JPH03274481A - Device for detecting magnetic information - Google Patents

Device for detecting magnetic information

Info

Publication number
JPH03274481A
JPH03274481A JP7332190A JP7332190A JPH03274481A JP H03274481 A JPH03274481 A JP H03274481A JP 7332190 A JP7332190 A JP 7332190A JP 7332190 A JP7332190 A JP 7332190A JP H03274481 A JPH03274481 A JP H03274481A
Authority
JP
Japan
Prior art keywords
magnetic
probe
cantilever
sample
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7332190A
Other languages
Japanese (ja)
Inventor
Yukio Honda
幸雄 本多
Sumio Hosaka
純男 保坂
Kazuyoshi Yoshida
吉田 和悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7332190A priority Critical patent/JPH03274481A/en
Publication of JPH03274481A publication Critical patent/JPH03274481A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To enable detection of information on the magnetic force of the surface of a sample and information on the surface shape thereof with high sensitivity and high resolution by providing a magnetic probe with a coil for controlling the magnitude of magnetization of the probe and the orientation of magnetization. CONSTITUTION:A cantilever 1, a support 2 constructed integrally therewith and a hole 3 are provided. The fore end part 4 of the cantilever 1 is machined to have a sharply pointed shape by a technique of photolithography. Next, a magnetic probe 5 is provided on the surface of the cantilever 1 and a coil 6 is provided at on end of the probe 5 so as to control the magnitude of magnetization thereof. When the probe 5 approaches the surface of a magnetic sample, a magnetic force acts between them and the cantilever 1 is subjected to deflection by this force. The amount of this deflection depends also on the magnitude of magnetization of the probe 5 in addition to the strength of the magnetic field of the sample. Accordingly, the magnitude of magnetization of the probe 5 is so controlled as to keep the amount of deflection of the cantilever 1 fixed, by varying a current made to flow through the coil or the direction of the current. By monitoring the value of a signal of this control, information on the magnetic force between the magnetic sample and the probe 5 can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、磁性探針と磁性体等の試料とを接近させた時
に発生する磁気力またはトンネル電流を利用して、試料
の表面形態あるいは磁気的性質の情報を得る走査型磁気
力顕微鏡、走査型トンネル顕微鏡あるいは原子間力顕v
lj鏡等の磁気情報検出装置に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention utilizes magnetic force or tunneling current generated when a magnetic probe and a sample such as a magnetic material are brought close to each other to determine the surface morphology or shape of the sample. Scanning magnetic force microscope, scanning tunneling microscope, or atomic force microscope to obtain information on magnetic properties
This invention relates to magnetic information detection devices such as lj mirrors.

[従来の技術1 従来技術である走査型トンネル顕微鏡は、探針と試料間
に電圧を印加し、探針と試料との距離を接近したときに
得られるトンネル電流および電界放射電流を利用して試
料の表面形態を調べる装置である。一方、走査型磁気力
顕微鏡は、探針として磁性体を用い、この磁性探針を磁
性試料に接近したときの磁気力を利用して試料の磁化状
態を調へる装置である。
[Conventional technology 1] A scanning tunneling microscope, which is a conventional technology, applies a voltage between the probe and the sample, and utilizes the tunneling current and field emission current obtained when the probe and the sample are brought close together. This is a device that examines the surface morphology of a sample. On the other hand, a scanning magnetic force microscope is a device that uses a magnetic material as a probe and uses the magnetic force when the magnetic probe approaches a magnetic sample to investigate the magnetization state of the sample.

従来、磁性探針と試料を接近して得られる磁気力を利用
した走査型磁気力顕1!3!鏡における試料の磁気的情
報の取得方法については、ジャーナルオブ バキューム
 サイエンス テクノロジー^6  (1988年)第
279頁から第282頁、あるいはアプライド フィジ
ックス レターズ 50巻 (1987年) 第145
5頁から第1457頁において論じられている。
Conventionally, a scanning magnetic force microscope 1!3! utilizes the magnetic force obtained by bringing a magnetic probe and sample close together. For information on how to obtain magnetic information about a sample using a mirror, see Journal of Vacuum Science Technology^6 (1988), pp. 279 to 282, or Applied Physics Letters, Vol. 50 (1987), No. 145.
Discussed on pages 5 to 1457.

また、試料とプローブを接近したときに生ずる原子間力
を検出するプローブについては、ヨーロッパフィジック
ス レター3(1987年)第1281頁から第128
6頁(Europhys、 Lett、 3 (1,9
87)pp1281−1286)において論しられてい
る。
Regarding probes that detect the atomic force generated when a sample and probe are brought close, see European Physics Letter 3 (1987), pp. 1281 to 128.
Page 6 (Europhys, Lett, 3 (1,9
87) pp 1281-1286).

【発明が解決しようとする課題1 磁気力顕微鏡は、磁性試料表面の漏洩磁界と磁性探針の
相互作用によって生ずる磁気力を検出する装置である。
Problem 1 to be Solved by the Invention A magnetic force microscope is a device that detects the magnetic force generated by the interaction between a leakage magnetic field on the surface of a magnetic sample and a magnetic probe.

上記従来技術で用いる磁性探針は、ニッケル(N1)や
鉄(Fe)などの磁性線の先端をL字型に折り曲げた構
成で用いていた。NiやFeは高い飽和磁束密度と8O
A/m以下の小さな保磁力をもつ材料である。この場合
、NlやFeからなる磁性探針を従来技術により磁性体
試料表面に接近すると、磁性試料表面の漏洩磁界により
磁性探針の磁化の大きさや磁化の向きが変化を受けて。
The magnetic probe used in the above-mentioned prior art has a configuration in which the tip of a magnetic wire made of nickel (N1) or iron (Fe) is bent into an L-shape. Ni and Fe have high saturation magnetic flux density and 8O
It is a material with a small coercive force of A/m or less. In this case, when a magnetic probe made of Nl or Fe approaches the surface of a magnetic sample using the conventional technique, the magnitude and direction of magnetization of the magnetic probe change due to the leakage magnetic field from the surface of the magnetic sample.

高感度で高分解能の磁気月情報が得られない欠点があっ
た。
The drawback was that it was not possible to obtain high-sensitivity, high-resolution magnetic lunar information.

また、従来技術では、探針と試料との間隙の変化による
誤差が入る為、測定した磁気力(表面形態情報を含む)
から表面形態情報を除去しても正確な磁気月情報が得ら
ず、正確な磁気月情報と表面形態情報の分離が出来ない
という欠点があった。
In addition, with conventional technology, errors occur due to changes in the gap between the probe and the sample, so the measured magnetic force (including surface morphology information)
Even if surface morphology information is removed from the surface, accurate magnetic lunar information cannot be obtained, and accurate magnetic lunar information and surface morphology information cannot be separated.

本発明の目的は、試料表面の磁気月情報と表面形態情報
を高感度、高分解能で検出ができる磁気情報検出装置を
提供することにある。
An object of the present invention is to provide a magnetic information detection device that can detect magnetic moon information and surface morphology information on a sample surface with high sensitivity and high resolution.

【課題を解決するための手段] 上記目的を達成するために、i性探針に磁性探針の磁化
の大きさと磁化の向きを制御するコイルを設置した。
[Means for Solving the Problems] In order to achieve the above object, a coil for controlling the magnitude and direction of magnetization of the magnetic probe was installed in the i-probe.

[作用] 磁性探針の周囲にコイルを設置し、コイルに流す電流値
を変化することにより、磁性探針先端部の磁化の大きさ
を制御する。またコイルに流す電流の向きを変えること
により、磁性探針先端部の磁化の向きを変化する。この
構成による磁性探針は9例えば次のように作用する。磁
性試料の表面に先端部が磁化した磁性探針が接近すると
、この間に磁気力が作用し、この力によりカンチレバー
が撓みを受ける。この撓みの量は試料の磁界の強さの他
に磁性探針の磁化の大きさにも依存する。
[Operation] A coil is installed around the magnetic probe, and the magnitude of magnetization at the tip of the magnetic probe is controlled by changing the value of the current flowing through the coil. Furthermore, by changing the direction of the current flowing through the coil, the direction of magnetization at the tip of the magnetic probe is changed. The magnetic probe with this configuration operates as follows, for example. When a magnetic probe with a magnetized tip approaches the surface of a magnetic sample, a magnetic force acts between them, and the cantilever is deflected by this force. The amount of this deflection depends not only on the strength of the sample's magnetic field but also on the magnitude of the magnetization of the magnetic probe.

したがって、カンチレバーの撓みの量を一定に保つよう
に磁性探針の磁化の大きさをコイルに流す電流や電流の
向きを変化することにより制御する。
Therefore, the magnitude of magnetization of the magnetic probe is controlled by changing the current flowing through the coil and the direction of the current so as to keep the amount of deflection of the cantilever constant.

この制御信号の値をモニターすることにより磁性試料と
磁性探針間の磁気月情報を得ることができる。カンチレ
バーの撓みの量は、カンチレバーの後方に設けた変位検
品手段(例えばトンネル電流。
By monitoring the value of this control signal, magnetic moon information between the magnetic sample and the magnetic probe can be obtained. The amount of deflection of the cantilever can be measured by means of displacement inspection means (for example, tunneling current) provided behind the cantilever.

または光学的な方法、あるいは静電容量の変化)で検出
するか、もしくは試料と磁性探針の間のトンネル電流を
計測することにより検出できる。
Alternatively, it can be detected by an optical method (or a change in capacitance), or by measuring the tunneling current between the sample and the magnetic probe.

また9本発明ではコイルに流す電流により磁性探針の磁
化の強さを容易に制御できるので、試料表面の漏洩磁界
の影響を受けないように磁性探針の磁化の強さを設定す
ることは容易である。
Furthermore, in the present invention, the magnetization strength of the magnetic probe can be easily controlled by the current flowing through the coil, so it is possible to set the magnetization strength of the magnetic probe so as not to be affected by the leakage magnetic field on the sample surface. It's easy.

したがって、別に表面形態情報を計測することにより、
正確な磁気月情報が得られる。すなわち。
Therefore, by separately measuring surface morphology information,
Accurate magnetic moon information can be obtained. Namely.

試料の表面形態情報と磁気月情報を分離して検出できる
。表面形態情報はコイルに高周波の電流を流すことによ
り磁性探針の最大の磁化の強さを小さくシ、すなわち磁
気に対する感度を下げ、試料の原子間力を測定すること
により得られる。
It is possible to separate and detect the surface morphology information and magnetic moon information of the sample. Surface morphology information can be obtained by passing a high-frequency current through a coil to reduce the maximum magnetization strength of the magnetic probe, that is, lowering the sensitivity to magnetism, and measuring the atomic force of the sample.

先端部が鋭く尖ったカンチレバーの面に磁性探針を形成
する。カンチレバーを構成する材料は。
A magnetic probe is formed on the surface of a cantilever with a sharp tip. What is the material that makes up the cantilever?

剛性が高く固有振動数が大きいことが望ましい。It is desirable to have high rigidity and a large natural frequency.

カンチレバーは酸化珪素、窒化珪素、ダイヤモンド状カ
ーボンなどで構成する。またはN]やFe。
The cantilever is made of silicon oxide, silicon nitride, diamond-like carbon, etc. or N] or Fe.

Wなどで構成しても良い。磁性探針は保磁力が小さいこ
とが望ましく、80A/m以下がよい。また、磁化変化
に対する周波数応答特性を向上するために、磁性探針を
構成する磁性材料の透磁率は1000以上とする。
It may also be composed of W or the like. It is desirable that the magnetic probe has a small coercive force, preferably 80 A/m or less. Furthermore, in order to improve the frequency response characteristics to magnetization changes, the magnetic permeability of the magnetic material constituting the magnetic probe is set to 1000 or more.

磁性探針を磁性薄膜で構成し、カンチレバーの表面に対
して磁性薄膜の磁化容易軸を垂直もしくは平行に形成し
、カンチレバーの先端が試料面に垂直になるように設置
することによって、磁性探針の磁化容易軸を試料面に垂
直もしくは平行に設定でき、試料表面の漏洩磁界の水平
または垂直成分を高感度で測定が可能となる。
The magnetic probe is made of a magnetic thin film, the axis of easy magnetization of the magnetic thin film is perpendicular or parallel to the surface of the cantilever, and the tip of the cantilever is installed perpendicular to the sample surface. The axis of easy magnetization can be set perpendicular or parallel to the sample surface, making it possible to measure the horizontal or vertical components of the leakage magnetic field on the sample surface with high sensitivity.

同様の計測手段は、試料と探針の間の磁気力の他に、音
響、熱、光などによる試料と探針間の変位を検出する走
査型トンネル顕微鏡類似装置に適用できる。
Similar measurement means can be applied to a device similar to a scanning tunneling microscope that detects displacement between the sample and the probe due to acoustics, heat, light, etc. in addition to the magnetic force between the sample and the probe.

また磁性探針の表面に磁性探針の材料に比べて酸化力の
小さい材料からなる被覆層を形成する。
Further, a coating layer made of a material having lower oxidizing power than the material of the magnetic probe is formed on the surface of the magnetic probe.

被覆層の材料として望ましい材料は、 Pt、 Pd、
 Au。
Desirable materials for the coating layer include Pt, Pd,
Au.

Ru、 Rh、 Cr、 Cおよび、これらの内の少な
くとも一元素を含む合金である。またこの被覆層の望ま
しい厚さは、 1100n以下である。また被覆層の材
料としては電気伝導性を有する材料が望ましい。
It is Ru, Rh, Cr, C, and an alloy containing at least one element among these. Further, the desirable thickness of this coating layer is 1100 nm or less. Further, as the material of the covering layer, a material having electrical conductivity is desirable.

さらに望ましくは非磁性の材料がよい。More preferably, a non-magnetic material is used.

[実施例1 以下、実施例でもって本発明を説明する。[Example 1 The present invention will be explained below with reference to Examples.

実施例 1 第1図により9本実施例を説明する。フォトプロセスに
より先端が鋭く尖ったカンチレバー1とこれと一体に構
成した支持体2.および孔3を作製した。カンチレバー
1の材料としては、剛性が高く比重の小さいものが望ま
しい。本実施例では。
Example 1 Nine examples will be explained with reference to FIG. A cantilever 1 whose tip is sharply pointed by a photo process and a support body 2 formed integrally with the cantilever. And hole 3 was created. The material for the cantilever 1 is preferably one with high rigidity and low specific gravity. In this example.

Si基板上し;形成したSiO□からなるカンチレバー
を用いたが、この他にSi、 Si3N、、 W、 M
o、ダイヤモンド状カーボン、を用いて同様の構成のカ
ンチレバー1を作製してもいずれも同様の効果を得るこ
とができるのは言うまでもない。カンチレバー1の先端
部4は、フォトリソグフイ技術により鋭く尖った形状に
加工した。カンチレバー1の先端部4は2例えばフォト
プロセスtこおけるエツチング速度やエツチング液を適
切に選ぶことにより任意に変化できた。またフォトプロ
セスの後、イオンビームエツチング、あるいは収束イオ
ンビームなどで加工することにより鋭く尖らせることが
出来ることは言うまでもない。次に、カンチレバー1の
表面に磁性探針5を形成した。磁性探針5は。
A cantilever made of SiO□ formed on a Si substrate was used, but in addition to this, Si, Si3N, W, M
It goes without saying that the same effect can be obtained even if cantilevers 1 having a similar configuration are made using diamond-like carbon or diamond-like carbon. The tip portion 4 of the cantilever 1 was processed into a sharply pointed shape by photolithography technology. The tip portion 4 of the cantilever 1 can be arbitrarily changed, for example, by appropriately selecting the etching rate and etching solution in the photo process. Needless to say, after the photo process, it can be sharpened by processing with ion beam etching or focused ion beam. Next, a magnetic probe 5 was formed on the surface of the cantilever 1. The magnetic probe 5 is.

磁性薄膜で構成し、真空蒸着法で形成した。スパッタリ
ング法や電界メツキ法によりカンチレバーの面に磁性材
料を付着させても同様の効果をもった磁性探針5を構成
できた。磁性探針5はカンチレバー1の面に平行、すな
わち磁性探針5の先端方向に磁性薄膜の磁化容易軸をも
たせた。この目的のために、磁性薄膜形成中に磁化容易
軸を与える向きに磁場を印加した。または磁性薄膜形成
の後に磁場中で300〜500℃の熱処理を行なっても
同様の効果を得た。磁性探針5の先端は鋭く尖っている
ことが望ましく、磁性探針5を形成した後。
It was composed of a magnetic thin film and was formed using a vacuum evaporation method. Even when a magnetic material was attached to the surface of the cantilever by a sputtering method or an electric field plating method, a magnetic probe 5 having the same effect could be constructed. The magnetic probe 5 had the axis of easy magnetization of the magnetic thin film parallel to the surface of the cantilever 1, that is, in the direction of the tip of the magnetic probe 5. For this purpose, a magnetic field was applied in the direction that provides the easy axis of magnetization during the formation of the magnetic thin film. Alternatively, a similar effect was obtained by performing heat treatment at 300 to 500° C. in a magnetic field after forming the magnetic thin film. It is desirable that the tip of the magnetic probe 5 is sharply pointed, after the magnetic probe 5 is formed.

収束イオンビームエツチングで加工して、先端の曲率が
1000Å以下に鋭く尖らせた。また化学研磨などで加
工することにより先端の曲率が1000Å以下に鋭く尖
らせることができることは言うまでもない。磁性探針5
の構成材料としては、 80at%Ni−Feを用いた
。同様の効果は80at%Ni−Feを始めとするパー
マロイ+ Ni+ FeおよびNi、 Fe、 Co、
 Ta。
It was processed using focused ion beam etching to sharpen the tip with a curvature of less than 1000 Å. It goes without saying that the tip can be sharpened to a curvature of 1000 Å or less by processing by chemical polishing or the like. Magnetic probe 5
80at%Ni-Fe was used as the constituent material. Similar effects can be obtained with permalloy including 80 at% Ni-Fe and Ni, Fe, Co,
Ta.

Zr、 Hfを含む非晶質合金、 Fe−C系の材料、
あるいはこれらを含む多層膜で形成しでも良いことは言
うまでもない。磁性探針5を構成する磁性薄膜の保磁力
は80A/m以下とした。磁性探針5の磁化の大きさを
制御するために、磁性探針5の一端にコイル6を設けた
。コイル6に通電することにより磁性探針5の先端の磁
化の大きさと磁化の向きを任意に制御できる。
Zr, amorphous alloy containing Hf, Fe-C based material,
Alternatively, it goes without saying that a multilayer film containing these may be used. The coercive force of the magnetic thin film constituting the magnetic probe 5 was set to 80 A/m or less. In order to control the magnitude of magnetization of the magnetic probe 5, a coil 6 was provided at one end of the magnetic probe 5. By energizing the coil 6, the magnitude and direction of magnetization at the tip of the magnetic probe 5 can be arbitrarily controlled.

実施例2 本発明の磁性探針を磁気力顕微鏡に応用した一例を第2
図により説明する。
Example 2 An example of applying the magnetic probe of the present invention to a magnetic force microscope is shown in the second example.
This will be explained using figures.

実施例1のごとく作製した磁性探針を用いて第2図のご
とく磁気力顕微鏡を構成した。
Using the magnetic probe prepared as in Example 1, a magnetic force microscope was constructed as shown in FIG.

カンチレバーlの上に形成した磁性探針5の先端が磁性
試料6(Co−20ut%N1薄膜に面内磁気記録した
試料)の表面に垂直に接するように設置した。
The tip of the magnetic probe 5 formed on the cantilever 1 was placed in perpendicular contact with the surface of a magnetic sample 6 (a sample in which in-plane magnetic recording was performed on a Co-20 ut% N1 thin film).

すなわちカンチレバー1の先端部に位置する磁性探針5
の磁化容易軸が試料面[こ垂直になるように設置した。
That is, the magnetic probe 5 located at the tip of the cantilever 1
The axis of easy magnetization was perpendicular to the sample surface.

この場合、磁性探針はN]で構成し、磁性探針およびカ
ンチレバーの両面にpt膜を蒸着し。
In this case, the magnetic probe is made of N], and a PT film is deposited on both sides of the magnetic probe and the cantilever.

導電性被覆膜を形成した。カンチレバー1の後方に先端
が鋭く尖った金属探針9例えばWプローブ7を設置した
。磁性試料6は3個の圧電素子8で構成したトライポッ
ト9の上に設置した。圧電素子8に電圧を印加すること
により、試料6はXt Yt Zt力方向任意に移動し
た。磁性探針5はコイル1゜に一定の電流を特定の方向
に流して磁性探針5の先端がS極になるように磁化した
。磁性探針5の先端部の磁化の大きさと磁化の向きはコ
イル1゜に流す電流の値と電流の向きにより制御できる
A conductive coating film was formed. A metal probe 9 having a sharp tip, such as a W probe 7, was installed behind the cantilever 1. The magnetic sample 6 was placed on a tri-pot 9 made up of three piezoelectric elements 8. By applying a voltage to the piezoelectric element 8, the sample 6 was moved arbitrarily in the Xt, Yt, and Zt force directions. The magnetic probe 5 was magnetized by passing a constant current in a specific direction through a 1° coil so that the tip of the magnetic probe 5 became the south pole. The magnitude and direction of magnetization at the tip of the magnetic probe 5 can be controlled by the value and direction of the current flowing through the coil 1°.

磁性探針5を磁性試料6の表面に接近すると試料表面の
漏洩磁界により磁性探針5が力を受け、カンチレバー1
に撓みを生じさせた。この撓みは磁性試料がS極に磁化
した領域では反発する方向に。
When the magnetic probe 5 approaches the surface of the magnetic sample 6, the magnetic probe 5 receives a force due to the leakage magnetic field on the sample surface, and the cantilever 1
caused a deflection. This deflection is in the direction of repulsion in the region where the magnetic sample is magnetized to the S pole.

一方N極に磁化した領域では引張りを受ける方向に変位
した。カンチレバー1の撓みの量はこの後方に設置した
Wプローブ7によりトンネル電流として検出され9例え
ばトンネル電流を一定に保つように定電流サーボ回路1
2を作動させ、トライポット9のZ方向の圧電素子8に
より試料を前後方向に移動させ測定すべき磁気力を検出
した。また、同時に2次元走査系13によりX、Y方向
の圧電素子を走査させ、試料表面の磁気力分布像として
デイスプレィ14に表示した。この測定系において、コ
イル10に一定電流を通電して磁性探針5を磁化しであ
るので、磁性探針5が試料表面に接近しても磁性探針の
先端の磁化の大きさは一定の値に保たれ、コイル10を
作用させない場合に比べて正確な磁気力情報を約1桁高
い感度で検出できた。
On the other hand, the region magnetized to the north pole was displaced in the direction of receiving tension. The amount of deflection of the cantilever 1 is detected as a tunnel current by a W probe 7 installed behind the cantilever 1, and a constant current servo circuit 1 is detected to keep the tunnel current constant.
2 was activated, the sample was moved back and forth by the piezoelectric element 8 in the Z direction of the tripot 9, and the magnetic force to be measured was detected. At the same time, the piezoelectric element was scanned in the X and Y directions by the two-dimensional scanning system 13, and displayed on the display 14 as a magnetic force distribution image on the sample surface. In this measurement system, a constant current is applied to the coil 10 to magnetize the magnetic probe 5, so even if the magnetic probe 5 approaches the sample surface, the magnitude of magnetization at the tip of the magnetic probe remains constant. It was possible to detect accurate magnetic force information with a sensitivity that was about one order of magnitude higher than when the coil 10 was not applied.

磁性探針5の材料として、パーマロイ合金の他に〜i、
 Fe、 Coおよびこれを含む合金、 Co−Nb−
Zr。
In addition to permalloy alloy, ~i,
Fe, Co and alloys containing it, Co-Nb-
Zr.

Co−No−Zr、 Co−Ta−Zrなどの非晶質合
金、あるいはFe/C,Fe/パーマロイ多層膜を用い
ても同様の効果を得ることができた。
Similar effects could be obtained using amorphous alloys such as Co--No--Zr and Co--Ta--Zr, or multilayer films of Fe/C and Fe/permalloy.

磁性探針およびカンチレバー表面の被覆層としては、 
Ptの他にRu、 Rh、 Au、 Pd、 Cr、 
Cおよびこれを含む合金を用いても効果は同じであった
As a coating layer on the surface of the magnetic probe and cantilever,
In addition to Pt, Ru, Rh, Au, Pd, Cr,
The same effect was obtained even when C and alloys containing it were used.

実施例3 実施例1のごとく構成した磁性探針の他の応用例を第3
図により説明する。
Example 3 Another application example of the magnetic probe configured as in Example 1 is shown in the third example.
This will be explained using figures.

本実施例では、磁気力の検出をコイル10の通電電流の
変化により行った。すなわち、試料の磁気力情報に対応
してカンチレバー1が撓むと、これを元に戻す力が働く
ように磁性探針の磁化の大きさが変化するようにし、こ
の時のコイル10の通電電流の変化量により磁気力を検
出した。磁化の大きさの制御機構は次のとおりである。
In this example, the magnetic force was detected by changing the current flowing through the coil 10. That is, when the cantilever 1 is deflected in response to the magnetic force information of the sample, the magnitude of the magnetization of the magnetic probe is changed so that a force is applied to return it to its original state, and the current flowing through the coil 10 at this time is changed. Magnetic force was detected by the amount of change. The control mechanism for the magnitude of magnetization is as follows.

まず。first.

磁性探針5の先端を磁性試料6に接近させ、この間のト
ンネル電流を電流検出器11により検出する。次にこの
トンネル電流を一定に保つ、すなわち試料と磁性探針間
の距離を一定に保つように。
The tip of the magnetic probe 5 is brought close to the magnetic sample 6, and the tunnel current during this time is detected by the current detector 11. Next, keep this tunneling current constant, that is, keep the distance between the sample and the magnetic probe constant.

コイル10に流れる電流値はコイル電流制御回路15に
より制御しされ、その結果磁性探針5の磁化の大きさが
変化する。また、圧電素子8により試料をX、Y方向に
走査させることにより試料表面の磁化の分布をコイル電
流の変化の像として表示した。
The value of the current flowing through the coil 10 is controlled by a coil current control circuit 15, and as a result, the magnitude of magnetization of the magnetic probe 5 changes. Furthermore, by scanning the sample in the X and Y directions with the piezoelectric element 8, the magnetization distribution on the sample surface was displayed as an image of changes in the coil current.

実施例4 実施例1のごとく構成した磁性探針の他の応用例を第4
図により説明する。
Example 4 Another application example of the magnetic probe configured as in Example 1 is shown in the fourth example.
This will be explained using figures.

カンチレバー1の後方に先端が尖った9プローブ7を設
置し、この間のトンネル電流を電流検出器11により検
出した。このトンネル電流を一定に保ちながら磁性探針
5.カンチレバー1.およびシブローブ7を磁性試料6
の表面に接近した。
A nine-probe 7 with a sharp tip was installed behind the cantilever 1, and the tunnel current between these probes was detected by a current detector 11. While keeping this tunneling current constant, the magnetic probe 5. Cantilever 1. and sieve probe 7 to magnetic sample 6.
approached the surface.

このときのコイル10の通電電流の変化により磁気力を
検出した。試料と磁性探針5の間の磁気力の大きさは磁
性探針先端の磁化の大きさに依存し。
The magnetic force was detected based on the change in the current flowing through the coil 10 at this time. The magnitude of the magnetic force between the sample and the magnetic probe 5 depends on the magnitude of magnetization at the tip of the magnetic probe.

これに対応してカンチレバー1が変位する。磁性探針5
を設けたカンチレバー1の面とシブローブの間のトンネ
ル電流を一定に保つ、すなわちカンチレバー1の面とシ
ブローブの距離を一定に保つようにコイル10に通電す
る電流値をコイル電流制御回路15により制御し、磁性
探針5の先端の磁化の大きさを変化させる。すなわち試
料表面と磁性探針間の磁気力を一定に保つように制御し
た。
The cantilever 1 is displaced in response to this. Magnetic probe 5
The current value applied to the coil 10 is controlled by the coil current control circuit 15 so as to keep the tunnel current between the surface of the cantilever 1 and the shive lobe constant, that is, to keep the distance between the surface of the cantilever 1 and the shive lobe constant. , the magnitude of magnetization at the tip of the magnetic probe 5 is changed. In other words, the magnetic force between the sample surface and the magnetic probe was controlled to be kept constant.

また、圧電素子8により試料をX、Y方向に走査させる
ことにより試料表面の磁化の分布をコイル電流の変化の
像として表示した。
Furthermore, by scanning the sample in the X and Y directions with the piezoelectric element 8, the magnetization distribution on the sample surface was displayed as an image of changes in the coil current.

実施例5 実施例1.および実施例2のごとく構成した磁性探針と
測定系を用いた他の応用例を第2図により説明する。
Example 5 Example 1. Another application example using the magnetic probe and measurement system configured as in Example 2 will be explained with reference to FIG.

磁性探針5は、保磁力は80A/11以下のFeで構成
した。またパーマロイ合金の他にNi、 Fe、 Co
およびこれを含む合金、 Co−Nb−Zr、 Co−
No−Zr、 Co−Ta−Zrなどの非晶質合金、あ
るいはFe/C,Fe/パーマロイ多層膜などで構成し
た保磁力が8OA/m以下の磁性探針でも同様の効果を
得ることは言うまでもない。第2図において、コイル1
0には高周波の電流を通電することにより、磁性探針5
の最大の磁化の強さを小さく、望ましくは10kA/■
以下に保つようにした。こうして、磁気に対する感度を
下げることにより、磁性探針5の先端が試料6の表面に
接近したとき、この間に働く磁気力が小さくなり、試料
と磁性探針の距離を十分9例えばlnm以下に接近でき
た。この状態では試料表面の原子と磁性探針を構成する
原子の間に引張り、あるいは反発力、すなわち原子間力
が作用する。この原子間力によりカンチレバー1が撓み
を受けた。カンチレバー1の撓みの量を、この後方に設
けたりプローブによりトンネル電流として検出した。ト
ンネル電流の値を一定に保つようにトライボット9を構
成する2方向の圧電素子8を制御することにより、試料
表面の形態情報を得た。
The magnetic probe 5 was made of Fe with a coercive force of 80 A/11 or less. In addition to permalloy alloys, Ni, Fe, Co
and alloys containing it, Co-Nb-Zr, Co-
It goes without saying that the same effect can be obtained with a magnetic probe with a coercive force of 8 OA/m or less made of an amorphous alloy such as No-Zr or Co-Ta-Zr, or a multilayer film of Fe/C or Fe/permalloy. stomach. In Figure 2, coil 1
By applying a high frequency current to the magnetic probe 5,
Reduce the maximum magnetization strength, preferably 10kA/■
I tried to keep it below. In this way, by lowering the sensitivity to magnetism, when the tip of the magnetic probe 5 approaches the surface of the sample 6, the magnetic force acting thereon becomes smaller, and the distance between the sample and the magnetic probe is sufficiently reduced to less than 9, for example, 1 nm. did it. In this state, a tensile or repulsive force, that is, an interatomic force, acts between the atoms on the sample surface and the atoms forming the magnetic probe. The cantilever 1 was deflected by this atomic force. The amount of deflection of the cantilever 1 was detected as a tunnel current using a probe provided behind it. By controlling the piezoelectric elements 8 in two directions forming the Tribot 9 so as to keep the value of the tunneling current constant, information on the morphology of the sample surface was obtained.

実施例2〜5の磁気力情報の測定結果と本実施例の表面
形態情報とから、上記磁気力情報の測定結果中に含まれ
る表面形態情報を除去でき正確な磁気力情報が得られる
。すなわち、磁性試料の磁気情報と表面形態情報を分離
して計測できた。
From the measurement results of the magnetic force information of Examples 2 to 5 and the surface morphology information of this example, the surface morphology information included in the measurement results of the magnetic force information can be removed, and accurate magnetic force information can be obtained. In other words, it was possible to separate and measure the magnetic information and surface morphology information of the magnetic sample.

実施例6 本発明の磁性探針を磁気記録再生システムに応用した一
例を第5図により説明する。
Example 6 An example in which the magnetic probe of the present invention is applied to a magnetic recording/reproducing system will be explained with reference to FIG.

磁性探針5は、先端が鋭く尖った磁性針22と磁路21
から構成され、これらはカンチレバー1の面に一体に構
成した。磁性探針5の一端にはコイル10を設けた。磁
性針22の先端の磁化の大きさと磁化の向きはコイル1
0に流す電流の向きと大きさを任意に変化することによ
り制御した。コイル電流の制御系は実施例2〜5と同様
に構成した。
The magnetic probe 5 includes a magnetic needle 22 with a sharp tip and a magnetic path 21.
These are integrally formed on the surface of the cantilever 1. A coil 10 was provided at one end of the magnetic probe 5. The magnitude and direction of magnetization at the tip of the magnetic needle 22 are determined by the coil 1.
This was controlled by arbitrarily changing the direction and magnitude of the current flowing through the current. The coil current control system was configured in the same manner as in Examples 2-5.

磁気記録に際しては、i!性針22の先端を磁気記録膜
23の表面に接近させ、この状態でコイル10に通電し
て磁性針22の先端を磁気記録膜23の保磁力以上の大
きさの磁界を発生するように磁化し。
For magnetic recording, i! The tip of the magnetic needle 22 is brought close to the surface of the magnetic recording film 23, and in this state, the coil 10 is energized to magnetize the tip of the magnetic needle 22 so as to generate a magnetic field larger than the coercive force of the magnetic recording film 23. death.

磁性針22の磁化により磁気記録膜23を磁化した。The magnetic recording film 23 was magnetized by the magnetization of the magnetic needle 22.

磁化の向きはコイル10への通電の向きを変えることに
より磁性針22の磁化を変化した。磁気記録の際の磁化
の大きさは、磁気記録膜23の保磁力より大きく設定し
た。一方、磁気記録された磁気記録膜23から次のよう
にして記録信号を再生した。コイル10に通電して磁性
針22の先端を磁化し、磁性針の先端を磁気記録膜の表
面に接近した。このときの磁化の大きさは磁気記録膜2
3の保磁力より小さく設定した。この状態で磁気記録膜
23を矢印24のごとく移動させると磁気記録膜23の
磁化の向きに対応して磁性針22の間に引っ張りあるい
は反発力の磁気力が作用して、その結果カンチレバー1
が撓みを受ける。カンチレバー1の撓みによる変位は、
カンチレバーの後方に設けた光学的な変位検出系25に
より検出した。変位検出系25は、カンチレバー1の変
位を光の位相の変化として検出する光学的な手法を用い
ても。
The direction of magnetization of the magnetic needle 22 was changed by changing the direction of energization to the coil 10. The magnitude of magnetization during magnetic recording was set to be larger than the coercive force of the magnetic recording film 23. On the other hand, recorded signals were reproduced from the magnetically recorded magnetic recording film 23 in the following manner. The coil 10 was energized to magnetize the tip of the magnetic needle 22, and the tip of the magnetic needle was brought close to the surface of the magnetic recording film. The magnitude of magnetization at this time is the magnetic recording film 2
The coercive force was set smaller than that of No. 3. When the magnetic recording film 23 is moved in this state as shown by the arrow 24, a magnetic force of tension or repulsion acts between the magnetic needles 22 in accordance with the direction of magnetization of the magnetic recording film 23, and as a result, the cantilever 1
is subjected to deflection. The displacement due to the bending of the cantilever 1 is
Detection was performed by an optical displacement detection system 25 provided behind the cantilever. The displacement detection system 25 may use an optical method to detect the displacement of the cantilever 1 as a change in the phase of light.

あるいは実施例2〜5のごとくトンネル電流の変化とし
て検出しても、さらには静電容量の変化として検出して
も同様の効果を得られることは言うまでもない。
Alternatively, it goes without saying that similar effects can be obtained by detecting changes in tunnel current as in Examples 2 to 5, or even detecting changes in capacitance.

[発明の効果] 以上述べたごとく、先端が尖ったカンチレバーの表面に
磁性探針を形成し、この磁性探針の先端の磁化の大きさ
と磁化の向きを任意に制御し、また磁性探針の先端を試
料面に垂直に接近するように設置し、また磁性探針およ
びカンチレバーの表面を導電性材料からなる被覆層で被
覆して磁気情報検出装置を構成することにより、磁性試
料表面の磁気力情報と形態情報をそれぞれ分離して高感
度でかつ高分解能で検出できる効果があった。
[Effects of the Invention] As described above, a magnetic probe is formed on the surface of a cantilever with a sharp tip, and the magnitude and direction of magnetization at the tip of the magnetic probe can be arbitrarily controlled. By installing the tip so that it approaches the sample surface perpendicularly, and by coating the surfaces of the magnetic tip and cantilever with a coating layer made of conductive material to configure a magnetic information detection device, the magnetic force on the surface of the magnetic sample can be detected. The effect was that information and morphological information could be separated and detected with high sensitivity and high resolution.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は2本発明の磁性探針の一実施例の図。 第2図は2本発明の磁性探針を磁気力顕微鏡と原子開力
顕微鏡への応用例を示す説明図、第3図は。 本発明の磁性探針を用いた磁気力顕微鏡への応用例の説
明図、第4図は9本発明の磁性探針を用いた磁気力顕微
鏡への他の応用例の説明図、第5図は7本発明を磁気記
録再生システムに適用した一実施例の説明図である。 符号の説明 l:カンチレバ−2:支持体、3:孔、4:先端部。 5:磁性探針、6:試料、7:vプローブ、8:圧電素
子。 9ニドライポツト、10:コイル、11:電流検呂器。 12:定電流サーボ回路、 13:2次元走査系、14
:ディスプレイ、15:コイル電流制御回路、21:磁
路。 22:磁性針、23:磁気記録膜、24:矢印、25:
変位検出系。
FIG. 1 is a diagram of one embodiment of the magnetic probe of the present invention. FIG. 2 is an explanatory diagram showing an example of application of the magnetic probe of the present invention to a magnetic force microscope and an atomic open force microscope, and FIG. An explanatory diagram of an example of application to a magnetic force microscope using the magnetic probe of the present invention, Fig. 4 is an explanatory diagram of another example of application to a magnetic force microscope using the magnetic probe of the present invention, Fig. 5 7 is an explanatory diagram of an embodiment in which the present invention is applied to a magnetic recording and reproducing system. Explanation of symbols 1: Cantilever 2: Support, 3: Hole, 4: Tip. 5: magnetic probe, 6: sample, 7: v probe, 8: piezoelectric element. 9 dry pot, 10: coil, 11: current tester. 12: Constant current servo circuit, 13: Two-dimensional scanning system, 14
: Display, 15: Coil current control circuit, 21: Magnetic path. 22: Magnetic needle, 23: Magnetic recording film, 24: Arrow, 25:
Displacement detection system.

Claims (1)

【特許請求の範囲】 1、先端が尖ったカンチレバーと、該カンチレバーの先
端部に形成された磁性探針と、該磁性探針と磁性試料と
の間に発生する磁気力によるカンチレバーの変位を検出
する手段とを有し、上記磁性探針の磁化の大きさと磁化
の向きを制御するコイルを上記磁性探針に設けたことを
特徴とする磁気情報検出装置。 2、上記磁性探針を磁性材料薄膜で形成されている特許
請求の範囲第1項記載の磁気力検出装置。 3、上記磁性探針の保磁力は80kA/m以下である特
許請求の範囲第1項記載の磁気情報検出装置。 4、上記磁性探針の先端部を試料面に対して垂直、もし
くは平行に対向して設置する特許請求の範囲第1項記載
の磁気情報検出装置。 5、上記磁性探針は磁性針で構成されており、かつその
磁化容易軸は試料面に対して垂直、もしくは平行に対向
するごとくに配向されていることを特徴とする特許請求
の範囲第1項記載の磁気情報検出装置。
[Claims] 1. A cantilever with a sharp tip, a magnetic probe formed at the tip of the cantilever, and detection of displacement of the cantilever due to magnetic force generated between the magnetic probe and a magnetic sample. 1. A magnetic information detection device, characterized in that the magnetic probe is provided with a coil for controlling the magnitude and direction of magnetization of the magnetic probe. 2. The magnetic force detection device according to claim 1, wherein the magnetic probe is formed of a thin film of magnetic material. 3. The magnetic information detection device according to claim 1, wherein the magnetic probe has a coercive force of 80 kA/m or less. 4. The magnetic information detecting device according to claim 1, wherein the tip of the magnetic probe is placed facing perpendicularly or parallel to the sample surface. 5. Claim 1, wherein the magnetic probe is composed of a magnetic needle, and its axis of easy magnetization is oriented perpendicularly or parallel to the sample surface. Magnetic information detection device described in Section 1.
JP7332190A 1990-03-26 1990-03-26 Device for detecting magnetic information Pending JPH03274481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7332190A JPH03274481A (en) 1990-03-26 1990-03-26 Device for detecting magnetic information

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7332190A JPH03274481A (en) 1990-03-26 1990-03-26 Device for detecting magnetic information

Publications (1)

Publication Number Publication Date
JPH03274481A true JPH03274481A (en) 1991-12-05

Family

ID=13514792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7332190A Pending JPH03274481A (en) 1990-03-26 1990-03-26 Device for detecting magnetic information

Country Status (1)

Country Link
JP (1) JPH03274481A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014211409A (en) * 2013-04-22 2014-11-13 株式会社日立ハイテクノロジーズ Method and device of inspecting thermally assisted magnetic head element, method and device of measuring temperature of minute heat source, and cantilever and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014211409A (en) * 2013-04-22 2014-11-13 株式会社日立ハイテクノロジーズ Method and device of inspecting thermally assisted magnetic head element, method and device of measuring temperature of minute heat source, and cantilever and manufacturing method thereof

Similar Documents

Publication Publication Date Title
EP0866307B1 (en) Magnetic force microscopy probe
EP0866341B1 (en) Alternating current magnetic force microscopy system with probe having integrated coil
JP2604968B2 (en) Method for imaging magnetic structure or magnetic domain of sample and storage device using the same
US6448765B1 (en) Microscopic tips having stable magnetic moments and disposed on cantilevers for sensing magnetic characteristics of adjacent structures
US7023204B2 (en) Magnetic imaging microscope test system and its application for characterization of read and write heads for magnetic recording
JP4096303B2 (en) Scanning probe microscope
JPH05347013A (en) Magnetic recording and reproducing device
JP3076889B2 (en) Magnetic force microscope
JP3141555B2 (en) Scanning surface magnetic microscope
JP3210961B2 (en) Measuring device for exchange interaction force
Khizroev et al. MFM quantification of magnetic fields generated by ultra-small single pole perpendicular heads
JPH03274481A (en) Device for detecting magnetic information
JPH06249933A (en) Cantilever or magnetic force microscope
US20030102863A1 (en) Magnetic force microscopy having a magnetic probe coated with exchange coupled magnetic multiple layers
JP3134369B2 (en) Surface magnetic detector
JPH04162339A (en) Manufacture of probe for surface observation device and surface observation device
JP2997497B2 (en) Magnetic information detection device
JP2834212B2 (en) Magnetic probe
JPH0821870A (en) Scanning surface magnetism detecting device
De Loos Magnetic Force Microscopy: application to magnetic nanostructures
JP3779666B2 (en) Magnetic reproducing head and magnetic reproducing apparatus
Grütter Applications of magnetic force microscopy
JPH05142315A (en) Probe for surface microscope and surface microscope using this
Phillips et al. Performance of focused ion beam trimmed yoke-type magnetoresistive heads for magnetic microscopy
JP2003215020A (en) Probe apparatus for magnetic force microscope