へ移動する。その後、2時間〜2日間静
置すると微粒子の分散していない水相と微粒子の分散し
た非水液体相とが上下二相に分離するので分液ロートを
用いるか、あるいは非水液体相の吸い出しにより、微粒
子の分散した非水液体を容易に得ることができる。
A predetermined amount of the aqueous dispersion of fine particles is collected, and a surfactant is added to the aqueous dispersion in an amount of 0.01 to 5% by weight, preferably 0.05 to 0.5% by weight, based on the amount of water in the aqueous dispersion. Add so that it becomes. A non-aqueous liquid having a volume of 0.01 to 50 times, preferably 0.05 to 10 times the volume of the aqueous dispersion is added thereto, and the mixture is added for 15 minutes to
The non-aqueous liquid is dispersed and emulsified in an aqueous dispersion (or vice versa) by mixing and stirring for 8 hours, preferably 2 to 6 hours. In this case, it is desirable to keep the temperature constant in the range of 0 to 90 ° C, preferably 20 to 60 ° C. Thereafter, the water-soluble inorganic acid salt and / or the water-soluble organic acid salt having substantially no surface activity is added to the aqueous dispersion in an amount of 0.005 to 30%.
%, Preferably 0.01 to 15% by weight, and the mixture is stirred for 30 seconds to 30 minutes, preferably 1 to 2 minutes. Thereby, substantially all of the metal fine particles move from the aqueous phase to the non-aqueous liquid phase. After that, when the mixture is left standing for 2 hours to 2 days, an aqueous phase in which fine particles are not dispersed and a non-aqueous liquid phase in which fine particles are dispersed are separated into upper and lower two phases. Thereby, a non-aqueous liquid in which fine particles are dispersed can be easily obtained.

【0015】この方法において用いられる水溶性無機酸
塩及び/又は水溶性有機酸塩の例としては、水溶性のア
ンモニウム、リチウム、ナトリウム、カリウム、マグネ
シウム、カルシウム、ストロンチウム、バリウム、アル
ミニウム、ランタン等の硫酸塩、ハロゲン化物、酢酸
塩、硝酸塩、炭酸塩、クエン酸塩及び酒石酸塩等が挙げ
られる。
Examples of the water-soluble inorganic acid salt and / or water-soluble organic acid salt used in this method include water-soluble ammonium, lithium, sodium, potassium, magnesium, calcium, strontium, barium, aluminum, lanthanum and the like. Sulfate, halide, acetate, nitrate, carbonate, citrate, tartrate and the like.

【0016】微粒子の水分散液の調製方法は公知の方
法、例えば、日本化学会編、新実験化学講座18巻、界
面とコロイド、319〜340頁、丸善、1977 の
記載を応用して行なうことができる。微粒子の水分散液
中における濃度は0.005〜100mmol/lであ
り、通常0.02〜70mmol/lであるが濃度の高
い方が好ましい。
The aqueous dispersion of fine particles is prepared by applying a well-known method, for example, the method described in The Chemical Society of Japan, New Experimental Chemistry, Vol. 18, Interfaces and Colloids, pp. 319-340, Maruzen, 1977. Can be. The concentration of the fine particles in the aqueous dispersion is from 0.005 to 100 mmol / l, usually from 0.02 to 70 mmol / l, but the higher the concentration, the more preferable.

【0017】実施例1 市販の6、6−ナイロン長繊維(太さ15デニール)2
7gを銀濃度0.25mmol/l、平均粒径8nmの
銀コロイドシクロヘキサン分散液100mlと共に30
0mlのフラスコに設置し、10分間マグネチックスタ
ーラーにより攪拌を行なった。黄色を呈していた銀微粒
子分散液は攪拌後無色透明となり、白色であった6、6
−ナイロン長繊維は淡黄色に着色し、銀微粒子が6、6
−ナイロン長繊維に吸着された。次いで該6、6−ナイ
ロン長繊維をフラスコから取り出し、シクロヘキサンに
て洗浄後、風乾した。該6、6−ナイロン長繊維の一部
を採取し、10%硝酸水溶液中で吸着した金属銀を銀イ
オン化後、ICP発光分析により測定した結果、該6、6
−ナイロン長繊維への銀微粒子吸着量は0.01wt%
であった。
Example 1 Commercially available 6,6-nylon long fiber (thickness: 15 denier) 2
7 g together with 100 ml of a silver colloidal cyclohexane dispersion having a silver concentration of 0.25 mmol / l and an average particle diameter of 8 nm
The flask was placed in a 0 ml flask and stirred with a magnetic stirrer for 10 minutes. The silver fine particle dispersion having a yellow color became colorless and transparent after stirring and was white.
Nylon filaments are colored pale yellow and silver particles are 6,6
-Adsorbed on nylon long fibers. Next, the 6,6-nylon filaments were taken out of the flask, washed with cyclohexane, and air-dried. A portion of the 6,6-nylon long fiber was collected, and the metal silver adsorbed in a 10% aqueous nitric acid solution was ionized with silver and measured by ICP emission analysis.
-Adsorption amount of fine silver particles to nylon filament is 0.01 wt%
Met.

【0018】実施例2 実施例1で得た銀固着の6、6−ナイロン長繊維を界面
活性剤としてオレイン酸ナトリウム(東京化成(株)製
試薬特級)0.1gを加えた100mlイオン交換水
中で300mlのフラスコ中で1時間激しく攪拌したと
ころ、6、6−ナイロン長繊維の着色の変化は認められ
なかった。一方、イオン交換水は無色透明であった。該
イオン交換水中の銀微粒子濃度をICP発光分析により測
定した結果、銀微粒子濃度は0.2mg/l以下で界面
活性剤添加により一度6、6−ナイロン長繊維に吸着さ
れた銀微粒子の脱離はほとんど認められなかった。次い
で該6、6−ナイロン長繊維をフラスコから取り出し、
イオン交換水にて洗浄後、風乾した。同様の界面活性剤
含有イオン交換水処理を40回繰り返した。該6、6−ナ
イロン長繊維の一部を採取し、10%硝酸水溶液中で吸
着した金属銀を銀イオン化後、ICP発光分析により測定
した結果、該6、6−ナイロン長繊維への銀微粒子吸着
量は0.01wt%であった。これより該銀微粒子を吸
着した6、6−ナイロン長繊維は洗濯耐久性に優れるこ
とが明かとなった。
Example 2 100 ml of ion-exchanged water to which 0.1 g of sodium oleate (special grade of reagent manufactured by Tokyo Chemical Industry Co., Ltd.) was added as a surfactant using the silver-fixed 6,6-nylon filament obtained in Example 1 as a surfactant. When the mixture was vigorously stirred for 1 hour in a 300 ml flask, no change in the coloring of the 6,6-nylon filament was observed. On the other hand, ion-exchanged water was colorless and transparent. The concentration of silver fine particles in the ion-exchanged water was measured by ICP emission spectroscopy. As a result, the concentration of silver fine particles was 0.2 mg / l or less, and desorption of silver fine particles once adsorbed on 6,6-nylon filaments by adding a surfactant. Was rarely observed. Next, the 6,6-nylon filament was taken out of the flask,
After washing with ion-exchanged water, it was air-dried. The same surfactant-containing ion-exchanged water treatment was repeated 40 times. A portion of the 6,6-nylon filament was collected, and silver metal ion adsorbed in a 10% nitric acid aqueous solution was ionized with silver and measured by ICP emission analysis. As a result, silver fine particles on the 6,6-nylon filament were measured. The amount of adsorption was 0.01 wt%. From this, it became clear that 6,6-nylon filaments adsorbing the silver fine particles had excellent washing durability.

【0019】実施例3 市販の木綿布帛20gを酸化亜鉛濃度0.25mmol
/l、平均粒径12nmの酸化亜鉛コロイドシクロヘキ
サン分散液100mlと共に300mlのフラスコに設
置し、10分間マグネチックスターラーにより攪拌を行
なった。白色を呈していた酸化亜鉛微粒子シクロヘキサ
ン分散液は攪拌後無色透明となり、酸化亜鉛微粒子が木
綿布帛に吸着された。次いで該木綿布帛をフラスコから
取り出し、シクロヘキサンにて洗浄後、風乾した。該木
綿布帛の一部を採取し、蛍光X線分析により測定した結
果、該木綿布帛への酸化亜鉛微粒子吸着量は0.01w
t%であった。
Example 3 A commercially available cotton fabric (20 g) was subjected to a zinc oxide concentration of 0.25 mmol.
The mixture was placed in a 300 ml flask together with 100 ml of a zinc oxide colloidal cyclohexane dispersion having an average particle size of 12 nm / l and stirred with a magnetic stirrer for 10 minutes. The white zinc oxide fine particle cyclohexane dispersion became colorless and transparent after stirring, and the zinc oxide fine particles were adsorbed on the cotton fabric. Next, the cotton fabric was taken out of the flask, washed with cyclohexane, and air-dried. A part of the cotton cloth was collected and measured by X-ray fluorescence analysis. As a result, the amount of zinc oxide fine particles adsorbed on the cotton cloth was 0.01 w
t%.

【0020】実施例4 実施例3で得た酸化亜鉛固着の木綿布帛を界面活性剤と
してオレイン酸ナトリウム(東京化成(株)製 試薬特
級)0.1gを加えた100mlイオン交換水中で30
0mlのフラスコ中で1時間激しく攪拌したところ、イ
オン交換水は無色透明であった。該イオン交換水中の酸
化亜鉛微粒子濃度を蛍光X線分析により測定した結果、
酸化亜鉛微粒子濃度は0.2mg/l以下で界面活性剤
添加により一度木綿布帛に吸着された酸化亜鉛微粒子の
脱離はほとんど認められなかった。次いで該木綿布帛を
フラスコから取り出し、イオン交換水にて洗浄後、風乾
した。同様の界面活性剤含有イオン交換水処理を40回繰
り返した。該木綿布帛の一部を採取し、蛍光X線分析に
より測定した結果、該木綿布帛への酸化亜鉛微粒子吸着
量は0.01wt%であった。これより該酸化亜鉛微粒
子を吸着した木綿布帛は洗濯耐久性に優れることが明か
となった。
Example 4 The cotton cloth adhered to zinc oxide obtained in Example 3 was added to 0.1 g of sodium oleate (reagent grade, manufactured by Tokyo Chemical Industry Co., Ltd.) as a surfactant in 100 ml of ion-exchanged water.
When vigorously stirred for 1 hour in a 0 ml flask, the ion-exchanged water was colorless and transparent. As a result of measuring the concentration of zinc oxide fine particles in the ion-exchanged water by fluorescent X-ray analysis,
The concentration of the zinc oxide fine particles was 0.2 mg / l or less, and almost no desorption of the zinc oxide fine particles once adsorbed on the cotton fabric by the addition of the surfactant was observed. Next, the cotton fabric was taken out of the flask, washed with ion-exchanged water, and air-dried. The same surfactant-containing ion-exchanged water treatment was repeated 40 times. A part of the cotton fabric was collected and measured by X-ray fluorescence analysis. As a result, the amount of zinc oxide fine particles adsorbed on the cotton fabric was 0.01 wt%. From this, it was clarified that the cotton fabric adsorbing the zinc oxide fine particles had excellent washing durability.

【0021】比較例1 実施例1と同様に6、6−ナイロン長繊維(太さ15デ
ニール)27gを銀濃度5mmol/l、平均粒径8n
mの銀微粒子水分散液100mlと共に界面活性剤(ス
テアリルトリメチルアンモニウムクロライド)20mg
の存在下3時間攪拌を行なった。攪拌中6、6−ナイロ
ン長繊維は水分散液上部にて浮遊していた。褐色を呈し
ていた銀微粒子分散液は攪拌後もほとんど色変化がな
く、6、6−ナイロン長繊維は淡黄色に着色した。次い
で該6、6−ナイロン長繊維をフラスコから取り出し、
イオン交換水にて洗浄後、風乾した。該6、6−ナイロ
ン長繊維の一部を採取し、10%硝酸水溶液中で吸着し
た金属銀を銀イオン化後、ICP発光分析により測定した
結果、該6、6−ナイロン長繊維への銀微粒子吸着量は
0.05wt%であった。
Comparative Example 1 In the same manner as in Example 1, 27 g of 6,6-nylon long fiber (thickness: 15 denier) was prepared by silver concentration of 5 mmol / l and average particle size of 8 n.
20 mg of surfactant (stearyltrimethylammonium chloride) together with 100 ml of an aqueous dispersion of silver fine particles of m
For 3 hours. During the stirring, the 6,6-nylon filaments floated above the aqueous dispersion. The silver fine particle dispersion having a brown color hardly changed in color even after stirring, and the 6,6-nylon filaments were colored pale yellow. Next, the 6,6-nylon filament was taken out of the flask,
After washing with ion-exchanged water, it was air-dried. A part of the 6,6-nylon long fiber was collected, and the metal silver adsorbed in the 10% nitric acid aqueous solution was ionized with silver and measured by ICP emission spectrometry. As a result, silver fine particles on the 6,6-nylon long fiber were measured. The amount of adsorption was 0.05 wt%.

【0022】比較例2 比較例1で得た銀固着の6、6−ナイロン長繊維を界面
活性剤としてオレイン酸ナトリウム(東京化成(株)製
試薬特級)0.1gを加えた100mlイオン交換水
中で1時間激しく攪拌したところ、6、6−ナイロン長
繊維は淡黄色から白色へと変化した。一方、該イオン交
換水は黄色に着色した。イオン交換水中の銀微粒子濃度
をICP発光分析により測定した結果、銀微粒子濃度は2
3.7mg/lで界面活性剤添加により一度6、6−ナ
イロン長繊維に吸着された銀微粒子の大部分が脱離し
た。次いで該6、6−ナイロン長繊維をフラスコから取
り出し、イオン交換水にて洗浄後、風乾した。該6、6
−ナイロン長繊維の一部を採取し、10%硝酸水溶液中
で吸着した金属銀を銀イオン化後、ICP発光分析により
測定した結果、該6、6−ナイロン長繊維への銀微粒子
吸着量は0.01wt%以下であった。
Comparative Example 2 100 ml of ion-exchanged water to which 0.1 g of sodium oleate (reagent grade, manufactured by Tokyo Chemical Industry Co., Ltd.) was added as a surfactant using the silver-fixed 6,6-nylon filament obtained in Comparative Example 1 as a surfactant. When the mixture was vigorously stirred for 1 hour, the 6,6-nylon filament changed from pale yellow to white. On the other hand, the ion-exchanged water was colored yellow. As a result of measuring the concentration of silver particles in the ion-exchanged water by ICP emission analysis, the concentration of silver particles was 2
Most of the silver fine particles once adsorbed on 6,6-nylon filaments were desorbed by the addition of a surfactant at 3.7 mg / l. Next, the 6,6-nylon long fiber was taken out of the flask, washed with ion-exchanged water, and air-dried. 6,
-A part of the nylon long fiber was collected, and the metal silver adsorbed in the 10% nitric acid aqueous solution was ionized with silver and measured by ICP emission analysis. 0.01 wt% or less.

【0023】実施例5 実施例1、2、3、4、比較例1及び2で得た銀微粒子
を吸着した6、6−ナイロン長繊維及び酸化亜鉛微粒子
を吸着した木綿布帛を試料として抗菌力を判定した。抗
菌力の判定は以下に示すシェイク・フラスコ法により行
なった。密閉容器中に該試料及び試験菌(黄色ブドウ球
菌 Staphylococcus aureus 209P)の懸濁緩衝液を
加えて、150回/分、90分振盪し、振盪後の生菌数
を計数し、加えた懸濁液中の菌数に対する菌の減少率
(%)を求めた。
Example 5 The antibacterial activity of 6,6-nylon long fibers adsorbed with silver fine particles and cotton cloth adsorbed with zinc oxide fine particles obtained in Examples 1, 2, 3, 4 and Comparative Examples 1 and 2 were used as samples. Was determined. The antibacterial activity was determined by the shake flask method described below. A suspension buffer of the sample and the test bacterium (Staphylococcus aureus 209P) was added to a closed container, and the mixture was shaken at 150 times / minute for 90 minutes, the number of viable cells after shaking was counted, and the added suspension was added. The reduction rate (%) of the bacteria relative to the number of bacteria in the liquid was determined.

【0024】[0024]

【表1】 [Table 1]

【0025】表1に示すように、本発明の場合は有機高
分子材料の表面に効率良く抗菌性を有する微粒子を固着
することにより、優れた抗菌力が持続し、洗濯耐久性に
も優れることが明かとなった。
As shown in Table 1, in the case of the present invention, the excellent antibacterial power is maintained and the washing durability is also excellent by efficiently fixing the antibacterial fine particles to the surface of the organic polymer material. Was revealed.

【0026】これに対して、水系にて界面活性剤の存在
下で有機高分子材料の表面に抗菌性を有する微粒子を固
着した場合には、界面活性剤により該微粒子表面が被覆
されているため、抗菌力が弱くより多量の微粒子を要す
る。また洗濯耐久性に乏しく、抗菌力の持続が困難であ
った。
On the other hand, when fine particles having antibacterial properties are adhered to the surface of an organic polymer material in the presence of a surfactant in an aqueous system, the surface of the fine particles is covered with the surfactant. It has low antibacterial activity and requires a large amount of fine particles. In addition, washing durability was poor, and it was difficult to maintain antibacterial activity.

【0027】[0027]

【発明の効果】本発明によれば、有機高分子材料表面に
小さな粒径の抗菌性を有する金属または金属化合物微粒
子を直接固着するため無機坦体が不要であるので、該有
機高分子材料の外観、感触等の審美性を損なうことがな
く、微量の配合量でも効率良く抗菌性を発揮する。ま
た、有効成分が実質的に金属状態または不溶性であるた
め金属イオンと比較して化学変化を受けにくい。従っ
て、本発明による抗菌性有機高分子材料は、医療、繊
維、建築、電子工業等様々な分野での利用が期待され
る。
According to the present invention, an inorganic carrier is not required because a metal or metal compound fine particle having a small particle size and having antibacterial properties is directly adhered to the surface of the organic polymer material. It does not impair the aesthetics such as appearance and feel, and exhibits antibacterial properties efficiently even in a small amount. Further, since the active ingredient is substantially in a metal state or insoluble, it is less susceptible to a chemical change than a metal ion. Therefore, the antibacterial organic polymer material according to the present invention is expected to be used in various fields such as medicine, textiles, construction, and the electronics industry.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水と相溶しない非水溶媒中に抗菌作用を
有する金属または金属化合物微粒子を分散させた分散液
を有機高分子材料と接触させることにより、該微粒子を
実質的に界面活性剤に覆われていない状態で有機高分子
材料の表面に固着させてなる抗菌性有機高分子材料。
1. A dispersion in which fine particles of a metal or a metal compound having an antibacterial action are dispersed in a non-aqueous solvent incompatible with water.
The by contacting the organic polymeric material, an antimicrobial organic polymer material comprising the fine particles <br/> substantially by fixing in a state which is not covered by the surfactant on the surface of the organic polymeric material.
【請求項2】 金属または金属化合物微粒子の粒子径が
1〜1000nmであることを特徴とする請求項第1項記
載の抗菌性有機高分子材料。
2. The antibacterial organic polymer material according to claim 1, wherein the metal or metal compound fine particles have a particle size of 1 to 1000 nm.
【請求項3】 有機高分子材料がセルロース、でんぷ
ん、ナイロン、ポリエステル、ポリジビニルベンゼン、
ポリスチレン、ポリアセタールの内少なくとも1種以上
を含有することを特徴とする請求項第1項又は第2項記
載の抗菌性有機高分子材料。
3. The organic polymer material is cellulose, starch, nylon, polyester, polydivinylbenzene,
The antibacterial organic polymer material according to claim 1 or 2, comprising at least one of polystyrene and polyacetal.
【請求項4】 抗菌作用を有する金属または金属化合物
微粒子が銀、銅、亜鉛、亜酸化銅または酸化亜鉛である
ことを特徴とする請求項第1項から第3項のいずれかに
記載の抗菌性有機高分子材料。
4. The antibacterial according to claim 1, wherein the metal or metal compound fine particles having an antibacterial action are silver, copper, zinc, cuprous oxide or zinc oxide. Organic polymer material.
JP5241390A 1993-09-28 1993-09-28 Antibacterial organic polymer material Expired - Lifetime JP3003473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5241390A JP3003473B2 (en) 1993-09-28 1993-09-28 Antibacterial organic polymer material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5241390A JP3003473B2 (en) 1993-09-28 1993-09-28 Antibacterial organic polymer material

Publications (2)

Publication Number Publication Date
JPH0797767A JPH0797767A (en) 1995-04-11
JP3003473B2 true JP3003473B2 (en) 2000-01-31

Family

ID=17073573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5241390A Expired - Lifetime JP3003473B2 (en) 1993-09-28 1993-09-28 Antibacterial organic polymer material

Country Status (1)

Country Link
JP (1) JP3003473B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100475421B1 (en) * 1996-05-10 2005-05-16 도요 보세키 가부시키가이샤 Antimicrobial composition and antimicrobial laminate
US6605751B1 (en) 1997-11-14 2003-08-12 Acrymed Silver-containing compositions, devices and methods for making
AU5649499A (en) * 1998-09-10 2000-04-03 Fuji Photo Film Co., Ltd. Method of detecting thiol-containing compound
WO2001009229A1 (en) * 1999-07-30 2001-02-08 Guggenbichler J Peter Method of producing antimicrobial synthetic bodies with improved long-term behavior
DE19936059A1 (en) 1999-07-30 2001-02-01 J Peter Guggenbichler Production of antimicrobial plastic articles, especially catheters, involves pretreatment with colloidal metal, especially colloidal silver, before the final moulding process
DE60028415T2 (en) 1999-12-30 2007-06-06 Acrymed, Portland METHOD AND COMPOSITIONS FOR IMPROVED DISPENSING SYSTEMS
US10251392B2 (en) 2004-07-30 2019-04-09 Avent, Inc. Antimicrobial devices and compositions
US8361553B2 (en) 2004-07-30 2013-01-29 Kimberly-Clark Worldwide, Inc. Methods and compositions for metal nanoparticle treated surfaces
CA2589618C (en) * 2004-07-30 2014-05-06 Acrymed, Inc. Antimicrobial silver compositions
US8293965B2 (en) 2006-04-28 2012-10-23 Kimberly-Clark Worldwide, Inc. Antimicrobial site dressings
JP2008202159A (en) * 2007-02-19 2008-09-04 Bando Chem Ind Ltd Fiber covered with metal colloid and method for producing the same
JP6832058B2 (en) * 2015-11-04 2021-02-24 旭化成株式会社 Antibacterial member
CN105660696A (en) * 2016-01-08 2016-06-15 南昌大学 Preparation method of visible light excitation antibacterial coating layer containing nano cuprous oxide

Also Published As

Publication number Publication date
JPH0797767A (en) 1995-04-11

Similar Documents

Publication Publication Date Title
JP3003473B2 (en) Antibacterial organic polymer material
EP0767701B1 (en) Composite articles for separating mercury from fluids
Mallick et al. Fine-tuning the balance between crystallization and gelation and enhancement of CO 2 uptake on functionalized calcium based MOFs and metallogels
US20080207076A1 (en) Textiles Containing at Least One Layer of Polymeric Nanofibres and Method of Production of the Layer of Polymeric Nanofibres From the Polymer Solution Through Electrostatic Spinning
US5470532A (en) Composite reactive articles for the determination of cyanide
CN113786833B (en) Preparation method of monometal or bimetallic nano-supported catalyst
JP4702754B2 (en) Substance-encapsulating carbon nanohorn composite and method for producing the same
Klemenčič et al. Preparation of novel fibre–silica–Ag composites: The influence of fibre structure on sorption capacity and antimicrobial activity
WO1997025076A9 (en) Odor control for compositions containing organic sulfur compounds
JP2998584B2 (en) Antibacterial fiber or fiber product and its manufacturing method
JP6405013B1 (en) Manufacturing method of membrane filter for suppressing microorganisms
JPH0413605A (en) Inorganic antimicrobial agent and production thereof
JP2998061B2 (en) Porous calcium carbonate supporting antimicrobial metal fine particles
KR102282388B1 (en) Hollow type carbon nanostructure and manufacturing method of the same
Martynov et al. New hybrid materials based on nanostructured aluminum oxyhydroxide and terbium (III) bis (tetra-15-crown-5-phthalocyaninate)
EP3500521A1 (en) Method for synthesizing particles in the presence of a solid phase
KR20200097001A (en) Porous silica and deodorant containing same
EP4094830A1 (en) Novel adsorbent
KR100628667B1 (en) Filter comprising antimicrobial nano metal components and process for preparing the same
CN108013030A (en) Show the nanostructured complex and manufacture method of antibacterial or stable against biological contamination performance
JPH06343848A (en) Method for depositing particulates
JPS60125249A (en) Catalytic metal finely dispersed graphite material and its preparation
JPH11192290A (en) Antibacterial material
Rubin et al. Synthesis, postsynthetic modification, and investigation of metal-organic frameworks for environmental and biological applications
EP4091988A1 (en) Porous silica, deodorant agent, and method for producing deodorant agent

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees