JP2997497B2 - Magnetic information detection device - Google Patents

Magnetic information detection device

Info

Publication number
JP2997497B2
JP2997497B2 JP2073320A JP7332090A JP2997497B2 JP 2997497 B2 JP2997497 B2 JP 2997497B2 JP 2073320 A JP2073320 A JP 2073320A JP 7332090 A JP7332090 A JP 7332090A JP 2997497 B2 JP2997497 B2 JP 2997497B2
Authority
JP
Japan
Prior art keywords
magnetic
probe
cantilever
thin film
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2073320A
Other languages
Japanese (ja)
Other versions
JPH03274480A (en
Inventor
幸雄 本多
純男 保坂
剛 長谷川
茂行 細木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2073320A priority Critical patent/JP2997497B2/en
Publication of JPH03274480A publication Critical patent/JPH03274480A/en
Application granted granted Critical
Publication of JP2997497B2 publication Critical patent/JP2997497B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measuring Magnetic Variables (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【産業上の利用分野】[Industrial applications]

本発明は,磁性探針と磁性体等の試料とを接近させた
時に発生する磁気力又はトンネル電流を利用して,試料
の表面形態あるいは磁気的性質の情報を得る走査型磁気
力顕微鏡,走査型トンネル顕微鏡あるいは原子間力顕微
鏡などの磁気情報検出装置に関する。
The present invention relates to a scanning magnetic force microscope that obtains information on the surface morphology or magnetic properties of a sample by using a magnetic force or a tunnel current generated when a magnetic probe and a sample such as a magnetic material are brought close to each other. The present invention relates to a magnetic information detecting device such as a scanning tunnel microscope or an atomic force microscope.

【従来の技術】[Prior art]

従来技術である走査型トンネル顕微鏡は,探針と試料
間に電圧を印加し,探針と試料との距離を接近したとき
に得られるトンネル電流および電界放射電流を利用して
試料の表面形態を調べる装置である。一方,走査型磁気
力顕微鏡は,探針として磁性体を用い,この磁性探針を
磁性試料に接近したときの磁気力を利用して試料の磁化
状態を調べる装置である。 従来,磁性探針と試料を接近して得られる磁気力を利
用した走査型磁気力顕微鏡における試料の磁気的情報の
取得方法については,ジャーナル オブ バキューム
サイエンス テクノロジー A6(1988年)第279頁から
第282頁,あるいはアプライド フィジックス レター
ズ 50巻(1987年)第1455頁から第1457頁において論じ
られている。
The scanning tunneling microscope, which is a conventional technique, applies a voltage between the probe and the sample, and utilizes the tunnel current and the field emission current obtained when the distance between the probe and the sample is reduced, to change the surface morphology of the sample. It is a device to check. On the other hand, a scanning magnetic force microscope is an apparatus that uses a magnetic material as a probe and uses a magnetic force when the magnetic probe approaches a magnetic sample to check the magnetization state of the sample. Conventionally, a method of acquiring magnetic information of a sample in a scanning magnetic force microscope using a magnetic force obtained by bringing a magnetic probe and a sample close to each other is described in Journal of Vacuum.
It is discussed in Science Technology A6 (1988) pp. 279-282, or Applied Physics Letters 50 (1987) pp. 1455--1457.

【発明が解決しようとする課題】[Problems to be solved by the invention]

磁気力顕微鏡は,磁性試料表面の漏洩磁界と磁性探針
と相互作用によって生ずる磁気力を検出する装置であ
る。 上記従来技術で用いる磁性プローブは,カンチレバー
の表面全体に単に磁性材料を被覆して磁性プローブを構
成するか,もしくはNiやFeなどの磁性線の先端をL字型
に折り曲げた構成の磁性プローブを用いていた。単にカ
ンチレバーの表面に磁性材料を被覆して構成した磁性プ
ローブでは,磁性体の磁化容易軸が不規則に形成されて
おり試料と磁性プローブ間の磁気力感度が低い欠点があ
った。またNiやFeなどを用いた従来の磁性探針は,探針
材料の保磁力が80A/m以下と小さいために,磁性探針を
試料表面に接近したときに試料表面の漏洩磁界により探
針の磁化の向きが変化して高感度の磁気力の検出ができ
ない欠点があった。さらに同様の原因により試料と磁性
探針が充分に接近できないため,高分解能の磁区構造観
察ができない欠点があった。 また,従来技術では,探針と試料との間隙の変化によ
る誤差が入る為,測定した磁気力(表面形態情報を含
む)から表面形態情報を除去しても正確な磁気力が得ら
れないという欠点があった。 本発明の第1の目的は,試料表面に対して垂直もしく
は平行の漏洩磁界による磁気力を高感度で検出可能な磁
気情報検出装置を提供することにある。また第2の目的
は磁性探針表面の変質を防止し,試料と探針間の磁気力
とトンネル電流を再現性良く測定できる磁気情報検出装
置を提供することにある。
A magnetic force microscope is a device that detects a magnetic field generated by interaction between a leakage magnetic field on a magnetic sample surface and a magnetic probe. The magnetic probe used in the above-mentioned conventional technology is a magnetic probe in which the entire surface of the cantilever is simply coated with a magnetic material, or a magnetic probe in which the tip of a magnetic wire such as Ni or Fe is bent into an L shape. Was used. A magnetic probe formed simply by coating the surface of a cantilever with a magnetic material has a drawback that the axis of easy magnetization of the magnetic material is irregularly formed and the magnetic force sensitivity between the sample and the magnetic probe is low. In addition, conventional magnetic probes using Ni, Fe, etc. have a small coercive force of 80 A / m or less, so when the magnetic probe comes close to the sample surface, the magnetic field leaks from the sample surface. However, there is a disadvantage that the direction of the magnetization changes, and a highly sensitive magnetic force cannot be detected. Further, there is a disadvantage that the magnetic domain structure cannot be observed at a high resolution because the sample and the magnetic probe cannot be sufficiently close to each other due to the same reason. In addition, in the prior art, since errors due to changes in the gap between the probe and the sample are included, accurate magnetic force cannot be obtained even if surface morphology information is removed from the measured magnetic force (including surface morphology information). There were drawbacks. A first object of the present invention is to provide a magnetic information detecting device capable of detecting a magnetic force due to a leakage magnetic field perpendicular or parallel to a sample surface with high sensitivity. It is a second object of the present invention to provide a magnetic information detecting device capable of preventing deterioration of the surface of a magnetic probe and measuring a magnetic force and a tunnel current between the sample and the probe with good reproducibility.

【課題を解決するための手段】[Means for Solving the Problems]

上記第1の目的を達成するために、本発明において
は,先端が尖ったカンチレバーの先端部表面に磁性体薄
膜が結晶配向制御層が形成され,この層上に磁性体薄膜
が形成された磁性探針を用いる。 また,第2の目的を達成するために,上記磁性体薄膜
の表面に耐酸化性の保護膜を形成する。
In order to achieve the first object, according to the present invention, a magnetic thin film is formed on a surface of a tip portion of a cantilever having a sharp tip and a crystal orientation control layer, and a magnetic thin film is formed on this layer. Use a probe. In order to achieve the second object, an oxidation-resistant protective film is formed on the surface of the magnetic thin film.

【作用】[Action]

カンチレバー表面に形成する磁性体薄膜の磁化容易軸
は磁性薄膜を構成する結晶粒の成長方位により異なり,
磁化容易軸の向きを制御するために,カンチレバーの表
面に磁性体薄膜の結晶粒の成長方位を制御する下地層を
設け,この上に磁性体薄膜を真空蒸着法やスパッタリン
グ法で形成する。磁性体薄膜結晶粒の成長方位は下地層
の材料や蒸着粒子の入射方向を制御することによって任
意に変化でき,磁性体薄膜の磁化容易軸がカンチレバー
の面に対して0〜90度の範囲の特定の向きに配向させた
磁性探針が形成できる。磁性探針用の磁性材料はCo,Fe
を主成分とし,これにNi,Cr,Pt,Zr,C,Nなどを添加した
合金あるいは多層膜として用いることができる。また上
記磁性材料の磁化容易軸を制御するための下地層材料と
してはGe,Si,Tr,Cr,Cなどの多結晶膜や非晶質状膜,あ
るいはこれらの合金膜を用いる。 カンチレバーの面に対して垂直方向から平行の方向の
任意の一方向に磁化容易軸が揃った磁性薄膜を磁化容易
軸に沿って磁化してから,カンチレバーの先端を試料表
面に垂直に設置することにより,試料表面の漏洩磁界の
垂直あるいは平行な方向の成分を高感度で検出できる磁
性探針を作製できる。さらに,先端の曲率半径を100nm
以下に尖らせたカンチレバーを用いると,磁性探針の先
端曲率を容易に制御できる。カンチレバーの先端は,半
導体リングラフィ技術におけるエッチング条件などによ
り任意に加工できる。さらには,カンチレバー単体ある
いは磁性薄膜を形成したカンチレバーを,例えば収束イ
オンビーム(FIB)により先端部を加工することによ
り,任意の形状に加工できる。また磁性探針を薄膜化し
たので針金状の磁性探針より保持力が大きくなり,試料
面の漏洩磁界により磁性探針の磁化が変わることがなく
なるため,試料と磁性探針の間隔を充分に接近して測定
でき,高感度,高分解能の磁気力情報を得ることができ
る。この効果は,磁性探針薄膜材料として保磁力の大き
な材料を選ぶことにより,より大きくなる。この構成に
より,磁性探針と磁性試料の間に作用した磁気力により
すなわちカンチレバーに撓みが生じる。この撓みの量を
カンチレバーの後方に設けた変位検出手段(例えばトン
ネル電流,または光学的な方法,あるいは静電容量の変
化)で検出することにより,試料の磁気力情報が得られ
る。また同時に試料と磁性探針の間のトンネル電流を検
出することにより,試料の表面形態情報と,さらに正確
な磁気力情報を得ることができる。 同様の計測手段は,試料と探針の間の磁気力の他に,
音響,熱,光などによる試料と探針間の変位を検出する
走査型トンネル顕微鏡類似装置に適用できる。 また保護膜は,磁性探針の材料に比べて酸化力が小さ
いので,磁性探針の表面に酸化膜や窒化膜などの変質層
が形成されて,磁性探針の磁気的性質の変化を防止する
作用をする。 保護膜の材料として望ましい材料は,Pt,Pd,Au,Ru,Rh,
Cr,Cおよび,これらの内の少なくとも一元素を含む合金
である。保護膜の望ましい厚さは,100nm以下である。保
護膜の材料としては電気伝導性を有する材料が望まし
い。さらに望ましくは非磁性の材料がよい。
The easy axis of magnetization of the magnetic thin film formed on the surface of the cantilever differs depending on the growth direction of the crystal grains constituting the magnetic thin film.
In order to control the direction of the axis of easy magnetization, an underlayer for controlling the growth direction of crystal grains of the magnetic thin film is provided on the surface of the cantilever, and the magnetic thin film is formed thereon by vacuum evaporation or sputtering. The growth direction of the crystal grains of the magnetic thin film can be arbitrarily changed by controlling the material of the underlayer and the incident direction of the vapor-deposited particles. A magnetic probe oriented in a specific direction can be formed. Magnetic materials for magnetic probes are Co and Fe
Can be used as an alloy or a multilayer film in which Ni, Cr, Pt, Zr, C, N, etc. are added as a main component. A polycrystalline film of Ge, Si, Tr, Cr, C or the like, an amorphous film, or an alloy film thereof is used as an underlayer material for controlling the axis of easy magnetization of the magnetic material. Magnetize a magnetic thin film with an easy axis of magnetization in any one of the directions perpendicular to and parallel to the surface of the cantilever along the easy axis, and then place the tip of the cantilever perpendicular to the sample surface Accordingly, it is possible to manufacture a magnetic probe capable of detecting a component in a vertical or parallel direction of a leakage magnetic field on a sample surface with high sensitivity. Furthermore, the radius of curvature at the tip is 100 nm
The use of a sharpened cantilever as described below makes it easy to control the curvature of the tip of the magnetic probe. The tip of the cantilever can be arbitrarily processed according to the etching conditions in the semiconductor lithography technique. Further, the cantilever alone or the cantilever on which the magnetic thin film is formed can be processed into an arbitrary shape by processing the tip portion using, for example, a focused ion beam (FIB). In addition, because the magnetic probe is thinner, the holding force is greater than that of a wire-shaped magnetic probe, and the magnetic field of the magnetic probe does not change due to the leakage magnetic field on the sample surface. Measurement can be performed in close proximity, and high-sensitivity, high-resolution magnetic force information can be obtained. This effect is further enhanced by selecting a material having a large coercive force as the magnetic probe thin film material. With this configuration, the cantilever is bent by the magnetic force acting between the magnetic probe and the magnetic sample. By detecting the amount of the deflection by a displacement detecting means (for example, a tunnel current, an optical method, or a change in capacitance) provided behind the cantilever, magnetic force information of the sample can be obtained. At the same time, by detecting the tunnel current between the sample and the magnetic probe, it is possible to obtain surface morphological information of the sample and more accurate magnetic force information. A similar measuring means, besides the magnetic force between the sample and the probe,
The present invention can be applied to a scanning tunnel microscope-like device that detects displacement between a sample and a probe due to sound, heat, light, or the like. In addition, since the protective film has a lower oxidizing power than the material of the magnetic probe, an altered layer such as an oxide film or a nitride film is formed on the surface of the magnetic probe to prevent a change in the magnetic properties of the magnetic probe. To act. Desirable materials for the protective film are Pt, Pd, Au, Ru, Rh,
An alloy containing Cr, C, and at least one of these elements. Desirable thickness of the protective film is less than 100 nm. As the material of the protective film, a material having electric conductivity is desirable. More preferably, a nonmagnetic material is used.

【実施例】【Example】

以下、実施例でもって本発明を説明する。 実施例 1 第1図により,本実施例を説明する。フォトプロセス
などにより同図(a)のごとく先端が鋭く尖ったカンチ
レバー1を作製した。カンチレバー1の材料としては,
剛性が高く比重の小さいものが良く,本実施例では,Si,
SiO2,Si3N4,W,Mo,ダイヤモンド状カーボン,あるいはス
テンレス鋼を用いて同様の構成のカンチレバー1を作製
したいずれも同様の効果を得た。カンチレバー1は支持
体2によりサポートする。カンチレバー1の先端部3は
鋭く尖った形態に加工した。先端部3の曲率は,例えば
フォトプロセスにおけるエッチング速度やエッチング液
を適切に選ぶことにより任意に変化できた。またフォト
プロセスの後イオンビームエッチングなどにより鋭く尖
った形状に加工した。カンチレバー1の先端部3の曲率
は100nm以下がサブミクロンオーダーの高分解能の磁気
情報を得るのに適していた。次に,カンチレバー1の先
端部3に磁性探針4を形成する(第1図(b))。磁性
探針4は磁性材料薄膜により構成した。この磁性材料薄
膜の磁化容易軸の向きを制御するために上記磁性薄膜の
下部に下地層5を設けた。下地層5の材料とこの上に形
成する磁性材料薄膜の組み合わせ方により,磁性薄膜の
磁化容易軸の向きをカンチレバーの先端部3の面に対し
て垂直方向あるいは平行な向きに任意に制御した。下地
層5の材料としてはGe,Si,Ti,Cr,Cなどの多結晶膜や非
晶質状膜,あるいはこれらの合金膜を用いた。また磁性
薄膜材料としてはCo,Feを主成分とし,これにNi,Cr,Pt,
Zr,C,Nなどに添加した合金あるいは多層膜を使用した。
試料と磁性探針の間に作用する磁気力は,磁性探針先端
の磁化の大きさに依存するため,磁気力感度を向上する
ためには磁性探針として用いる磁性材料薄膜の飽和磁化
は100kA/m以上が良い。また,磁性探針を磁性試料表面
に接近したとき,試料表面の漏洩磁界によって磁性探針
の磁化が変化し,その結果磁気力感度が低下する。この
ため磁性探針を構成する磁性薄膜の保磁力は80A/m以上
とした。これら下地層5や磁性材料薄膜は真空蒸着法や
スパッタリング法で形成した。例えば,下地層5として
CrやCを用い,磁性材料としてCo−Ni,Co−Ni−Pt,Fe−
Niなどを用いることにより磁性材料薄膜の磁化容易軸が
カンチレバーの先端部3面に平行かつカンチレバーの先
端方向に高配向した磁性探針4を作製した。また例えば
下地層5としてGe,Si,Tiあるいはこれらの多層膜を用
い,この上にCo−Cr,Co−Cr−Niなどの磁性薄膜を形成
することにより,磁性薄膜の磁化容易軸がカンチレバー
の先端部3の面に対して垂直に高配向した磁性探針4を
作製した。さらに,前記下地層および磁性薄膜を形成す
るとき,カンチレバーの先端部面を蒸着源に対して0〜
90度の範囲で傾斜して設置することにより,磁性薄膜の
磁化容易軸をカンチレバーの先端部面に対して0〜90度
の範囲の任意の向きに制御できた。磁性探針4を構成す
る磁性材料薄膜の保磁力や薄膜の結晶粒径は,薄膜形成
時の温度やスパッタリングガスの圧力などを変化するこ
とにより任意に制御した。例えば,真空蒸着法により基
板温度150℃で膜厚20nmのCr下地層を形成したのち,こ
の上にCo80Ni20からなる磁性薄膜を形成すると,保磁力
16kA/m,飽和磁化700kA/mの磁気特性をもち,かつ磁性容
易軸がカンチレバーの先端部3の面に対して平行に高配
向した磁性探針4を得た。分解能が0.1μm以下の磁気
力情報を得るためには磁性探針の先端の曲率は0.1μm
以下とすることが必要であった。このためには磁性探針
を構成する磁性材料薄膜の結晶粒径は少なくとも0.1μ
m以下に設定する必要があった。磁性材料薄膜の結晶粒
径は,薄膜を形成するときの速度や基板温度,スパッタ
リングガスの圧力,さらには磁性材料薄膜を形成すると
きの下地層の種類により制御した。本実施例の上記条件
で形成した時の磁性薄膜を構成する結晶粒径は20〜50nm
であった。 比較のために,カンチレバーの先端部3の面に下地層
5を設けないで直接Co80Ni20からなる磁性薄膜を形成し
た。この薄膜の磁気特性は保磁力10kA/m,飽和磁化690kA
/mとCr下地層を設けた場合とほぼ同じ特性を示したが,
磁性探針4を構成する磁性薄膜の磁化容易軸の向きがカ
ンチレバーの先端部3の面に対してランダムに配向して
いた。上記2種類の磁性探針を用いて,磁性探針4と磁
性試料の間に働く試料面垂直方向の磁気力感度を比較し
た結果,カンチレバーの先端部3の面に下地層5を設
け,磁性膜の磁化容易軸を高配向した磁性探針が,下地
層が設けない磁性探針に比べて10倍以上大きい値を示し
た。 同様にカンチレバーの先端部3の面に下地層5として
非晶質状のGe膜を形成し,この上にCo−20wt%Crからな
る磁性薄膜を形成し,磁化容易軸がカンチレバーの面に
垂直方向に高配向した磁性探針4を作製した。この場合
の磁性探針は試料面に対して平行な成分の磁気力を高感
度で検出できた。 同様の構成の磁性探針4は,真空蒸着法やスパッタリ
ング法の他に電界メッキ法により磁性材料を付着させて
も良いことは当然である。 本実施例では,カンチレバーの先端部の形状はフォト
プロセスにより方法を説明したが,カンチレバーおよび
磁性探針先端の形状はイオンビームを照射することによ
っても加工できた。例えば,フォトプロセスにより第1
図(a)のごとく作製したカンチレバーの先端を収束イ
オンビーム(FIB)により,さらに鋭い先端形状に加工
した後,この上に磁性薄膜を形成して,第1図(c)の
形態の磁性探針を作製した。また第1図(b)のごとく
磁性薄膜を形成した後,同様に収束イオンビームにより
加工し,第1図(c)のごとく任意の先端形状の磁性探
針を作製した。 実施例2 本発明の磁性探針の他の実施例を第2図により説明す
る。厚さ1μm,幅20μm,長さ180μm,のSiO2からなる先
端が鋭く尖ったカンチレバー1の片面に,下地層5,磁性
薄膜7の順に形成した。この時,カンチレバー1は磁性
薄膜7を形成した面が凹面になるように湾曲した。続い
て磁性薄膜7の表面および,これと反対側のカンチレバ
ーの面に保護膜6を形成した。この保護膜6は,電気伝
導性材料が望ましい。磁性薄膜7の表面に形成する保護
膜6の膜厚は,この裏面側に形成する保護膜の膜厚と異
なっても効果は同じであった。カンチレバーの変位は,
カンチレバーの凹面側と金属探針(図示せず)との間の
トンネル電流,或いは光学的な変位検出法により実施し
たが,このためにはカンチレバー1の面は鏡面が望まし
く,この面に形成する保護膜の結晶粒径は50nm以下がよ
かった。保護膜の結晶粒径がこれ以上に大きくなると表
面の起伏が大きくなり,カンチレバーの変位検出の誤差
が大きくなる原因となった。上記の如く作製した磁性探
針は,カンチレバーの先端を試料面に垂直になるように
設置して使用した。 実施例3 本発明により作製した磁性探針を用いて磁気力顕微鏡
に適用した例を第3図により説明する。先端が尖ったカ
ンチレバ1の表面に下地層5,磁性薄膜7の順に形成して
磁性探針4を構成した。この磁性探針は,カンチレバー
の先端が磁性試料8の表面に垂直に接近するように設置
した。すなわちカンチレバー1の面に形成した磁性薄膜
7の酸化容易軸が試料面に対して垂直もしくは平行にな
るように設置した。この磁性薄膜7はカンチレバー1の
面に形成した磁性薄膜の磁化容易軸の方向に磁化して残
留磁化状態に保持して使用した。この磁性探針およびカ
ンチレバーの両面にはAu,Ptなどの電気導電性の被覆層
6を形成した。 磁性薄膜7の反対側の面に,カンチレバー1に接近さ
せて先端が鋭く尖った金属探針9を設置し,カンチレバ
ー面と金属探針の間のトンネル電流を検出することによ
り,試料と磁性探針の間の磁気力によるカンチレバーの
変位を検出した。金属探針9は,先端が鋭く尖ったW線
やPt線で形成したが,いずれも同様の効果を得た。上記
のごとく構成した測定により,磁性試料8の表面におけ
る漏洩磁界によるカンチレバーの変位を検出し,この結
果より磁性試料8の磁区構造などの磁気力情報を得た。
また同時に磁性探針4と試料8の間のトンネル電流を検
出することにより,試料表面の形態情報を得た。 磁性探針の表面に保護膜6を形成することにより,空
気中や真空中,あるいは各種ガス雰囲気で長時間動作し
ても,再現性の良い測定ができた。 保護膜6としては,Ptの他にRu,Rh,Au,Pdおよびこれを
含む合金を用いても効果は同じであった。 実施例4 本発明により作製した磁性探針の他の実施例を第4図
より説明する。 先端が尖ったチップ10から成るカンチレバーを支持体
2で保持した。カンチレバー11は酸化珪素で構成した。
また窒化珪素,ダイヤモンド状の薄膜,もしくは非磁性
金属フォイルのいずれで構成しても同様の効果を得た。
チップ10はタングステン,白金あるいはカンチレバー11
と同一材料からなる非磁性材料,あるいはニッケル,
鉄,コバルト等の磁性材料の線材もしくはフォイルで構
成したものを作製した。チップ10はカンチレバー11に接
着剤などで固定したのちに,その先端を電界研磨などで
エッチングして尖らすか,あるいはあらかじめ先端が尖
ったチップ10をカンチレバー11に固定する方法で作製し
た。上記のごとく作製したチップ10の表面にまず磁性薄
膜の結晶配向制御用の下地層(図示せず)を形成し,続
いてこの上に磁性薄膜を形成して磁性探針4を作製し
た。この場合,先端が鋭く尖った磁性探針4を得るため
に,結晶配向制御用の下地層と磁性薄膜の膜厚は薄い方
が望ましく,それぞれの膜厚は0.1μm以下が適当であ
った。チップの表面に結晶配向制御用の下地層を設けて
磁性薄膜を形成することにより,磁性薄膜の磁化容易軸
がチップ10の面に対して垂直,あるいは平行に高配向し
た磁性探針4を作製した。この磁性探針4の使用に際し
ては,尖ったチップ10の先端に平行あるいは垂直方向に
磁化して用いた。上記磁化された磁性探針4はチップ10
の先端部が試料8の面に垂直に接するように設置した。
磁性探針4がその先端に平行に磁化されているとき,磁
性試料8の漏洩磁界の垂直成分を検出し,一方磁性探針
4がその先端に垂直に磁化されているとき,磁性試料8
の漏洩磁界の水平成分を検出した。磁性探針4と磁性試
料8の相互作用で発生した磁気力によりカンチレバー11
が撓みを受ける。カンチレバー11の撓みによる変位はカ
ンチレバー11の後方に設けた変位検出手段,例えば先端
が尖った金属探針9を設置し,上記金属探針9とカンチ
レバー11の面の間のトンネル電流により検出した。この
構成の磁性探針を用いることにより10-10Nのオーダーの
磁気力とサブミクロンオーダーの高分解能の磁気情報を
再現性良く得ることができた。 本発明では,磁性探針の磁化容易軸が揃っており,か
つ磁性探針の保磁力が大きいので,従来のように試料か
らの磁界により磁性探針の磁化が変化することがない。
したがって,試料と磁性探針間のトンネル電流を計測し
て表面形態情報を得れば,これと磁気力測定で得た磁気
情報(表面形態情報を含んでいる)とから正確な磁気情
報が得られる。
Hereinafter, the present invention will be described with reference to examples. Embodiment 1 This embodiment will be described with reference to FIG. A cantilever 1 having a sharp and sharp tip as shown in FIG. As a material of the cantilever 1,
It is better to have high rigidity and low specific gravity. In this embodiment, Si,
A cantilever 1 having a similar configuration was manufactured using SiO 2 , Si 3 N 4 , W, Mo, diamond-like carbon, or stainless steel, and the same effect was obtained. The cantilever 1 is supported by a support 2. The tip 3 of the cantilever 1 was machined into a sharp pointed form. The curvature of the tip 3 could be arbitrarily changed by, for example, appropriately selecting an etching rate and an etching solution in a photo process. After the photo process, it was processed into a sharp pointed shape by ion beam etching or the like. The curvature of the tip portion 3 of the cantilever 1 is less than 100 nm, which is suitable for obtaining high-resolution magnetic information on the order of submicrons. Next, a magnetic probe 4 is formed on the tip 3 of the cantilever 1 (FIG. 1 (b)). The magnetic probe 4 was formed of a magnetic material thin film. An underlayer 5 was provided below the magnetic thin film to control the direction of the axis of easy magnetization of the magnetic material thin film. The direction of the axis of easy magnetization of the magnetic thin film was arbitrarily controlled to be perpendicular or parallel to the surface of the tip 3 of the cantilever depending on the combination of the material of the underlayer 5 and the magnetic material thin film formed thereon. As a material of the underlayer 5, a polycrystalline film, an amorphous film, or an alloy film of Ge, Si, Ti, Cr, C, or the like was used. The magnetic thin film material is mainly composed of Co and Fe, and Ni, Cr, Pt,
An alloy or a multilayer film added to Zr, C, N, etc. was used.
Since the magnetic force acting between the sample and the magnetic probe depends on the magnitude of the magnetization at the tip of the magnetic probe, the saturation magnetization of the magnetic material thin film used as the magnetic probe must be 100 kA to improve the magnetic force sensitivity. / m or more is good. When the magnetic probe approaches the magnetic sample surface, the magnetic field of the magnetic probe changes due to the leakage magnetic field on the sample surface, and as a result, the magnetic force sensitivity decreases. Therefore, the coercive force of the magnetic thin film constituting the magnetic probe was set to 80 A / m or more. The underlayer 5 and the magnetic material thin film were formed by a vacuum evaporation method or a sputtering method. For example, as the underlayer 5
Using Cr or C, Co-Ni, Co-Ni-Pt, Fe-
By using Ni or the like, a magnetic probe 4 was manufactured in which the axis of easy magnetization of the magnetic material thin film was parallel to the surface 3 of the tip of the cantilever and highly oriented in the direction of the tip of the cantilever. Further, for example, Ge, Si, Ti or a multilayer film thereof is used as the underlayer 5 and a magnetic thin film such as Co—Cr or Co—Cr—Ni is formed thereon, so that the easy axis of magnetization of the magnetic thin film is A magnetic probe 4 highly oriented perpendicular to the surface of the tip 3 was produced. Further, when the underlayer and the magnetic thin film are formed, the tip surface of the cantilever is moved from 0 to the evaporation source.
By installing the magnetic thin film at an angle in the range of 90 degrees, the easy axis of magnetization of the magnetic thin film could be controlled in any direction within the range of 0 to 90 degrees with respect to the tip surface of the cantilever. The coercive force of the magnetic material thin film constituting the magnetic probe 4 and the crystal grain size of the thin film were arbitrarily controlled by changing the temperature at the time of forming the thin film, the pressure of the sputtering gas, and the like. For example, after forming a Cr underlayer with a thickness of 20 nm at a substrate temperature of 150 ° C. by a vacuum evaporation method, and then forming a magnetic thin film made of Co 80 Ni 20 thereon, the coercive force
A magnetic probe 4 having a magnetic characteristic of 16 kA / m and a saturation magnetization of 700 kA / m and having a magnetic easy axis highly oriented parallel to the surface of the tip 3 of the cantilever was obtained. To obtain magnetic force information with a resolution of 0.1 μm or less, the curvature of the tip of the magnetic probe must be 0.1 μm
It was necessary to: For this purpose, the crystal grain size of the magnetic material thin film constituting the magnetic probe should be at least 0.1μ.
m or less. The crystal grain size of the magnetic material thin film was controlled by the speed at which the thin film was formed, the substrate temperature, the pressure of the sputtering gas, and the type of underlayer when the magnetic material thin film was formed. The crystal grain size constituting the magnetic thin film when formed under the above conditions of the present embodiment is 20 to 50 nm.
Met. For comparison, a magnetic thin film made of Co 80 Ni 20 was directly formed without providing the underlayer 5 on the surface of the tip 3 of the cantilever. The magnetic properties of this thin film are coercive force 10 kA / m, saturation magnetization 690 kA
Although the characteristics were almost the same as those with the / m and Cr underlayers,
The direction of the axis of easy magnetization of the magnetic thin film constituting the magnetic probe 4 was randomly oriented with respect to the surface of the tip 3 of the cantilever. As a result of comparing the magnetic force sensitivity between the magnetic probe 4 and the magnetic sample in the direction perpendicular to the sample surface using the two types of magnetic probes, the underlayer 5 was provided on the surface of the tip 3 of the cantilever. The magnetic probe with the highly easy axis of magnetization of the film showed a value more than 10 times larger than the magnetic probe without the underlayer. Similarly, an amorphous Ge film is formed as a base layer 5 on the surface of the tip 3 of the cantilever, and a magnetic thin film made of Co-20 wt% Cr is formed thereon, and the axis of easy magnetization is perpendicular to the surface of the cantilever. A magnetic probe 4 highly oriented in the direction was produced. The magnetic probe in this case could detect the magnetic force of the component parallel to the sample surface with high sensitivity. It is a matter of course that the magnetic probe 4 having the same configuration may be made to adhere a magnetic material by an electric field plating method other than the vacuum evaporation method and the sputtering method. In this embodiment, the shape of the tip of the cantilever was described by a photo process, but the shapes of the cantilever and the tip of the magnetic probe could also be processed by irradiating an ion beam. For example, the first process
The tip of the cantilever fabricated as shown in FIG. 1A is processed into a sharper tip by a focused ion beam (FIB), and then a magnetic thin film is formed thereon. A needle was made. Also, after forming a magnetic thin film as shown in FIG. 1 (b), it was similarly processed by a focused ion beam to produce a magnetic probe having an arbitrary tip shape as shown in FIG. 1 (c). Embodiment 2 Another embodiment of the magnetic probe of the present invention will be described with reference to FIG. An underlayer 5 and a magnetic thin film 7 were formed in this order on one surface of a cantilever 1 having a sharp pointed tip made of SiO 2 having a thickness of 1 μm, a width of 20 μm, and a length of 180 μm. At this time, the cantilever 1 was curved so that the surface on which the magnetic thin film 7 was formed was concave. Subsequently, a protective film 6 was formed on the surface of the magnetic thin film 7 and the surface of the cantilever on the opposite side. The protective film 6 is preferably made of an electrically conductive material. The effect was the same even if the thickness of the protective film 6 formed on the surface of the magnetic thin film 7 was different from the thickness of the protective film formed on the back surface side. The displacement of the cantilever is
Tunnel current between the concave side of the cantilever and a metal probe (not shown) or an optical displacement detection method was used. For this purpose, the surface of the cantilever 1 is preferably a mirror surface, and is formed on this surface. The crystal grain size of the protective film was preferably 50 nm or less. If the crystal grain size of the protective film becomes larger than this, the undulation of the surface becomes large, causing an error in the displacement detection of the cantilever. The magnetic probe prepared as described above was used by setting the tip of the cantilever to be perpendicular to the sample surface. Embodiment 3 An example in which a magnetic probe manufactured according to the present invention is applied to a magnetic force microscope will be described with reference to FIG. A magnetic probe 4 was formed by sequentially forming an underlayer 5 and a magnetic thin film 7 on the surface of a cantilever 1 having a sharp tip. The magnetic probe was set such that the tip of the cantilever approached perpendicularly to the surface of the magnetic sample 8. That is, the magnetic thin film 7 formed on the surface of the cantilever 1 was set such that the axis of easy oxidation was perpendicular or parallel to the sample surface. The magnetic thin film 7 was used while being magnetized in the direction of the axis of easy magnetization of the magnetic thin film formed on the surface of the cantilever 1 and kept in a remanent magnetization state. An electrically conductive coating layer 6 of Au, Pt or the like was formed on both surfaces of the magnetic probe and the cantilever. On the opposite surface of the magnetic thin film 7, a metal probe 9 having a sharp tip is set close to the cantilever 1 and a tunnel current between the cantilever surface and the metal probe is detected, whereby the sample and the magnetic probe are detected. The displacement of the cantilever due to the magnetic force between the needles was detected. The metal probe 9 was formed of a sharply pointed W line or Pt line, but the same effect was obtained in each case. With the measurement configured as described above, the displacement of the cantilever due to the leakage magnetic field on the surface of the magnetic sample 8 was detected, and magnetic force information such as the magnetic domain structure of the magnetic sample 8 was obtained from the result.
At the same time, by detecting the tunnel current between the magnetic probe 4 and the sample 8, morphological information on the sample surface was obtained. By forming the protective film 6 on the surface of the magnetic probe, measurement with good reproducibility was possible even when the magnetic probe was operated for a long time in air, vacuum, or various gas atmospheres. The same effect was obtained by using Ru, Rh, Au, Pd and an alloy containing them in addition to Pt as the protective film 6. Embodiment 4 Another embodiment of the magnetic probe manufactured according to the present invention will be described with reference to FIG. A cantilever consisting of a tip 10 having a sharp tip was held by the support 2. The cantilever 11 was made of silicon oxide.
Similar effects can be obtained by using any of silicon nitride, diamond-like thin film, and non-magnetic metal foil.
Tip 10 is made of tungsten, platinum or cantilever 11
A non-magnetic material made of the same material as nickel or nickel,
A structure composed of a wire or a foil of a magnetic material such as iron or cobalt was manufactured. The tip 10 was fixed to the cantilever 11 with an adhesive or the like, and then the tip was etched and sharpened by electric field polishing or the like, or the tip 10 having a sharp tip was fixed to the cantilever 11 in advance. First, an underlayer (not shown) for controlling the crystal orientation of the magnetic thin film was formed on the surface of the chip 10 manufactured as described above, and then a magnetic thin film was formed thereon to manufacture the magnetic probe 4. In this case, in order to obtain the magnetic probe 4 having a sharp pointed tip, it is desirable that the thickness of the underlayer for controlling the crystal orientation and the thickness of the magnetic thin film are thin, and the thickness of each of them is appropriately 0.1 μm or less. By forming a magnetic thin film by providing an underlayer for controlling crystal orientation on the surface of the chip, a magnetic probe 4 in which the axis of easy magnetization of the magnetic thin film is highly oriented perpendicular or parallel to the surface of the chip 10 is manufactured. did. When using the magnetic probe 4, it was magnetized in a direction parallel or perpendicular to the tip of the sharp tip 10. The magnetized magnetic probe 4 is a tip 10
Was set so that the tip of the sample was perpendicular to the surface of the sample 8.
When the magnetic probe 4 is magnetized parallel to its tip, the vertical component of the leakage magnetic field of the magnetic sample 8 is detected, while when the magnetic probe 4 is magnetized perpendicular to its tip, the magnetic sample 8 is detected.
The horizontal component of the leakage magnetic field was detected. The magnetic force generated by the interaction between the magnetic probe 4 and the magnetic sample 8 causes the cantilever 11 to move.
Undergoes bending. The displacement due to the bending of the cantilever 11 was detected by a displacement detecting means provided behind the cantilever 11, for example, a metal probe 9 having a sharp tip, and a tunnel current between the metal probe 9 and the surface of the cantilever 11. By using a magnetic probe of this configuration, a magnetic force of the order of 10 -10 N and high-resolution magnetic information of the order of submicrons could be obtained with good reproducibility. In the present invention, since the axes of easy magnetization of the magnetic probe are aligned and the coercive force of the magnetic probe is large, the magnetization of the magnetic probe does not change due to the magnetic field from the sample as in the related art.
Therefore, if the surface morphology information is obtained by measuring the tunnel current between the sample and the magnetic probe, accurate magnetic information can be obtained from this and the magnetic information (including the surface morphology information) obtained by the magnetic force measurement. Can be

【発明の効果】【The invention's effect】

以上述べたごとく,先端が鋭く尖ったカンチレバーの
表面に結晶配向制御用の下地層を設け,この上に磁性薄
膜を形成することにより,磁性薄膜の磁化容易軸がカン
チレバーの面に垂直方向から平行な方向の範囲の任意の
向きに高配向させた磁性探針を形成できる。このように
形成した磁性探針を磁化容易軸に沿って磁化し,カンチ
レバーの先端が試料面に垂直に接近するように設置する
ことにより,試料面に対して垂直,もしくは平行な方向
の磁気力を高感度で,かつ高分解能の検出ができる磁気
情報検出装置を構成できる。 また磁性探針の表面を導電性材料からなる被覆層で被
覆して磁気情報検出装置を構成することにより,磁性試
料と磁性探針間の距離を精度良く制御でき,高感度でか
つ高分解能の試料表面の磁気力情報と形態情報を得るこ
とができる効果がある。また磁性探針の表面を導電性材
料からなる被覆層で被覆することにより,磁性探針の表
面の酸化などによる磁気特性の変化や電気伝導性の変化
を防止でき,磁気力情報と試料表面形態情報を再現性良
く得られる効果を有する。
As described above, the underlayer for controlling the crystal orientation is provided on the surface of the cantilever having a sharp tip, and the magnetic thin film is formed thereon, so that the axis of easy magnetization of the magnetic thin film is parallel to the surface of the cantilever from the direction perpendicular to the surface. A magnetic probe highly oriented in any direction within a range of various directions can be formed. The magnetic probe thus formed is magnetized along the axis of easy magnetization, and the tip of the cantilever is set so as to approach perpendicularly to the sample surface, so that the magnetic force in the direction perpendicular or parallel to the sample surface is obtained. Can be configured with high sensitivity and high resolution. In addition, the distance between the magnetic sample and the magnetic probe can be controlled with high precision by forming the magnetic information detecting device by covering the surface of the magnetic probe with a coating layer made of a conductive material. There is an effect that magnetic force information and morphological information on the sample surface can be obtained. In addition, by coating the surface of the magnetic probe with a coating layer made of a conductive material, it is possible to prevent changes in magnetic characteristics and electrical conductivity due to oxidation of the surface of the magnetic probe, and to provide information on magnetic force and sample surface morphology. This has the effect of obtaining information with good reproducibility.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)乃至第1図(c)は,本発明の一実施例の
説明図,第2図は,本発明の磁性探針の作製方法の一例
を示す説明図,第3図は,本発明の磁性探針を用いた磁
気力顕微鏡への応用例の説明図,第4図は,本発明の磁
性探針の他の応用例の説明図である。 符号の説明 1:カンチレバー,2:支持体,3:先端部,4:磁性探針,5:下地
層,6:保護膜,7:磁性薄膜,8:試料,9:金属探針,10:チッ
プ,11:カンチレバー。
1 (a) to 1 (c) are explanatory views of an embodiment of the present invention, FIG. 2 is an explanatory view showing an example of a method for manufacturing a magnetic probe of the present invention, and FIG. FIG. 4 is an explanatory diagram of an application example to a magnetic force microscope using the magnetic probe of the present invention. FIG. 4 is an explanatory diagram of another application example of the magnetic probe of the present invention. Explanation of symbols 1: cantilever, 2: support, 3: tip, 4: magnetic probe, 5: underlayer, 6: protective film, 7: magnetic thin film, 8: sample, 9: metal probe, 10: Tip, 11: Cantilever.

フロントページの続き (72)発明者 細木 茂行 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (56)参考文献 特開 平2−78006(JP,A) 特開 平3−96854(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 37/00 G01R 33/10 - 33/12 G01N 27/72 G01B 7/34 H01J 37/28 JICSTファイル(JOIS) WPI(DIALOG)Continuation of the front page (72) Inventor Shigeyuki Hosoki 1-280 Higashi Koikebo, Kokubunji-shi, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd. (56) References JP-A-2-78006 (JP, A) JP-A-3-96854 ( JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01N 37/00 G01R 33/10-33/12 G01N 27/72 G01B 7/34 H01J 37/28 JICST file (JOIS) WPI (DIALOG)

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】先端が尖ったカンチレバーと,該カンチレ
バーの先端部に形成された磁性探針と,該磁性探針と磁
性試料との間に発生する磁気力による磁性探針の変位を
検出する手段とを有する磁気情報検出装置において,上
記磁性探針は磁性材料薄膜によって構成され,かつ該磁
性材料薄膜の磁化容易軸は一方向に配向していることを
特徴とする磁気情報検出装置。
1. A cantilever having a sharp tip, a magnetic probe formed at the tip of the cantilever, and a displacement of the magnetic probe caused by a magnetic force generated between the magnetic probe and a magnetic sample. A magnetic information detecting device, wherein the magnetic probe is formed of a magnetic material thin film, and the easy axis of magnetization of the magnetic material thin film is oriented in one direction.
【請求項2】上記磁性材料薄膜は上記カンチレバーの面
に非磁性下地層を介して形成されている特許請求の範囲
第1項記載の磁気情報検出装置。
2. The magnetic information detecting device according to claim 1, wherein said magnetic material thin film is formed on a surface of said cantilever via a nonmagnetic underlayer.
【請求項3】上記磁性探針を構成する磁性材料薄膜の磁
化容易軸方向の保磁力は80A/m以上である特許請求の範
囲第2項記載の磁気情報検出装置。
3. The magnetic information detecting device according to claim 2, wherein the coercive force in the easy axis direction of the magnetic material thin film constituting the magnetic probe is 80 A / m or more.
【請求項4】上記磁性材料薄膜は上記カンチレバーの面
に平行もしくは垂直方向に磁化されている特許請求の範
囲第2項記載の磁気情報検出装置。
4. The magnetic information detecting device according to claim 2, wherein said magnetic material thin film is magnetized in a direction parallel or perpendicular to a surface of said cantilever.
【請求項5】上記磁性探針およびカンチレバーの表面に
導電性材料からなる保護膜が形成されている特許請求の
範囲第2項記載の磁気情報検出装置。
5. The magnetic information detecting device according to claim 2, wherein a protective film made of a conductive material is formed on surfaces of said magnetic probe and said cantilever.
【請求項6】上記磁性材料薄膜の結晶粒径は100nm以下
である特許請求の範囲第2項記載の磁気情報検出装置。
6. The magnetic information detecting device according to claim 2, wherein said magnetic material thin film has a crystal grain size of 100 nm or less.
【請求項7】上記カンチレバーの尖った先端部の曲率は
100nm以下である特許請求の範囲第2項記載の磁気情報
検出装置。
7. The curvature of the sharp tip of the cantilever is:
3. The magnetic information detecting device according to claim 2, wherein the magnetic information detecting device has a thickness of 100 nm or less.
JP2073320A 1990-03-26 1990-03-26 Magnetic information detection device Expired - Fee Related JP2997497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2073320A JP2997497B2 (en) 1990-03-26 1990-03-26 Magnetic information detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2073320A JP2997497B2 (en) 1990-03-26 1990-03-26 Magnetic information detection device

Publications (2)

Publication Number Publication Date
JPH03274480A JPH03274480A (en) 1991-12-05
JP2997497B2 true JP2997497B2 (en) 2000-01-11

Family

ID=13514763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2073320A Expired - Fee Related JP2997497B2 (en) 1990-03-26 1990-03-26 Magnetic information detection device

Country Status (1)

Country Link
JP (1) JP2997497B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3989704B2 (en) * 2001-10-03 2007-10-10 エスアイアイ・ナノテクノロジー株式会社 Scanning probe microscope
CN115616260B (en) * 2022-09-26 2024-02-23 上海泽丰半导体科技有限公司 Thin film probe card assembly

Also Published As

Publication number Publication date
JPH03274480A (en) 1991-12-05

Similar Documents

Publication Publication Date Title
Phillips et al. High resolution magnetic force microscopy using focused ion beam modified tips
US5856672A (en) Single-crystal silicon cantilever with integral in-plane tip for use in atomic force microscope system
JP2604968B2 (en) Method for imaging magnetic structure or magnetic domain of sample and storage device using the same
JP2961452B2 (en) Information processing device
JP4656761B2 (en) SPM cantilever
JPH0689472A (en) Stable storing method with regard to information device in nanometer range
US6121771A (en) Magnetic force microscopy probe with bar magnet tip
US5375087A (en) Tunneling-stabilized magnetic reading and recording
Grütter et al. High resolution magnetic force microscopy
JP3141555B2 (en) Scanning surface magnetic microscope
JP3210961B2 (en) Measuring device for exchange interaction force
JP2997497B2 (en) Magnetic information detection device
US9837108B2 (en) Magnetic sensor and a method and device for mapping the magnetic field or magnetic field sensitivity of a recording head
JPH04162339A (en) Manufacture of probe for surface observation device and surface observation device
Yaminsky et al. Magnetic force microscopy
JPH06249933A (en) Cantilever or magnetic force microscope
JP2984094B2 (en) Probe for surface observation device, method of manufacturing the same, and surface observation device
JP2872703B2 (en) Magnetic sensing element, magnetic force microscope using the same, and similar devices
US6476386B1 (en) Method and device for tunnel microscopy
JPH0396857A (en) Magnetic probe
JPH03274481A (en) Device for detecting magnetic information
JPH0396856A (en) Magnetic probe
JP2789244B2 (en) Method of forming microprobe
JPH0396854A (en) Probe for surface analysis
JPH0755445Y2 (en) Scanning tunneling microscope probe

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees