JPH01262403A - Probe and its manufacture - Google Patents

Probe and its manufacture

Info

Publication number
JPH01262403A
JPH01262403A JP8902488A JP8902488A JPH01262403A JP H01262403 A JPH01262403 A JP H01262403A JP 8902488 A JP8902488 A JP 8902488A JP 8902488 A JP8902488 A JP 8902488A JP H01262403 A JPH01262403 A JP H01262403A
Authority
JP
Japan
Prior art keywords
plate
probe
tip
oxide film
needle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8902488A
Other languages
Japanese (ja)
Other versions
JP2656536B2 (en
Inventor
Shinji Tanaka
伸司 田中
Sumio Hosaka
純男 保坂
Kazuo Sato
一雄 佐藤
Yoshio Kawamura
河村 喜雄
Shigeyuki Hosoki
茂行 細木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13959345&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH01262403(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63089024A priority Critical patent/JP2656536B2/en
Publication of JPH01262403A publication Critical patent/JPH01262403A/en
Application granted granted Critical
Publication of JP2656536B2 publication Critical patent/JP2656536B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To faithfully trace the surface shape of a body to be measured and to measure the shape with high resolution and high accuracy by providing a needle-like chip which is sharp in a direction close to the normal direction of the surface of a plate to the tip of the plate. CONSTITUTION:This probe consists of the flexible plate 1 made of silicon oxide or silicon nitride and the quadrangular prismatic needle-like chip 5 which is constituted integrally with the plate 1 atop of the plate 1 at a different angle from its surface. Oxide films 8 are formed on both surfaces of an Si wafer 7 and photoresist 9 is formed on one surface; and a rectangular pattern 10 is formed by an exposure device, the resist 9 is used as a mask to form a pattern 11 on the oxide film 8 with mixed liquid of fluoric acid and an ammonium fluoride solution, and the resist 9 is removed. Anisotropic etching is carried out by using a KOH solution while the oxide film 8 is used to form a recessed part of a '111' surface 12, the upper oxide film is removed, and an oxide film is formed again on the entire surface. A similar process is carried out to form a pattern 8' on the upper oxide film, a substrate 13 of glass, etc., is adhered to the oxide film, and the substrate 7 is removed with the KOH solution.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はプローブ及びその製造方法に関し、特に原子間
力顕amのプローブとして用いるに好適なプローブ及び
その製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a probe and a method for manufacturing the same, and more particularly to a probe suitable for use as a probe for atomic force spectroscopy (AM) and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

従来、原子間力検出プローブについては、ヨーロッパフ
イジイクス、レター3(1987)第1281頁から第
1286頁(+4urophys 、 1ctt 。
Conventionally, regarding atomic force detection probes, European Physics, Letter 3 (1987), pages 1281 to 1286 (+4urophys, 1ctt.

3 (1,987)PP1281〜1−286 )にお
いて論じられている。
3 (1,987) PP 1281-1-286).

第2図は、従来の原子間力検出顕微鏡(八F M )の
構成を示す一般に従来のSTMでは、第1図の1ヘンネ
リンクチツブ3はサンプル2に直接作用する。すなわち
、トンネリングチツブ3とサンプル2間のトンネル電流
が一定となるようにチップ3にフィードバックし、チッ
プ3とサンプル2の距離を保持することによって、サン
プル2の表面形状が計8111される。しかし、STM
では、サンプル2や導体でなければならないという制約
があった。
FIG. 2 shows the configuration of a conventional atomic force detection microscope (8F M ). Generally, in a conventional STM, the 1-henne link chip 3 in FIG. 1 acts directly on the sample 2 . That is, by feeding back to the chip 3 so that the tunneling current between the tunneling chip 3 and the sample 2 is constant and maintaining the distance between the chip 3 and the sample 2, the surface shape of the sample 2 is determined in total by 8111 times. However, STM
However, there was a restriction that it had to be Sample 2 or a conductor.

原子間力検出顕微鏡は、STMの欠点を解消するもので
ある。第2図に示すプレート1の先端は、原子間力をう
けてプレート1がたわみ、先端部とサンプルの距離は一
定に保たれ、サンプル2の形状をトレースすることがで
きる。プレート1に金属を蒸着しておけば、サンプル2
が導体でなくとも、トンネリングチップ3は、プレート
間のトンネル電流を一定に保って変位するようにフィー
ドバックされるのでプレート1を介して、サンプル2の
形状を間接的にトレースすることになる。この場合、サ
ンプル形状を精度よくトレースするためには、プレート
1の先端部を鋭利に加工する必要がある。
Atomic force detection microscopes overcome the shortcomings of STM. The tip of the plate 1 shown in FIG. 2 is bent by the atomic force, the distance between the tip and the sample is kept constant, and the shape of the sample 2 can be traced. If metal is deposited on plate 1, sample 2
Even if the tunneling tip 3 is not a conductor, the shape of the sample 2 is traced indirectly through the plate 1 because the tunneling tip 3 is fed back so as to keep the tunneling current between the plates constant and to be displaced. In this case, in order to accurately trace the shape of the sample, it is necessary to sharpen the tip of the plate 1.

しかしながら、従来の技術では、プレート先端のチップ
を製造するのが困難なため、第2図(b)のように長方
形プレートの角部で代用したり、第2図(c)のように
三角形プレートの先端を用いるなどチップの先端が鋭利
に加工されない状態で用いられている。従って、第2図
(a)に示すように、プレート1は、被測定物に対して
傾けて2Illl定するなどの方法がとられている。こ
のため、従来技術によるプレートを用いた場合には、表
面凹凸のアスペクト比が高い試料では忠実にその表面形
状を表わすことができないこと、また、プレート1がた
わみをより感受しやすい力の方向は、プレート面の法線
方向であるのに対し、従来の方法では、これよりも多少
ずれた方向となっている等の問題がある。
However, with conventional technology, it is difficult to manufacture the tip at the tip of the plate, so a corner of a rectangular plate as shown in Figure 2(b) is used instead, or a triangular plate as shown in Figure 2(c) is used instead. The tip of the tip is not sharpened, such as when the tip of the tip is used. Therefore, as shown in FIG. 2(a), a method such as tilting the plate 1 with respect to the object to be measured is used. For this reason, when using a plate according to the prior art, it is impossible to faithfully represent the surface shape of a sample with a high aspect ratio of surface irregularities, and the direction of the force in which the plate 1 is more sensitive to deflection is , which is the normal direction to the plate surface, whereas in the conventional method, the direction is slightly deviated from this direction.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の技術では原子間力検出プレートを平面状にしか製
作できず、しかもその先端は十分に鋭利な針状チップと
はなっていない。このため、特に表面の凹凸のアスペク
ト比が高い試料り表面にブロービングするさいに、チッ
プの鋭利さの不足に伴う解像度の低下が避けられないと
いう欠点があった。
With conventional technology, the atomic force detection plate can only be manufactured in a flat shape, and the tip thereof does not have a sufficiently sharp needle-like tip. For this reason, especially when blowing a sample surface with a high aspect ratio of surface irregularities, there has been a drawback that a decrease in resolution due to lack of tip sharpness is unavoidable.

本発明の目的は、プレートの先端に、プレート面の法線
方向又はそれに近い方向に鋭利な針状のチップを一体で
形成したプローブおよびその製造方法を提供する。
An object of the present invention is to provide a probe in which a sharp needle-like tip is integrally formed at the tip of a plate in the normal direction of the plate surface or in a direction close to the normal direction of the plate surface, and a method for manufacturing the same.

〔課題を解決するための手段〕[Means to solve the problem]

上記1」的は、可撓性を有する酸化珪素又は、窒化珪素
からなるプレートと、該プレートの先端に該プレー1へ
面と異なる角度で該プレートと一体に構成された針状の
チップを有すること、半導体リソグラフィ技術を用いて
S1ウエハに針の形状を転写するための凹部を形成し、
次いで該凹部が形成された表面に母材と異なる膜を形成
し、その後プレート部を形成し、さらに残ったSjをエ
ツチングによって除去することによって達成される。
Target 1 above has a plate made of flexible silicon oxide or silicon nitride, and a needle-like tip integrally formed with the plate at a different angle from the plane to the plate 1 at the tip of the plate. Specifically, by using semiconductor lithography technology, a concave portion for transferring the shape of the needle is formed on the S1 wafer.
Next, a film different from the base material is formed on the surface where the recesses are formed, a plate portion is formed after that, and the remaining Sj is removed by etching.

〔作用〕[Effect]

本発明によれば、プレート面に形成した十分に鋭利な針
状のチップを有しているので、例えばチップの先端の原
子が、表面原子との間で原子力を受けるので、プレート
部は発生した原子間力を感受してたわみ、正確にチップ
の先端の原子の受ける力を検出することができる。また
、この場合チップの先端をプレート面から突出して設け
ろことによって原子間力を感受ける性能を向上させるこ
とができる。これらの結果、チップ先端以外の場所の原
子が被8111定物の表面原子との間で力を及ぼし合う
ことが極めて少なくなるので、AF”Mのように一定の
力を保ちつつ表面形状を測定する場合に試料表面内に位
置誤差なく1表面形状あるいは力分布等を正確に測定す
ることができる。
According to the present invention, since it has a sufficiently sharp needle-like tip formed on the plate surface, for example, the atoms at the tip of the tip receive atomic energy between them and the surface atoms, so that the plate part is generated. It deflects when it senses atomic forces, allowing it to accurately detect the force exerted on the atoms at the tip of the tip. Further, in this case, by providing the tip of the tip so as to protrude from the plate surface, the ability to sense atomic force can be improved. As a result, atoms in locations other than the tip of the tip exert very little force on atoms on the surface of the 8111 object, making it possible to measure the surface shape while maintaining a constant force like AF"M. In this case, the surface shape or force distribution, etc. can be accurately measured without any positional error within the sample surface.

〔実施例〕〔Example〕

次に本発明のプローブを実施例に基づき説明する。第1
F閾は、熱酸化膜(SiOz)から成り、先端に突出し
た鋭利な針を有するプローブを示す。
Next, the probe of the present invention will be explained based on examples. 1st
The F threshold shows a probe made of thermal oxide film (SiOz) and having a sharp protruding needle at the tip.

すなわち第1図(a)は、プレー1一部1の先端に。That is, in Fig. 1(a), the play 1 part 1 is at the tip.

ブロード面外に突出した構造のチップ5を有するA ト
” Mプローブ示し、第1図()))、(0)はそれぞ
れ、四角錐状2円錐状のチップ5を有するA F’ M
プローブを示す。第1図に示したプローブはいずれもプ
レート1の部分で原子間力を受けてたわむMIt造とな
っている。本構造のように、プレート面外に突出した針
状チップ5を形成することにより、感度の高い八F M
プローブとなっている。
A F' M probe having a tip 5 with a structure protruding out of the broad plane; FIGS.
Probe shown. All of the probes shown in FIG. 1 are made of MIt, which bends in response to atomic force at the plate 1 portion. As in this structure, by forming the needle-like tip 5 protruding outside the plate surface, high sensitivity can be achieved.
It is a probe.

第73図にはもう一つのプローブの形状を示す。FIG. 73 shows another probe shape.

本構造の場合は、回転@6を支点として、構造全体や回
転する機構を有している。このため、針状チップ5が原
子間力をうけた時にプレート1は、たわむことなく1回
転軸6を中心として回転する構造となる。また、s’r
Mの針部:3はプレート後部1′の4&位に追従して一
定の距離を保つことによってサンプルの形状を精度良く
トレースすることができる。トンネリングチツブ3とプ
レート1′の距離を一定に保つ方法としては、トンネル
電流を検出して、その値を一定に保つように、ピエゾ索
子等でトンネリングチツプ3を変位させる方法が考えら
れる。なお、第3図に示すも■造のプローブであれば、
プレート部1と1′の長さ比を変化させることによ−)
て微細な形状を拡大としてトレースすることも可能であ
る。
In the case of this structure, the entire structure and a mechanism that rotates are provided with rotation @6 as a fulcrum. Therefore, when the needle tip 5 is subjected to atomic force, the plate 1 rotates about the rotation axis 6 without being deflected. Also, s'r
The needle part 3 of M can trace the shape of the sample with high accuracy by following the position 4& of the rear part 1' of the plate and keeping a constant distance. A possible method for keeping the distance between the tunneling tip 3 and the plate 1' constant is to detect the tunnel current and displace the tunneling tip 3 using a piezo rope or the like so as to keep the value constant. In addition, if the probe shown in Fig. 3 is manufactured by ■,
By changing the length ratio of plate parts 1 and 1')
It is also possible to trace minute shapes by enlarging them.

なおプローブの動きを測定する方法として、1−ユ述の
トンネリングチップを用いる手段の他に、戚プレート1
′に対向して平板t11極を設け、その間の静電容量の
変化を検出する方法や、該プレート1′にレーザ光を斜
入射させて、その反射光の角度変化をみる方法が考えら
れる。
As a method of measuring the movement of the probe, in addition to the method using the tunneling tip described in 1-U, a method using a relative plate 1
Possible methods include a method in which a flat plate t11 pole is provided opposite to the plate 1' and a change in capacitance therebetween is detected, or a method in which a laser beam is obliquely incident on the plate 1' and the angular change in the reflected light is observed.

次に、上述の代表的なプローブの製造方法について述べ
る。第4図は、第1図(b)に示すプローブの製造方法
の説明図である。初めに、Sjウェハ7に酸化膜8を形
成する(第4図(、、))。
Next, a method for manufacturing the above-mentioned typical probe will be described. FIG. 4 is an explanatory diagram of a method for manufacturing the probe shown in FIG. 1(b). First, an oxide film 8 is formed on the Sj wafer 7 (FIG. 4(,,)).

ついで、その片面にフオトレジス1へ9を形成す/コ(
第4図(b))、次に露光装置によって露光、現像を行
い四角パターン10を形成する(第4図(C))。さら
に、レジスト9をマスクとして、フッ酸およびフッ化ア
ンモニウム溶液の混合液を用いて酸化膜にパターン11
を形成し、レジストを除去する(第4図(d))、次に
、酸化膜8をマスクとして、KOH″5のアルカリ系水
溶液によって異り性エツチングすることにより、 (1
11)系の而12から成る凹部を生じる(第4図(C)
)。
Next, form photoresist 1 to 9 on one side of it.
FIG. 4(b)), and then exposure and development are performed using an exposure device to form a square pattern 10 (FIG. 4(C)). Furthermore, using the resist 9 as a mask, a pattern 11 is applied to the oxide film using a mixture of hydrofluoric acid and ammonium fluoride solution.
is formed and the resist is removed (FIG. 4(d)).Next, using the oxide film 8 as a mask, etching is carried out with an alkaline aqueous solution of KOH''5.
11) The structure of the system produces a concavity consisting of 12 (Fig. 4 (C)
).

その後、上部の酸化膜を除去し、再度全面に酸化1摸を
形成する(第4図(f))、次に、同様の工程を経て上
部の酸化膜に、第4図の(g)、(g’)に示すパター
ン8′を形成する。さらに上部の酸化膜にガラス等の基
板1;3を接着し、(第4図(h))、シリコン基板7
をK OH水溶液で除去することによって所望の形状の
プローブを得る(第5図(i))。
After that, the upper oxide film is removed and an oxide layer is again formed on the entire surface (Fig. 4(f)).Next, the upper oxide film is coated with the oxide film through the same process as shown in Fig. 4(g). A pattern 8' shown in (g') is formed. Further, a substrate 1 or 3 made of glass or the like is bonded to the upper oxide film (FIG. 4(h)), and a silicon substrate 7 is bonded to the top oxide film.
By removing the probe with a KOH aqueous solution, a probe of the desired shape is obtained (FIG. 5(i)).

最後に、トンネル電流を検出するために、原す開力検出
プレートの上面に、へυ等の金属を蒸着してrq、を性
を付与し、実用に供するA FM用ゾローブが完成する
Finally, in order to detect the tunnel current, a metal such as υ is vapor-deposited on the upper surface of the original open force detection plate to give it rq properties, thereby completing an AFM Zorobe for practical use.

上記実施例では、第1図(b)に示すプローブの製造方
法について示したが、第1図(a)のプローブについて
も同様の方法で!II2造呵能である。
In the above embodiment, the method for manufacturing the probe shown in FIG. 1(b) was described, but the same method can be used for the probe shown in FIG. 1(a)! II2 Zoan Noh.

一方、第1図(c)のプローブは、第4図(C)。On the other hand, the probe in FIG. 1(c) is as shown in FIG. 4(C).

(d)で形成するパターン11を円形とし1次いでCF
a等のガス中でドライエツチングを行うことにより、針
状の深みぞを形成できる0次いで酸化膜を形成し、第4
図(g)以降と同様のプロセスを経ることによって第1
図(c)のプローブを得ることができる。なお、第3図
に示すプローブでは、第1図(a)と同様のプロセスで
形成1[能である。
The pattern 11 formed in (d) is circular and then CF
By performing dry etching in a gas such as a, an oxide film capable of forming needle-shaped deep grooves is formed, and a fourth oxide film is formed.
By going through the same process as shown in Figure (g) onwards, the first
The probe shown in Figure (c) can be obtained. Note that the probe shown in FIG. 3 can be formed by the same process as in FIG. 1(a).

なお実施例では、第1図および第3図に示す構造のプロ
ーブを作るために、第4図で5iOzをマスクとしたが
、これはS i3N4で代用することもJ能である。
In the example, 5iOz was used as a mask in FIG. 4 in order to make probes having the structures shown in FIGS. 1 and 3, but it is also possible to use Si3N4 instead.

これらの原子間力検出プローブに導電性をもたせて原子
間力による表面形状i1+’l定とともに電子分光等の
電気計測を行うこともできる。また、以4ニの構造物・
構成を用いた類似装置も本発明の範囲である。
By imparting conductivity to these atomic force detection probes, it is possible to perform electrical measurements such as electron spectroscopy as well as determination of the surface shape i1+'l by atomic force. In addition, the following 4 structures and
Similar devices using the configuration are also within the scope of the invention.

〔発明の効果〕〔Effect of the invention〕

以上の実施例から明らかなように、本発明のブ[1−ブ
は高精度の鋭利な突起部と適度のたわみを生じるプレー
ト部からなるプローブを形成できる。
As is clear from the above embodiments, the probe 1 of the present invention can be formed into a probe consisting of a sharp protrusion with high precision and a plate portion that is appropriately deflected.

この結果、プレート先端のチップは被ル1q定物の表面
形状を忠実にトレースし、分解能が高く高精度の形状l
ll’l定が可能となる。
As a result, the tip at the tip of the plate faithfully traces the surface shape of the constant object on the surface of the 1q surface, creating a highly accurate shape with high resolution.
ll'l specification becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す5iOzで形成さ九たプ
ローブの(既観図、第2図は従来の原子間力検出顕微鏡
(AFM)を示す構成図、第3図は本発明の他の実施例
を示す5iOzから成り、原子間力をうけて回転する構
造のプローブの概観図。 第4図は本発明のプローブの製造方法の実施例を示すた
めの断面図である。 1・・・プレー1−15・・・針状チップ、6・・・回
転軸。
Fig. 1 is an external view of a probe made of 5iOz showing an embodiment of the present invention, Fig. 2 is a configuration diagram showing a conventional atomic force detection microscope (AFM), and Fig. 3 is a diagram of a probe made of 5iOz according to the present invention. A general view of a probe made of 5iOz and having a structure that rotates in response to atomic force, showing another embodiment. Fig. 4 is a cross-sectional view showing an embodiment of the probe manufacturing method of the present invention. 1. ...Play 1-15...Needle tip, 6...Rotating axis.

Claims (1)

【特許請求の範囲】 1、可撓性を有する酸化珪素又は窒化珪素からなるプレ
ートと、該プレートの先端に該プレート面と異なる角度
で該プレートと一体に構成された針状のチップを有する
ことを特徴とするプローブ。 2、プレートと該プレートの先端に該プレート面と異な
る角度で該プレートと一体に構成された酸化珪素又は窒
化珪素から成る針状のチップと、該プレートを支持し、
その捩りによつて該プレートを剛体的に回転せしめる支
持棒を有して構成されることを特徴とするプローブ。 3、請求項1又は2記載のプローブの表面の少なくとも
一部を導電性材料で覆つて構成したことを特徴とするプ
ローブ。 4、請求項1〜3のいずれかに記載のプローブを原子間
や検出用プローブとして用いることを特徴とする原子間
力顕微鏡。 5、請求項4記載のものにおいて、プローブの偏位を静
電容量型距離検出手段で検知することを特徴とする原子
間力顕微鏡。 6、請求項4記載のもにおいて、プローブの偏位を光学
的距離検出手段で検知することを特徴とする原子間力顕
微鏡 7、請求項1に記載のプローブの製造方法において、該
チップを得るためにSiウェハに化学エッチングにより
凹部を形成し該凹部の表面に、熱酸化による酸化珪素又
はCVDによる窒化珪素のマスクを形成する工程と、該
マスクをパターニングする工程と、残留したSi部を化
学エッチングで除去する工程から成ることを特徴とする
プローブの製造方法。
[Scope of Claims] 1. A plate made of flexible silicon oxide or silicon nitride, and a needle-shaped tip formed integrally with the plate at an angle different from the plate surface at the tip of the plate. A probe featuring: 2. A plate, a needle-shaped tip made of silicon oxide or silicon nitride integrally formed with the plate at an angle different from the plate surface at the tip of the plate, and supporting the plate;
A probe comprising a support rod that rigidly rotates the plate by twisting the support rod. 3. A probe characterized in that the probe according to claim 1 or 2 is constructed by covering at least a portion of the surface with a conductive material. 4. An atomic force microscope, characterized in that the probe according to any one of claims 1 to 3 is used as an interatomic or detection probe. 5. The atomic force microscope according to claim 4, wherein the displacement of the probe is detected by a capacitive distance detection means. 6. An atomic force microscope according to claim 4, characterized in that the deflection of the probe is detected by an optical distance detection means. 7. In the method for manufacturing a probe according to claim 1, obtaining the tip. For this purpose, a recess is formed in the Si wafer by chemical etching, a mask of silicon oxide by thermal oxidation or silicon nitride by CVD is formed on the surface of the recess, a step of patterning the mask, and a step of chemically etching the remaining Si part. A method for manufacturing a probe, comprising a step of removing by etching.
JP63089024A 1988-04-13 1988-04-13 Probe and manufacturing method thereof Expired - Lifetime JP2656536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63089024A JP2656536B2 (en) 1988-04-13 1988-04-13 Probe and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63089024A JP2656536B2 (en) 1988-04-13 1988-04-13 Probe and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH01262403A true JPH01262403A (en) 1989-10-19
JP2656536B2 JP2656536B2 (en) 1997-09-24

Family

ID=13959345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63089024A Expired - Lifetime JP2656536B2 (en) 1988-04-13 1988-04-13 Probe and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2656536B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04233128A (en) * 1990-07-25 1992-08-21 Internatl Business Mach Corp <Ibm> Precision instrument sensor for profil measurement of afm/stm/mfm and its manufacture
US5537863A (en) * 1993-07-15 1996-07-23 Nikon Corporation Scanning probe microscope having a cantilever used therein
US5717132A (en) * 1995-04-26 1998-02-10 Nikon Corporation Cantilever and process for fabricating it
WO2000028299A1 (en) * 1998-11-11 2000-05-18 Seiko Instruments Inc. Optical cantilever and production method therefor
US6246054B1 (en) 1997-06-10 2001-06-12 Olympus Optical Co., Ltd. Scanning probe microscope suitable for observing the sidewalls of steps in a specimen and measuring the tilt angle of the sidewalls
WO2003046473A1 (en) * 2001-11-28 2003-06-05 General Nanotechnology Llc Method and apparatus for micromachines, microstructures, nanomachines and nanostructures
US6694805B2 (en) 2001-04-18 2004-02-24 Olympus Optical Co., Ltd. Cantilever for scanning probe microscopy
EP2036096A1 (en) * 2006-06-02 2009-03-18 Victor B. Kley High-speed measurement, analysis and imaging systems and methods for length scales from meter to sub-nanometer
US8776261B2 (en) 2005-05-10 2014-07-08 Victor B. Kley Tool tips with scanning probe microscopy and/or atomic force microscopy applications
US9075082B2 (en) 2002-03-07 2015-07-07 Victor B. Kley Fluid delivery for scanning probe microscopy
US9423693B1 (en) 2005-05-10 2016-08-23 Victor B. Kley In-plane scanning probe microscopy tips and tools for wafers and substrates with diverse designs on one wafer or substrate
US10042263B1 (en) 2013-03-15 2018-08-07 Victor B. Kley In-plane scanning probe microscopy tips and tools for wafers and substrates with diverse designs on one wafer or substrate
US10610995B2 (en) 1998-01-21 2020-04-07 Victor B. Kley Method and apparatus for nanolapping
WO2020227222A1 (en) 2019-05-03 2020-11-12 Bruker Nano, Inc. Torsion wing probe assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62130302A (en) * 1985-11-26 1987-06-12 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Method and device for forming image of surface of sample
JPS62156502A (en) * 1985-12-27 1987-07-11 Kyocera Corp Minute displacement measuring head
JPS63309802A (en) * 1987-05-12 1988-12-16 インターナショナル・ビジネス・マシーンズ・コーポレーション Interatomic power microscope

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62130302A (en) * 1985-11-26 1987-06-12 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Method and device for forming image of surface of sample
JPS62156502A (en) * 1985-12-27 1987-07-11 Kyocera Corp Minute displacement measuring head
JPS63309802A (en) * 1987-05-12 1988-12-16 インターナショナル・ビジネス・マシーンズ・コーポレーション Interatomic power microscope

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04233128A (en) * 1990-07-25 1992-08-21 Internatl Business Mach Corp <Ibm> Precision instrument sensor for profil measurement of afm/stm/mfm and its manufacture
US5537863A (en) * 1993-07-15 1996-07-23 Nikon Corporation Scanning probe microscope having a cantilever used therein
US5717132A (en) * 1995-04-26 1998-02-10 Nikon Corporation Cantilever and process for fabricating it
US6246054B1 (en) 1997-06-10 2001-06-12 Olympus Optical Co., Ltd. Scanning probe microscope suitable for observing the sidewalls of steps in a specimen and measuring the tilt angle of the sidewalls
US10610995B2 (en) 1998-01-21 2020-04-07 Victor B. Kley Method and apparatus for nanolapping
WO2000028299A1 (en) * 1998-11-11 2000-05-18 Seiko Instruments Inc. Optical cantilever and production method therefor
EP1531327A1 (en) * 1998-11-11 2005-05-18 Seiko Instruments Inc. SOM cantilever with hole with tip filling with a projected shape
US6694805B2 (en) 2001-04-18 2004-02-24 Olympus Optical Co., Ltd. Cantilever for scanning probe microscopy
US6813937B2 (en) 2001-11-28 2004-11-09 General Nanotechnology Llc Method and apparatus for micromachines, microstructures, nanomachines and nanostructures
WO2003046473A1 (en) * 2001-11-28 2003-06-05 General Nanotechnology Llc Method and apparatus for micromachines, microstructures, nanomachines and nanostructures
US9075082B2 (en) 2002-03-07 2015-07-07 Victor B. Kley Fluid delivery for scanning probe microscopy
US9423693B1 (en) 2005-05-10 2016-08-23 Victor B. Kley In-plane scanning probe microscopy tips and tools for wafers and substrates with diverse designs on one wafer or substrate
US8776261B2 (en) 2005-05-10 2014-07-08 Victor B. Kley Tool tips with scanning probe microscopy and/or atomic force microscopy applications
EP2036096A4 (en) * 2006-06-02 2009-12-02 Victor B Kley High-speed measurement, analysis and imaging systems and methods for length scales from meter to sub-nanometer
US7784107B2 (en) 2006-06-02 2010-08-24 Victor B. Kley High speed measurement, analysis and imaging systems and methods for length scales from meter to sub-nanometer
EP2036096A1 (en) * 2006-06-02 2009-03-18 Victor B. Kley High-speed measurement, analysis and imaging systems and methods for length scales from meter to sub-nanometer
US10042263B1 (en) 2013-03-15 2018-08-07 Victor B. Kley In-plane scanning probe microscopy tips and tools for wafers and substrates with diverse designs on one wafer or substrate
WO2020227222A1 (en) 2019-05-03 2020-11-12 Bruker Nano, Inc. Torsion wing probe assembly
CN114026438A (en) * 2019-05-03 2022-02-08 布鲁克纳米公司 Twist wing probe assembly
JP2022530987A (en) * 2019-05-03 2022-07-05 ブルカー ナノ インコーポレイテッド Torsion wing probe assembly
EP3963341A4 (en) * 2019-05-03 2023-01-18 Bruker Nano, Inc. Torsion wing probe assembly
CN114026438B (en) * 2019-05-03 2024-09-24 布鲁克纳米公司 Torsion wing probe assembly

Also Published As

Publication number Publication date
JP2656536B2 (en) 1997-09-24

Similar Documents

Publication Publication Date Title
US6788086B2 (en) Scanning probe system with spring probe
US5367165A (en) Cantilever chip for scanning probe microscope
US5856672A (en) Single-crystal silicon cantilever with integral in-plane tip for use in atomic force microscope system
JP2624873B2 (en) Atomic force microscope probe and method of manufacturing the same
US5578745A (en) Calibration standards for profilometers and methods of producing them
US5581083A (en) Method for fabricating a sensor on a probe tip used for atomic force microscopy and the like
US6953519B2 (en) Method of manufacturing the multi-tip probe, a multi-tip probe, and surface characteristic analysis apparatus
JPH01262403A (en) Probe and its manufacture
US5729026A (en) Atomic force microscope system with angled cantilever having integral in-plane tip
JP4656761B2 (en) SPM cantilever
JPH08271802A (en) Manufacture of microscope probe chip
US20020021139A1 (en) Molecular probe station
JPH1090287A (en) Probe for interatomic force microscope and its manufacture
JPH1038916A (en) Probe device and electrically connecting method for minute region
JPH10170530A (en) Afm cantilever and its manufacture
JP3158159B2 (en) Cantilever lever with tall probe for atomic force microscope
JPH0883789A (en) Micromachining method
JPH07253435A (en) Manufacture of probe
JPH05256643A (en) Cantilever chip for scanning type probe microscope
JPH11230974A (en) Probe and manufacture thereof
JP2000155085A (en) Interatomic force microscope prober and interatomic force microscope
JPH10339736A (en) Probe for scanning type probe microscope and producing method therefor
JP3076148B2 (en) Cantilever tip for scanning probe microscope
JPH0658754A (en) Measuring method for probe shape
JP2002122529A (en) Method of measuring mounting angle of probe for scanning probe microscope(spm)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term