JP2997538B2 - Polycrystalline silicon solar cell element - Google Patents

Polycrystalline silicon solar cell element

Info

Publication number
JP2997538B2
JP2997538B2 JP2313929A JP31392990A JP2997538B2 JP 2997538 B2 JP2997538 B2 JP 2997538B2 JP 2313929 A JP2313929 A JP 2313929A JP 31392990 A JP31392990 A JP 31392990A JP 2997538 B2 JP2997538 B2 JP 2997538B2
Authority
JP
Japan
Prior art keywords
film
sio
light receiving
solar cell
receiving surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2313929A
Other languages
Japanese (ja)
Other versions
JPH04186779A (en
Inventor
伸孝 都村
裕幸 三枝
君男 初見
忠夫 根本
実 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2313929A priority Critical patent/JP2997538B2/en
Publication of JPH04186779A publication Critical patent/JPH04186779A/en
Application granted granted Critical
Publication of JP2997538B2 publication Critical patent/JP2997538B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、多結晶シリコン太陽電池素子に係り、特に
入射光の表面反射の低減及び素子内部での光閉じ込め効
果を高めた太陽電池素子に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polycrystalline silicon solar cell device, and more particularly, to a solar cell device having reduced surface reflection of incident light and enhanced light confinement inside the device. .

〔従来の技術〕[Conventional technology]

太陽電池素子の変換効率を高めるために、光の表面反
射の低減、光閉じ込め構造の検討が行われている。
In order to increase the conversion efficiency of the solar cell element, reduction of surface reflection of light and study of a light confinement structure are being studied.

光の表面反射に関して、単結晶太陽電池素子ではアル
カリ溶液による面方位を利用したエッチング(ピラミッ
ド形状、V溝構造)や、多層反射防止膜構造などが行わ
れている。
With respect to surface reflection of light, in a single crystal solar cell element, etching (pyramid shape, V-groove structure) using a plane orientation by an alkali solution, a multilayer antireflection film structure, and the like are performed.

光閉じ込め構造に関しては、面方位エッチを利用し、
両面V溝構造などが行われているが、高価なホトリソグ
ラフィー等の技術を必要としている。これらの技術は、
例えばB.L.Sopori,R.A.Pryor,Optical characteristics
of taxtured(100)oriented siliconsurfaces applic
ations to solar cells,Conf.Record 15th IEEEPhotovo
ltaic specialist,1981,P.468に記載されている。
For the light confinement structure, use the plane orientation etch,
Although a double-sided V-groove structure is used, expensive techniques such as photolithography are required. These technologies are
For example, BLSopori, RAPryor, Optical characteristics
of taxtured (100) oriented siliconsurfaces applic
ations to solar cells, Conf.Record 15th IEEEPhotovo
ltaic specialist, 1981, p.468.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

多結晶シリコン太陽電池素子は、低コストではあるが
面方位が一定ではなく、アルカリ溶液を用いた面方位エ
ッチングでは、表面の凹凸が均一にならないため、光の
反射を低減すること及び光閉じ込め構造を形成すること
は困難であった。
Although polycrystalline silicon solar cell elements are low cost, the plane orientation is not constant, and the plane orientation using an alkaline solution does not have uniform surface irregularities. Was difficult to form.

本発明の目的は、光の表面反射の少なく、光閉じ込め
効果を有する高効率の多結晶シリコン太陽電池素子を提
供することにある。
An object of the present invention is to provide a high-efficiency polycrystalline silicon solar cell element having less light reflection on the surface and having a light confinement effect.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的は、面方位性のない弗硝酸エッチング法で溝
を形成し、かつ、その表面にSiO2膜を形成し、受光面側
においてはSiO2膜の厚さを反射率が最小となる条件を満
すようにし、裏面側においてはSiO2膜の厚さを反射率が
大きくなる条件を満すことにより達成される。この溝及
びSiO2膜は受光面及び裏面の少なくとも一方に設ける。
The above-mentioned object is to form a groove by a fluorine nitric acid etching method having no plane orientation and form an SiO 2 film on the surface thereof, and on the light-receiving surface side, the thickness of the SiO 2 film is set so that the reflectance is minimized. Is satisfied, and the thickness of the SiO 2 film on the back surface side is achieved by satisfying the condition that the reflectance increases. The groove and the SiO 2 film are provided on at least one of the light receiving surface and the back surface.

〔作用〕[Action]

前記太陽電池の受光面に垂直に入射する波長λの光の
反射は、次式で定義される反射率R(λ)で反射され
る。
The reflection of light having a wavelength λ that is perpendicularly incident on the light receiving surface of the solar cell is reflected at a reflectance R (λ) defined by the following equation.

R(λ)=(r1 2+r2 2+2r1r2cos2θ)/ (1+r1 2・r2 2+2r1r2cos2θ) ここに、 r1=(n0−n1)/(n0+n1), r2=(n1−n2)/(n1+n2 θ=2πn1d1/λ n0は空気の屈折率、n1はSiO2膜の屈折率、n2はシリコン
の屈折率、d1はSiO2膜の膜厚、λは波長である。ここ
で、受光面のSiO2膜の厚さが次式を満す時、受光面の反
射率は前式の最小値Rmin(λ)をもつ。
R (λ) = (r 1 2 + r 2 2 + 2r 1 r 2 cos2θ) / (1 + r 1 2 · r 2 2 + 2r 1 r 2 cos2θ) here, r 1 = (n 0 -n 1) / (n 0 + N 1 ), r 2 = (n 1 −n 2 ) / (n 1 + n 2 θ = 2πn 1 d 1 / λ n 0 is the refractive index of air, n 1 is the refractive index of the SiO 2 film, and n 2 is silicon Where d 1 is the thickness of the SiO 2 film and λ is the wavelength, where the thickness of the SiO 2 film on the light receiving surface satisfies the following formula, the reflectance of the light receiving surface is the minimum It has the value R min (λ).

d1=λ/4n1 また、受光面の溝の底部で反射された光の一部は、溝
の側面に当たり、その一部は入射し、一部は反射され
る。さらに、溝の側面で反射された光の一部は、溝の底
部もしくは対向面に入射する。このように溝の底部及び
側面で反射された光の一部は、再度入射される機会が高
まるため、全体の反射率は低くなる。
d 1 = λ / 4n 1 Further , a part of the light reflected at the bottom of the groove on the light receiving surface hits the side surface of the groove, a part of which is incident, and a part is reflected. Further, a part of the light reflected on the side surface of the groove enters the bottom of the groove or the opposing surface. As described above, since a part of the light reflected on the bottom and side surfaces of the groove is more likely to be incident again, the overall reflectance is reduced.

素子内に入射し、シリコンに吸収されながら裏面に到
達した光の反射率R′(λ)は、受光面の反射率R
(λ)の式と同じであり、裏面SiO2膜の膜厚を受光面と
は違い、屈折率n0はシリコン、n1はSiO2膜、n2は空気と
し、SiO2膜厚d1を前途の場合より薄く、もしくは、厚く
して、反射率が大きくなるようにする。裏面の底部で反
射された光は、受光面の接合に近いため、光の利用効率
が高くなる。また、裏面で反射し、溝の側面から出た光
の一部は、溝の底部もしくは対向面に再度入射される機
会が高まるため、入射光の利用率が高くなる。
The reflectance R ′ (λ) of light incident on the device and reaching the back surface while being absorbed by silicon is the reflectance R ′ of the light receiving surface.
The formula is the same as that of (λ), and the thickness of the back surface SiO 2 film is different from that of the light receiving surface. The refractive index n 0 is silicon, n 1 is SiO 2 film, n 2 is air, and the SiO 2 film thickness d 1 Is made thinner or thicker than in the preceding case so that the reflectivity is increased. Since the light reflected at the bottom of the back surface is close to the junction of the light receiving surface, the light utilization efficiency increases. Further, a part of light reflected from the back surface and emitted from the side surface of the groove is more likely to be incident again on the bottom of the groove or on the opposing surface, so that the utilization rate of the incident light is increased.

ここで、受光面及び裏面にSiO2膜を形成すると、受光
面及び裏面がパッシベーション(passivation:不活性
化)される。SiO2膜の厚さを100Å以上とすると、表面
パッシベーション効果が高まることを実験により確認し
たものである。
Here, when the SiO 2 film is formed on the light receiving surface and the back surface, the light receiving surface and the back surface are passivated. Experiments have confirmed that when the thickness of the SiO 2 film is set to 100 mm or more, the surface passivation effect is enhanced.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図により説明する。太陽
電池素子1は、p型(0.5〜1.5Ω・cm)多結晶基板11か
らなり、厚さはほぼ250μmと薄い。この基板上に、耐
酸性レジストを用い、スクリーン印刷法により、両面に
パターンを印刷し、面方位性のない弗硝酸(弗酸:硝酸
=1:4)エッチングを行い、受光面側の溝21、裏面側の
溝22が形成されている。受光面側にオキシ塩酸リン(PO
Cl3)拡散法でシート抵抗90Ω/□、深さ0.25μmのn+
型導電層31が形成されている。酸素ガス雰囲気で1000
℃,80分のドライ酸化で、受光面のSiO2膜41、裏面のSiO
2膜42が形成されている。これにより、受光面のSiO2膜4
1の膜厚は1000Å形成され、前記の式より得られる表面
反射率の最も小さい条件を満している。一方、裏面のSi
O2膜42の膜厚は、n+型導電層がエッチング除去されてい
るので、濃度が低いp層のため、反射率が大きい条件の
700〜800Åが形成されている。裏面バスバー電極51、フ
ィンガー電極52、スクリーン印刷法でAg−Alペーストの
印刷,焼成により形成されている。受光面バスバー電極
61、フィンガー電極62は、スクリーン印刷法によるAgペ
ーストの印刷,焼成により形成されている。
Hereinafter, an embodiment of the present invention will be described with reference to FIG. The solar cell element 1 is composed of a p-type (0.5 to 1.5 Ω · cm) polycrystalline substrate 11 and has a thin thickness of approximately 250 μm. On this substrate, a pattern is printed on both sides by a screen printing method using an acid-resistant resist, and hydrofluoric / nitric acid (hydrofluoric acid: nitric acid = 1: 4) having no plane orientation is etched to form a groove 21 on the light receiving surface side. , A groove 22 on the back surface side is formed. Phosphorus oxyhydrochloride (PO
Cl 3 ) n + with a sheet resistance of 90Ω / □ and a depth of 0.25 μm by diffusion method
A mold conductive layer 31 is formed. 1000 in oxygen gas atmosphere
℃, dry oxidation for 80 minutes, SiO 2 film 41 on the light-receiving surface, SiO 2 on the back
Two films 42 are formed. Thereby, the SiO 2 film 4 on the light receiving surface
The film thickness of 1 is formed to be 1000 °, which satisfies the condition of the smallest surface reflectivity obtained from the above equation. On the other hand,
The thickness of the O 2 film 42 is such that the reflectivity is large because the n + -type conductive layer is removed by etching, and the concentration is low for the p-layer.
700-800Å is formed. The back busbar electrode 51, the finger electrode 52, and the Ag-Al paste are printed and fired by screen printing. Light-receiving busbar electrode
61, finger electrodes 62 are formed by printing and baking Ag paste by a screen printing method.

第2図は、受光面に本発明に係る溝とSiO2膜を設けた
もの(C)、溝のみを設けたもの(B)及び溝、SiO2
を共に設けないもの(A)の波長300nm〜1200nmに対す
る反射率を示す。ここで、溝の寸法は、幅110μm、深
さ30μm、ピッチ250μmである。この図から溝を設け
ることにより反射率は全体で5%低減され、溝とSiO2
1000Åを設けることにより、反射率は非常に低減される
ことがわかる。さらに、裏面にも同様に溝と前述した70
0Åの厚さのSiO2膜を設けることにより、第3図に示す
様に長波長側の反射率が低減されている。
FIG. 2 shows wavelengths of the light receiving surface provided with the groove and the SiO 2 film according to the present invention (C), the light receiving surface provided with only the groove (B), and the light receiving surface provided with neither the groove nor the SiO 2 film (A). The reflectance for 300 nm to 1200 nm is shown. Here, the dimensions of the groove are 110 μm in width, 30 μm in depth, and 250 μm in pitch. According to this figure, by providing the groove, the reflectance is reduced by 5% as a whole, and the groove and the SiO 2 film are formed.
It can be seen that the reflectance is greatly reduced by providing 1000 °. In addition, the back side has the same
By providing the SiO 2 film having a thickness of 0 °, the reflectance on the long wavelength side is reduced as shown in FIG.

第4図は、受光面及び裏面に溝無しSiO2膜無し
(A)、溝有りSiO2膜無し(B)、溝有りSiO2膜有り
(C)の各太陽電池素子の変換効率を示す。受光面のSi
O2膜は1000Å、裏面のSiO2膜は700Åの厚さとした。図
より、溝を設けることにより、変換効率は向上し、溝と
SiO2膜を設けることにより更に変換効率が向上すること
がわかる。
FIG. 4 shows the conversion efficiency of each solar cell element without the grooved SiO 2 film (A), without the grooved SiO 2 film (B), and with the grooved SiO 2 film (C) on the light receiving surface and the back surface. Si on the light receiving surface
The thickness of the O 2 film was 1000 mm, and the thickness of the SiO 2 film on the back surface was 700 mm. As shown in the figure, by providing grooves, the conversion efficiency is improved,
It can be seen that the conversion efficiency is further improved by providing the SiO 2 film.

本発明の中の、基板厚さ250μm、n+型導電層のシー
ト抵抗90Ω/□、深さ0.25μm、受光面のSiO2膜の膜厚
1000Å、裏面のSiO2膜の膜厚700〜800Å、溝の幅110μ
m、深さ30μm、ピッチ250μmは、一実施例であり、
本発明の範囲を制約するものではない。
In the present invention, the substrate thickness is 250 μm, the sheet resistance of the n + type conductive layer is 90Ω / □, the depth is 0.25 μm, and the thickness of the SiO 2 film on the light receiving surface is
1000 Å, the rear surface of the SiO 2 film with a thickness 700~800A, the width of the groove 110μ
m, a depth of 30 μm, and a pitch of 250 μm are examples,
It does not limit the scope of the invention.

〔発明の効果〕〔The invention's effect〕

本発明によれば、変換効率の高い太陽電池素子が容易
で安価な製造方法により実現でき、その経済的効果は極
めて大きい。
According to the present invention, a solar cell element having high conversion efficiency can be realized by an easy and inexpensive manufacturing method, and its economic effect is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の太陽電池素子の一実施例を示す部分
拡大図、第2図は、受光面側構造と反射率の関係と示す
特性図、第3図は受光面及び裏面構造と反射率の関係を
示す特性図、第4図は、受光面側構造と変換効率の関係
を示す特性図である。 1……太陽電池素子、11……基板、21……受光面側溝、
22……裏面側溝、31……n+型導電層、41……受光面側酸
化膜、42……裏面側酸化膜、51……裏面バスバー電極、
52……裏面フィンバー電極、61……受光面バスバー電
極、62……受光面フィンガー電極。
FIG. 1 is a partially enlarged view showing one embodiment of the solar cell element of the present invention, FIG. 2 is a characteristic diagram showing the relationship between the light receiving surface side structure and the reflectance, and FIG. FIG. 4 is a characteristic diagram showing the relationship between the reflectances, and FIG. 4 is a characteristic diagram showing the relationship between the light receiving surface side structure and the conversion efficiency. 1 ... solar cell element, 11 ... substrate, 21 ... light receiving surface side groove,
22 ... back side groove, 31 ... n + type conductive layer, 41 ... light receiving side oxide film, 42 ... back side oxide film, 51 ... back bus bar electrode,
52: Back side fin bar electrode, 61: Light receiving surface bus bar electrode, 62: Light receiving surface finger electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 根本 忠夫 茨城県日立市幸町3丁目1番1号 株式 会社日立製作所日立工場内 (72)発明者 内山 実 茨城県日立市幸町3丁目1番1号 株式 会社日立製作所日立工場内 (56)参考文献 特開 昭57−143873(JP,A) 特開 昭63−234567(JP,A) 特開 昭62−179164(JP,A) 特開 昭57−17184(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 31/04 - 31/078 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tadao Nemoto 3-1-1, Sachimachi, Hitachi-shi, Ibaraki Pref. Hitachi, Ltd. Hitachi Plant (72) Inventor Minoru Uchiyama 3-1-1, Sachimachi, Hitachi-shi, Ibaraki No. 1 Hitachi, Ltd. Hitachi Plant (56) References JP-A-57-143873 (JP, A) JP-A-63-234567 (JP, A) JP-A-62-179164 (JP, A) JP 57-17184 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 31/04-31/078

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】多結晶シリコン太陽電池素子において、 受光面及び裏面の表面にSiO2膜を有する溝を形成し、 受光面のSiO2膜の厚さが反射率が最小となる条件を満た
し、 裏面のSiO2膜の厚さが受光面のSiO2膜の厚さと異なるこ
とを特徴とする多結晶シリコン太陽電池素子。
1. A polycrystalline silicon solar cell element, wherein a groove having an SiO 2 film is formed on the light receiving surface and the back surface, and the thickness of the SiO 2 film on the light receiving surface satisfies a condition that the reflectance is minimum; A polycrystalline silicon solar cell element, wherein the thickness of the SiO 2 film on the back surface is different from the thickness of the SiO 2 film on the light receiving surface.
JP2313929A 1990-11-21 1990-11-21 Polycrystalline silicon solar cell element Expired - Fee Related JP2997538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2313929A JP2997538B2 (en) 1990-11-21 1990-11-21 Polycrystalline silicon solar cell element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2313929A JP2997538B2 (en) 1990-11-21 1990-11-21 Polycrystalline silicon solar cell element

Publications (2)

Publication Number Publication Date
JPH04186779A JPH04186779A (en) 1992-07-03
JP2997538B2 true JP2997538B2 (en) 2000-01-11

Family

ID=18047217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2313929A Expired - Fee Related JP2997538B2 (en) 1990-11-21 1990-11-21 Polycrystalline silicon solar cell element

Country Status (1)

Country Link
JP (1) JP2997538B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010278148A (en) * 2009-05-27 2010-12-09 Mitsubishi Electric Corp Photovoltaic apparatus and method of manufacturing the same

Also Published As

Publication number Publication date
JPH04186779A (en) 1992-07-03

Similar Documents

Publication Publication Date Title
US5024953A (en) Method for producing opto-electric transducing element
WO2006025203A1 (en) Solar cell and method for manufacturing the same
JPS60208813A (en) Photoelectric converting device and manufacture therefor
JP3469729B2 (en) Solar cell element
JP2000138386A (en) Manufacturing method of solar cell and solar cell manufactured by the method
JP2000183379A (en) Method for manufacturing solar cell
JP2001326370A (en) Solar battery and method of manufacturing the same
JP3006266B2 (en) Solar cell element
JP5323827B2 (en) Photovoltaic device and manufacturing method thereof
JPH05315628A (en) Manufacture of photoelectric conversion device
JP2951061B2 (en) Solar cell manufacturing method
JP2997538B2 (en) Polycrystalline silicon solar cell element
JPH07326784A (en) Manufacture of solar battery element
JP2775543B2 (en) Photoelectric conversion device
JP2999867B2 (en) Solar cell and method of manufacturing the same
JPH11307792A (en) Solar cell element
JP3301663B2 (en) Solar cell manufacturing method
JP2006287027A (en) Solar cell
JP5452755B2 (en) Method for manufacturing photovoltaic device
JPH0629562A (en) Solar battery and its manufacture
JPH0722632A (en) Polycrystalline silicon solar cell and its manufacture
JP2875382B2 (en) Solar cell element
JP2835415B2 (en) Photoelectric conversion element
JP2007266649A (en) Method of manufacturing solar cell element
JP2000196113A (en) Solar battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees