JPH0755445Y2 - Scanning tunneling microscope probe - Google Patents

Scanning tunneling microscope probe

Info

Publication number
JPH0755445Y2
JPH0755445Y2 JP1989109657U JP10965789U JPH0755445Y2 JP H0755445 Y2 JPH0755445 Y2 JP H0755445Y2 JP 1989109657 U JP1989109657 U JP 1989109657U JP 10965789 U JP10965789 U JP 10965789U JP H0755445 Y2 JPH0755445 Y2 JP H0755445Y2
Authority
JP
Japan
Prior art keywords
probe
tip
scanning tunneling
tunneling microscope
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1989109657U
Other languages
Japanese (ja)
Other versions
JPH0348702U (en
Inventor
礼三 金子
重光 小口
久作 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adamant Co Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Adamant Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Adamant Kogyo Co Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1989109657U priority Critical patent/JPH0755445Y2/en
Publication of JPH0348702U publication Critical patent/JPH0348702U/ja
Application granted granted Critical
Publication of JPH0755445Y2 publication Critical patent/JPH0755445Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

【考案の詳細な説明】 〈産業上の利用分野〉 本考案は、オングストロームオーダの分解能で表面の形
状や電気特性を測定する走査型顕微鏡に用いる探針に関
する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a probe used in a scanning microscope for measuring a surface shape and electrical characteristics with a resolution of angstrom order.

〈従来の技術〉 表面の微細形状や物理特性を観察することは化学技術の
広い範囲で必要である。そして、近年、特に高さを含む
三次元の寸法をミクロンメートル以下の分解能で測定す
ることがLSI,光メモリなど開発において重要になってき
ており、又、ミクロンメートル以下の領域での表面の物
質構造を調べることがLSIや高温伝導体の開発で重要に
なってきている。
<Prior Art> Observing the fine shape and physical properties of the surface is necessary in a wide range of chemical technologies. In recent years, it has become important to measure three-dimensional dimensions including the height with a resolution of less than micron meter in the development of LSI, optical memory, and the like, and the material structure of the surface in the area of less than micrometer. Is becoming important in the development of LSIs and high temperature conductors.

このような状況の中、最近、極めて鋭い探針を用いて試
料の表面形状や表面の物理特性を原子レベルの分解能で
測定し得る走査型トンネル顕微鏡が開発されている。走
査型トンネル顕微鏡は、導体表面とそれにオングストロ
ームオーダで接近された鋭い導体探針との間に流れるト
ンネル電流を検出しながら表面を走査する顕微鏡であ
る。ここで、トンネル電流は接近した導体表面間に流
れ、その値は導体表面間の距離に対して極めて敏感に変
化するので、走査型トンネル顕微鏡の分解能は、原子・
分子レベルに達する。そして、かかる走査型トンネル顕
微鏡は、金属、半導体、有機薄膜のミクロ観測に有用
で、物理学、化学、分子生物学、トライポロジー、半導
体工学など広い分野で利用されるようになっている。
Under such circumstances, a scanning tunnel microscope has recently been developed which can measure the surface shape and physical properties of a sample with an atomic level resolution by using an extremely sharp probe. A scanning tunneling microscope is a microscope that scans a surface while detecting a tunnel current flowing between a conductor surface and a sharp conductor probe that is approached to the conductor surface by an angstrom order. Here, the tunnel current flows between the conductor surfaces that are close to each other, and its value changes extremely sensitively with respect to the distance between the conductor surfaces.
Reach the molecular level. The scanning tunneling microscope is useful for microscopic observation of metals, semiconductors, and organic thin films, and has come to be used in a wide range of fields such as physics, chemistry, molecular biology, tribology, and semiconductor engineering.

ところで、走査型トンネル顕微鏡の分解能は探針の先端
の鋭さで決まるので、原子レベルの分解能を得るには原
子レベルで鋭い探針が必要となる。そして、従来におい
ては、タングステン、白金、白金イリジュウムなどの金
属を機械加工若しくは電解研磨したものが探針として用
いられている。
By the way, since the resolution of the scanning tunneling microscope is determined by the sharpness of the tip of the probe, a sharp probe at the atomic level is required to obtain the resolution at the atomic level. In the past, a probe obtained by machining or electrolytically polishing a metal such as tungsten, platinum, or platinum iridium has been used.

〈考案が解決しようとする課題〉 しかしながら、金属を機械加工して探針とした場合に
は、先端形状がばらつき、分留りが悪いという問題があ
る。一方、金属を電解研磨して探針とした場合には、先
端が細長く研磨されるので、たわみ易く、また振動し易
いという問題がある。さらに、これらの金属製の探針
は、測定中の偶発的な接触で破壊され易く、しかも周囲
雰囲気によって酸化や汚染が起こり易いので、寿命が短
いという問題もある。
<Problems to be Solved by the Invention> However, when a metal is machined to form a probe, there is a problem that the tip shape varies and the fractionation is poor. On the other hand, when a metal is electrolytically polished to form a probe, the tip is slenderly polished, so that there is a problem that it is easily bent and easily vibrated. Further, these metallic probes have a problem that they have a short life because they are easily broken by accidental contact during measurement, and are easily oxidized or contaminated by the surrounding atmosphere.

本考案はこのような事情に鑑み、従来の探針の問題点を
解消し、剛性が高く長寿命の走査型トンネル顕微鏡の探
針を提供することを目的とする。
In view of such circumstances, the present invention aims to solve the problems of the conventional probe and to provide a probe of a scanning tunneling microscope having high rigidity and long life.

〈課題を解決するための手段〉 前記目的を達成する本考案に係る走査型トンネル顕微鏡
の探針は、導体表面のごく近傍を当該表面に沿って走査
されると共にトンネル電流を検出する走査型トンネル顕
微鏡の探針において、上記探針の少なくとも先端部がイ
オン打ち込みによってその表面に導電性が付与されたダ
イヤモンドからなり、且つ先端が三角錐に平面機械研磨
して形成されていることを特徴とする。
<Means for Solving the Problems> A probe of a scanning tunneling microscope according to the present invention that achieves the above-mentioned object is a scanning tunneling device that scans the vicinity of a conductor surface along the surface and detects a tunnel current. In the probe of a microscope, at least the tip of the probe is made of diamond whose surface is provided with conductivity by ion implantation, and the tip is formed by planar mechanical polishing into a triangular pyramid. .

ここで本願考案で平面機械研磨とは、砥石で機械的に表
面を研削し、平面に仕上げすることをいい、平面研磨盤
の回転砥石による研磨方法や平面の砥石に加工物を往復
摺動させて研磨するものである。
Here, in the present invention, the plane mechanical polishing means mechanically grinding the surface with a grindstone to finish it into a flat surface. To be polished.

〈作用〉 イオン打ち込みされたダイヤモンドは、その表面層は部
分的にダイヤモンド構造が崩れるが、トンネル電流を検
出するに十分な導電性が付与される。しかも、その表面
層は金属に較べて十分強固であり、その内側はダイヤモ
ンドであるので全体として強靱になる。しかも、表面層
は酸化も汚染もされにくい。
<Operation> The ion-implanted diamond has a surface layer in which the diamond structure is partially broken, but sufficient conductivity is imparted to detect a tunnel current. Moreover, the surface layer is sufficiently stronger than metal, and since the inside is diamond, it becomes tough as a whole. Moreover, the surface layer is not easily oxidized or contaminated.

また、先端部は三角錐に形成されているので、先端は必
ず頂点となって鋭くなり、且つ剛性の高いものとなる。
Further, since the tip portion is formed in a triangular pyramid, the tip always becomes a peak and becomes sharp, and the rigidity becomes high.

〈実施例〉 以下、本考案を実施例に基づいて説明する。<Example> Hereinafter, the present invention will be described based on an example.

第1図には本考案の一実施例に係る走査型トンネル顕微
鏡の探針の外観を示す。同図に示すように、探針10はそ
の先端部がダイヤモンド11、他が金属構12からなり、ダ
イヤモンド11を含んだ先端部は三角錐に研摩されてい
る。そして、ダイヤモンド11にはイオンが打ち込まれて
おり、その表面に導電性が付与されている。
FIG. 1 shows the outer appearance of a probe of a scanning tunneling microscope according to an embodiment of the present invention. As shown in the figure, the probe 10 has a diamond 11 at its tip and a metal structure 12 at the other, and the tip including the diamond 11 is ground into a triangular pyramid. Then, ions are implanted in the diamond 11, and conductivity is imparted to the surface thereof.

かかる探針10を製造するには、例えば金属棒12の先端に
ダイヤモンド11をろう付けなどの手段により固着した
後、その先端部と三角錐に研磨・成形し、次んでイオン
打ち込みを行うようにすればよい。
In order to manufacture such a probe 10, for example, after the diamond 11 is fixed to the tip of the metal rod 12 by means such as brazing, the tip and the triangular pyramid are polished and formed, and then ion implantation is performed. do it.

このようにダイヤモンド11を取り付けた先端部を3面研
摩すると、必ず先端は3つの研磨面が交わる頂点となる
ので、極めて鋭く仕上げることができる。なお、実験に
よると0.1ミクロン以下の先端半径が得られた。
In this way, when the tip end portion to which the diamond 11 is attached is polished on three sides, the tip is always the apex where the three polishing surfaces intersect, so that it can be finished extremely sharply. According to experiments, a tip radius of 0.1 micron or less was obtained.

また、イオンの打ち込みには種々の元素が可能であり、
既知のイオン打ち込み技術を利用すればよい。この際、
三角錐形状であれば、そのうちの1面を下に向けた状態
でイオン打ち込みを行えば、2回の打ち込みで三角錐の
全体にイオンを打ち込むことができ、円錐や四角錐以上
の多角錐の場合より作業が容易となる。なお、探針によ
り検出すべきトンネル電流は通常ナノアンペアオーダで
あるので、ダイヤモンド11のごく表面層(サブミクロン
からミクロンオーダ)に導電性を付与すれば十分であ
る。
Also, various elements can be used for ion implantation,
A known ion implantation technique may be used. On this occasion,
If it has a triangular pyramid shape, if one surface of the triangular pyramid is faced downward, ions can be implanted into the entire triangular pyramid by two implantations. Work becomes easier than in some cases. Since the tunnel current to be detected by the probe is usually on the order of nanoamperes, it is sufficient to impart conductivity to the very surface layer of diamond 11 (submicron to micron order).

さらに、イオンが打ち込まれたダイヤモンド11の表面層
は部分的にダイヤモンド構造がくずれているが、金属に
較べると層そのものが強固であり、その内側はダイヤモ
ンドであるので、全体として強靱な探針となる。また、
この表面層は酸化せず、周囲雰囲気による汚染も少ない
という性質を有する。
Furthermore, the surface layer of the diamond 11 into which the ions have been implanted has a partially broken diamond structure, but the layer itself is stronger than metal, and since the inside is diamond, it is a tough probe as a whole. Become. Also,
This surface layer has the property of not being oxidized and being less contaminated by the ambient atmosphere.

本実施例の探針を用いてへき開したグラファイト表面の
原子配列と、ポリカーボネート溝付き光ディスク基板
(0.6ミクロン幅、0.1ミクロン深さのU形溝形状)に金
薄膜をスパッタして導電性を付与した面の形状とを測定
した。これらの結果は第2図及び第3図に示す。
An atomic arrangement on the surface of graphite that was cleaved using the probe of this example and an optical disk substrate with a polycarbonate groove (U-shaped groove shape of 0.6 μm width and 0.1 μm depth) was sputtered with a gold thin film to give conductivity. The shape of the surface was measured. The results are shown in FIGS. 2 and 3.

第2図に示すように、へき開したグラファイト表面の原
子配列の測定では、炭素の原子配列に相当する2.5Åピ
ッチの高低が、また第3図に示すように溝付き光ディス
ク基板の表面形状の測定では、ピッチ1.6μm,深さ約0.1
μmの溝形状が、それぞれとらえられている。このよう
に、本実施例の探針10は、分解能において、従来の金属
探針に劣らないことが確認された。
As shown in Fig. 2, in the measurement of the atomic arrangement on the surface of the cleaved graphite, the height of 2.5 Å pitch, which corresponds to the atomic arrangement of carbon, was measured. Then, pitch 1.6 μm, depth about 0.1
The groove shape of μm is captured. As described above, it was confirmed that the probe 10 of this example is not inferior to the conventional metal probe in resolution.

〈考案の効果〉 以上説明したように、本考案に係る走査型トンネル顕微
鏡の探針は、先端部を表面にイオンを打ち込んだダイヤ
モンドで形成し且つ三角錐に成形されているので、強靱
で剛性が高く、酸化・汚染による劣化が少なく長寿命で
あり、しかも、容易に製造でき、高分解能が得られるも
のである。
<Effects of the Invention> As described above, the probe of the scanning tunneling microscope according to the present invention is tough and rigid because its tip is formed of diamond with ions implanted on the surface and is formed into a triangular pyramid. It is high in temperature, has little deterioration due to oxidation and contamination, has a long life, can be easily manufactured, and has high resolution.

【図面の簡単な説明】[Brief description of drawings]

第1図は一実施例に係る探針の外観図、第2図及び第3
図は試験結果を示す説明図である。 図面中、 10は探針、11はダイヤモンド、12は金属棒である。
FIG. 1 is an external view of a probe according to an embodiment, FIG. 2 and FIG.
The figure is an explanatory view showing the test results. In the drawing, 10 is a probe, 11 is a diamond, and 12 is a metal rod.

───────────────────────────────────────────────────── フロントページの続き (72)考案者 菅 久作 東京都足立区新田1丁目16番7号 アダマ ンド工業株式会社内 (56)参考文献 特開 昭63−274801(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Creator Hisaku Suga 1-16-17 Nitta, Adachi-ku, Tokyo Within Adamand Industry Co., Ltd. (56) References JP-A-63-274801 (JP, A)

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】導体表面のごく近傍を当該表面に沿って走
査されると共にトンネル電流を検出する走査型トンネル
顕微鏡の探針において、 上記探針の少なくとも先端部がイオン打ち込みによって
その表面に導電性が付与されたダイアモンドからなり、
且つ先端が機械研磨によって三角錐に形成されているこ
とを特徴とする走査型トンネル顕微鏡の探針。
1. A probe of a scanning tunneling microscope which scans the vicinity of a conductor surface along the surface and detects a tunnel current, wherein at least the tip of the probe is made conductive by ion implantation. It consists of a diamond with
The tip of a scanning tunneling microscope is characterized in that the tip is formed into a triangular pyramid by mechanical polishing.
JP1989109657U 1989-09-21 1989-09-21 Scanning tunneling microscope probe Expired - Lifetime JPH0755445Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1989109657U JPH0755445Y2 (en) 1989-09-21 1989-09-21 Scanning tunneling microscope probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1989109657U JPH0755445Y2 (en) 1989-09-21 1989-09-21 Scanning tunneling microscope probe

Publications (2)

Publication Number Publication Date
JPH0348702U JPH0348702U (en) 1991-05-10
JPH0755445Y2 true JPH0755445Y2 (en) 1995-12-20

Family

ID=31658233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1989109657U Expired - Lifetime JPH0755445Y2 (en) 1989-09-21 1989-09-21 Scanning tunneling microscope probe

Country Status (1)

Country Link
JP (1) JPH0755445Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005331184A (en) * 2004-05-20 2005-12-02 Kuken Kogyo Co Ltd Air conditioning blow-out opening unit
JP5081606B2 (en) * 2007-12-19 2012-11-28 三洋電機株式会社 Blowout unit and air conditioning system using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2565336B2 (en) * 1987-05-06 1996-12-18 セイコー電子工業株式会社 Scanning tunnel microscope

Also Published As

Publication number Publication date
JPH0348702U (en) 1991-05-10

Similar Documents

Publication Publication Date Title
US6546788B2 (en) Nanotomography
Nonnenmacher et al. Scanning probe microscopy of thermal conductivity and subsurface properties
US7497613B2 (en) Probe with embedded heater for nanoscale analysis
Castle et al. Characterization of surface topography by SEM and SFM: problems and solutions
De Wolf et al. One‐and two‐dimensional carrier profiling in semiconductors by nanospreading resistance profiling
Trenkler et al. Evaluating probes for “electrical” atomic force microscopy
EP0619872A1 (en) Piezoresistive cantilever for atomic force microscopy.
Olbrich et al. High aspect ratio all diamond tips formed by focused ion beam for conducting atomic force microscopy
US6884999B1 (en) Use of scanning probe microscope for defect detection and repair
US6566650B1 (en) Incorporation of dielectric layer onto SThM tips for direct thermal analysis
Thomson et al. Development of highly conductive cantilevers for atomic force microscopy point contact measurements
JPH01262403A (en) Probe and its manufacture
Dobson et al. Electron beam lithographically-defined scanning electrochemical-atomic force microscopy probes: fabrication method and application to high resolution imaging on heterogeneously active surfaces
JPH0755445Y2 (en) Scanning tunneling microscope probe
Rettenberger et al. Variation of the thermovoltage across a vacuum tunneling barrier: Copper islands on Ag (111)
US6405584B1 (en) Probe for scanning probe microscopy and related methods
JP3317001B2 (en) Probe manufacturing method
Olbrich et al. A new AFM-based tool for testing dielectric quality and reliability on a nanometer scale
van Helleputte et al. Comparative study of 3D measurement techniques (SPM, SEM, TEM) for submicron structures
JP3240309B2 (en) Atomic force microscope prober and atomic force microscope
Skolaut Molecular Motor Based on Single Chiral Tripodal Molecules Studied with STM
Tran et al. Quantitative two-dimensional carrier profiling of a 400 nm complementary metal–oxide–semiconductor device by Schottky scanning capacitance microscopy
JP2997497B2 (en) Magnetic information detection device
JPH0658754A (en) Measuring method for probe shape
Linholm et al. Measurement of patterned film linewidth for interconnect characterization