JP2997267B1 - Non-diaphragm electrolyzer - Google Patents

Non-diaphragm electrolyzer

Info

Publication number
JP2997267B1
JP2997267B1 JP11033795A JP3379599A JP2997267B1 JP 2997267 B1 JP2997267 B1 JP 2997267B1 JP 11033795 A JP11033795 A JP 11033795A JP 3379599 A JP3379599 A JP 3379599A JP 2997267 B1 JP2997267 B1 JP 2997267B1
Authority
JP
Japan
Prior art keywords
electrode
seawater
anode
electrode plate
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11033795A
Other languages
Japanese (ja)
Other versions
JP2000234192A (en
Inventor
成興 中村
敦史 森
喜男 川俣
Original Assignee
大機エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12396417&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2997267(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 大機エンジニアリング株式会社 filed Critical 大機エンジニアリング株式会社
Priority to JP11033795A priority Critical patent/JP2997267B1/en
Application granted granted Critical
Publication of JP2997267B1 publication Critical patent/JP2997267B1/en
Publication of JP2000234192A publication Critical patent/JP2000234192A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

【要約】 【課題】 無隔膜電解装置において電極の老化を早める
ことなく、電極のスケール付着に対するメンテナンスの
頻度を飛躍的に減らし、さらにガスケットシール式電解
槽においては発熱した電極によってガスケットのシール
不良が起こらないようにする。 【解決手段】 陰極板9、陽極板10の電極板幅11を
ともに50mm以上200mm以下とする。この陰極板
9と陽極板10を複数、平行かつ交互に配置し、配置さ
れた陰極板9と陽極板10の間隔12が電極板厚13の
3倍以上5倍以下とする。陽極9と陰極10の電極板間
を、内部に補強体を有するゴムガスケットで挟みつけシ
ールする。
Abstract: PROBLEM TO BE SOLVED: To drastically reduce the frequency of maintenance for electrode scale adhesion in a diaphragmless electrolytic device without hastening the aging of the electrode. Try not to happen. SOLUTION: The electrode plate widths 11 of a cathode plate 9 and an anode plate 10 are both 50 mm or more and 200 mm or less. A plurality of the cathode plates 9 and the anode plates 10 are arranged in parallel and alternately, and the interval 12 between the arranged cathode plates 9 and the anode plates 10 is set to be three times or more and five times or less the electrode thickness 13. The gap between the electrode plates of the anode 9 and the cathode 10 is sandwiched and sealed with a rubber gasket having a reinforcing member therein.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水を無隔膜で電気
分解する平行板型電解槽を有する無隔膜電解装置に関
し、特に海水や塩水などを無隔膜で電気分解する平行板
型電解槽を有する無隔膜電解装置と、それに使用するゴ
ムガスケットに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a diaphragmless electrolysis apparatus having a parallel plate type electrolytic cell for electrolyzing water with a diaphragm, and more particularly to a parallel plate type electrolytic cell for electrolyzing seawater or salt water with a diaphragm. The present invention relates to a diaphragmless electrolysis apparatus having the same and a rubber gasket used for the same.

【0002】[0002]

【従来の技術】従来から、平行に並べられた複数の電極
板を有し、これらの電極板の極間に直接電解液が流され
る無隔膜式の電解装置が広く実用に供されている。この
ような無隔膜電解装置は水、海水などを電気分解して次
亜塩素酸ソーダを生成させ、上水や下水の滅菌に使用し
たり、あるいは次亜塩素酸ソーダが海洋生物を麻痺させ
るという作用を利用して、海水利用系の内部に注入して
海洋生物の付着防止のために使用されている。
2. Description of the Related Art Conventionally, a non-diaphragm type electrolysis apparatus having a plurality of electrode plates arranged in parallel and in which an electrolytic solution is directly flowed between the electrodes of the electrode plates has been widely used. Such non-diaphragm electrolyzers produce sodium hypochlorite by electrolyzing water, seawater, etc., and use it for sterilization of tap water and sewage, or that sodium hypochlorite paralyzes marine life. Utilizing its action, it is injected into the seawater utilization system to prevent marine organisms from adhering.

【0003】上記無隔膜電解装置は、大別して給電体式
電解装置とガスケットシール式電解装置があるが、いず
れの電解装置においても広い電極幅を有する大型電解槽
の場合には、電極面に流れる電流が多く電極が発熱し易
いために電極板厚を厚いものにせざるを得ない。
The above diaphragmless electrolyzers are roughly classified into a feeder type electrolyzer and a gasket seal type electrolyzer. In any of the electrolyzers, in the case of a large electrolyzer having a wide electrode width, the current flowing through the electrode surface is large. However, since the electrodes tend to generate heat, the thickness of the electrode plate must be increased.

【0004】しかし、一般に海水などの硬質成分を含む
電解液を無隔膜で電気分解すると、陰極で生成するアル
カリにより陰極表面のPHが上昇し、海水中のカルシウ
ムイオンやマグネシウムイオンなどが陰極表面でCa
(OH)2、Mg(OH)2などの水酸化物となって付着
し、これが時間の経過にしたがって成長してスケールと
なり電解に支障を起こしたり、電極間にあって電解性能
を低下させると共に電極寿命を短くすることになるが、
この傾向は電極板厚を厚くするとさらに助長されること
になる。
However, when an electrolytic solution containing a hard component such as seawater is generally electrolyzed with a diaphragm, the pH of the cathode surface increases due to the alkali generated at the cathode, and calcium ions and magnesium ions in seawater are removed at the cathode surface. Ca
Hydroxides such as (OH) 2 and Mg (OH) 2 adhere and adhere and grow as time elapses to form scales, which hinder electrolysis, reduce the electrolytic performance between the electrodes, and reduce the electrode life. Will be shortened,
This tendency is further promoted by increasing the thickness of the electrode plate.

【0005】すなわち、海水が流入口から流入すると、
この海水は電極の先端部に当たって電極の表面と裏面と
に流れを分け、極間を流れて流出口へ向かうが、電極板
厚が厚いと電極の先端部で渦が生じ、この渦の部分では
海水の流れが一時的に止まり流速が遅くなるため、海水
のPHが上昇しやすくなる。PHが上昇するとスケール
はさらに成長して電極を被うまでになり、電解装置の電
流密度および槽電圧が上昇して電気分解のための電力消
費量が大きくなってしまう。またスケールが電極全体を
被うまで成長すると、海水が流れにくくなり、発熱や、
電極の損傷などの問題が起こってくる。
That is, when seawater flows in from the inlet,
This seawater hits the tip of the electrode and divides the flow between the front and back surfaces of the electrode, flows between the poles and heads for the outlet, but if the electrode plate is thick, a vortex occurs at the tip of the electrode, and in the vortex part Since the flow of the seawater temporarily stops and the flow velocity decreases, the PH of the seawater tends to increase. When the pH rises, the scale further grows to cover the electrodes, and the current density and the cell voltage of the electrolyzer increase, and the power consumption for electrolysis increases. Also, if the scale grows to cover the entire electrode, the seawater becomes difficult to flow, generating heat and
Problems such as electrode damage occur.

【0006】従ってこのスケールを除去する必要がある
が、一般的には陽極と陰極に印加する電圧の位相を間欠
的に反転させて、陰極側に付着したスケールを電気的に
溶出させたり、あるいは、塩酸やシュウ酸などの酸でス
ケールを溶かすこと(酸洗滌)が行われている。前者は
メンテナンスを少なくでき、初期の性能を持続させるこ
とはできるものの電極の老化を早めてしまうという問題
があり、後者は初期の性能を持続させるためには酸洗滌
を1ヶ月に1度程度の頻度で実施する必要があり、メン
テナンスに相当の手間と費用がかかるという問題があ
る。
Therefore, it is necessary to remove this scale, but generally, the phase of the voltage applied to the anode and the cathode is intermittently inverted to electrically elute the scale attached to the cathode, or Dissolving the scale with an acid such as hydrochloric acid or oxalic acid (acid washing) is performed. The former can reduce the maintenance and maintain the initial performance, but has the problem of accelerating the aging of the electrode. The latter requires acid cleaning once a month to maintain the initial performance. There is a problem in that it needs to be performed at a frequent frequency, and maintenance requires considerable labor and cost.

【0007】一方、従来のガスケットシール式電解槽
(図8〜図10)では、電極幅81を50mm以上にす
ると電極を流れる電流が大きくなり、スケールの成長に
伴って電極が発熱し、この電極の発熱は図9に示すよう
に、ボルト孔83aがゴムガスケット82の中心にある
場合にはゴムガスケット82のシール部84では、電極
80、89が冷却されないために熱がこもりゴムガスケ
ット82が劣化するおそれがある。また図11に示すよ
うなガスケットシール式電解槽(図11〜図13)のよ
うに、ボルト83の内側にゴムガスケット82を配置し
た構造にすると、熱のこもりは少なくなるが、ボルト8
3でゴムガスケット82に均等な締め付けをすることが
出来ず、図13に示すようにゴムガスケット82aが弓
なりに曲がりシール不良が起こるおそれがある。
On the other hand, in the conventional gasket seal type electrolytic cell (FIGS. 8 to 10), when the electrode width 81 is set to 50 mm or more, the current flowing through the electrode increases, and the electrode generates heat as the scale grows. As shown in FIG. 9, when the bolt hole 83a is located at the center of the rubber gasket 82, heat is trapped in the seal portion 84 of the rubber gasket 82 because the electrodes 80 and 89 are not cooled. There is a possibility that. Further, if a rubber gasket 82 is arranged inside a bolt 83 as in a gasket-seal type electrolytic cell (FIGS. 11 to 13) as shown in FIG.
3, the rubber gasket 82 cannot be evenly tightened, and as shown in FIG. 13, the rubber gasket 82a may bend in a bow shape and a sealing failure may occur.

【0008】[0008]

【発明が解決しようとする課題】本発明は、電極の老化
を早めることがなく、メンテナンスの頻度を飛躍的に減
らすことが可能な無隔膜電解装置、さらにガスケットシ
ール式電解槽においては発熱した電極によってガスケッ
トのシール不良が起こらないガスケットを提供するもの
である。
SUMMARY OF THE INVENTION The present invention relates to a diaphragmless electrolysis apparatus capable of greatly reducing the frequency of maintenance without accelerating the aging of the electrode, and furthermore, an electrode which generates heat in a gasket-sealed electrolytic cell. The present invention provides a gasket that does not cause gasket sealing failure.

【0009】[0009]

【課題を解決するための手段】本発明の無隔膜電解装置
は、複数の陽極と陰極の電極板が平行かつ交互に配置さ
れ、前記陽極と陰極の電極板に印加する電圧が常に同位
相である電解槽の極間に海水が流される無隔膜電解装置
において、前記電極板の幅が50mm以上200mm以
下であって、且つ前記電極板間隔が前記電極板厚の3倍
以上5倍以下であることを特徴とするものである。
According to the present invention, a plurality of anode and cathode electrode plates are arranged in parallel and alternately, and the voltages applied to the anode and cathode electrode plates are always in phase. In a diaphragm-free electrolysis apparatus in which seawater flows between electrodes of a certain electrolytic cell, the width of the electrode plate is 50 mm or more and 200 mm or less, and the electrode plate interval is 3 times or more and 5 times or less of the electrode plate thickness. It is characterized by the following.

【0010】「複数の陽極と陰極の電極板」の「複数」
とは無隔膜電解装置に通常用いられる電極板の数であれ
ば、特に限定されるものではないが、それぞれ5〜50
枚が好ましい。また陽極は白金メッキなどを施した不溶
性陽極が好ましい。
"Plurality" of "plurality of anode and cathode electrode plates"
Is not particularly limited as long as it is the number of electrode plates usually used in a diaphragm-free electrolytic device, but each is 5 to 50.
Sheets are preferred. The anode is preferably an insoluble anode plated with platinum or the like.

【0011】「陽極と陰極の電極板に印加する電圧が常
に同位相である」とは、陽極と陰極に印加する電圧の位
相を間欠的に反転させないことを意味する。
The phrase "voltages applied to the anode and cathode electrode plates are always in phase" means that the phase of the voltage applied to the anode and the cathode is not intermittently inverted.

【0012】「海水」とは、単に海の水だけを意味する
ものではなく、広く硬質成分を高濃度に含む塩水をも含
む意味である。
The term "sea water" does not mean only sea water, but also includes salt water containing a wide range of hard components at a high concentration.

【0013】「前記電極板の幅が50mm以上200m
m以下」とは、給電体式電解装置であれば−給電体と+
給電体に保持された極板の−給電体から+給電体までの
幅(図2に示す符号11)、ガスケットシール式電解装
置であれば電極部の一方の絶縁スペーサから相対する他
方の絶縁スペーサまでの幅(図4に示す符号41)が5
0mm以上200mm以下であることを意味する。
"The width of the electrode plate is 50 mm or more and 200 m or more.
m or less ”means“ − feeder +
The width of the electrode plate held by the power supply from the negative power supply to the positive power supply (reference numeral 11 in FIG. 2), and in the case of a gasket-sealed electrolytic device, one insulating spacer of the electrode portion facing the other insulating spacer. Width (reference numeral 41 in FIG. 4) is 5
It means 0 mm or more and 200 mm or less.

【0014】「電極板間隔が前記電極板厚の3倍以上5
倍以下」とは、平行かつ交互に配置された陽極と陰極の
電極板の間隔(図2に示す符号12、図4に示す符号4
2)が、陽極または陰極の電極の板厚(図2に示す符号
13、図4に示す符号43)の3倍以上5倍以下である
ことを意味する。この間隔は、3倍以上5倍以下がさら
に好ましい。たとえば電極板厚1mmであれば電極板間
隔は3mm〜5mm、電極板厚1.5mmであれば電極
板間隔は4mm〜7.5mm、電極板厚2mmであれば
電極板間隔は6mm〜10mmである。
"Electrode plate spacing is at least three times the electrode plate thickness and 5 or more.
The term “less than or equal to twice” refers to the distance between the parallel and alternately arranged anode and cathode electrode plates (reference numeral 12 in FIG. 2 and reference numeral 4 in FIG. 4).
2) is not less than 3 times and not more than 5 times the thickness of the anode or cathode electrode (reference numeral 13 shown in FIG. 2 and reference numeral 43 shown in FIG. 4). This interval is more preferably 3 times or more and 5 times or less. For example, if the electrode plate thickness is 1 mm, the electrode plate interval is 3 mm to 5 mm, if the electrode plate thickness is 1.5 mm, the electrode plate interval is 4 mm to 7.5 mm, and if the electrode plate thickness is 2 mm, the electrode plate interval is 6 mm to 10 mm. is there.

【0015】複数の陽極と陰極の電極板を平行かつ交互
に配置し、両電極板間にガスケットを挟みつけシールし
た構造の無隔膜電解装置においては、陽極と陰極の電極
板間のゴムガスケットが内部に補強体を有するものとす
ることができる。「補強体」としては、ゴムが破れず適
当にゴムを補強しガスケットに強度を与えるものであれ
ば、特に限定されるものではなく、たとえばFRP(fi
ber reinforced plastics)、FRTP(fiber reinfor
ced thermoplastics)、ステンレス304、鉄やアルミ
ニウムなどの金属が好ましい。「補強体」はゴムガスケ
ットの表面に非接液側で露出していても良いし、ゴムガ
スケットの内部に完全に埋め込まれていてもよい。
In a diaphragmless electrolysis apparatus having a structure in which a plurality of anode and cathode electrode plates are arranged in parallel and alternately and a gasket is sandwiched between the two electrode plates and sealed, a rubber gasket between the anode and cathode electrode plates is formed. It may have a reinforcement inside. The “reinforcing body” is not particularly limited as long as it appropriately reinforces the rubber without breaking the rubber and gives strength to the gasket. For example, FRP (fi
ber reinforced plastics), FRTP (fiber reinfor
ced thermoplastics), stainless steel 304, and metals such as iron and aluminum. The “reinforcement” may be exposed on the surface of the rubber gasket on the non-wetted side, or may be completely embedded in the rubber gasket.

【0016】また、ゴムガスケットはボルト孔を中心に
配置した構造としてもよいし、ボルト孔の内側に配置し
た構造としてもよい。ボルト孔の内側にゴムガスケット
を配置した場合には、ゴムガスケットと電極とのシール
部分の熱のこもりをより少なくすることが可能となるの
でより好ましい。なお、補強体がゴムガスケットの表面
に露出している場合には、その強度を有効に発揮させる
ために、補強体が露出している側をボルト側に向けるこ
とが好ましい。
Further, the rubber gasket may have a structure in which the bolt holes are disposed at the center or a structure in which the rubber gaskets are disposed inside the bolt holes. It is more preferable to dispose a rubber gasket inside the bolt hole, because it is possible to further reduce heat buildup in a sealing portion between the rubber gasket and the electrode. When the reinforcing member is exposed on the surface of the rubber gasket, it is preferable to turn the side where the reinforcing member is exposed to the bolt side in order to effectively exert the strength.

【0017】[0017]

【発明の効果】本発明の無隔膜電解装置は、電極板の幅
を50mm以上200mm以下であって、且つ電極板間
隔を電極板厚の3倍以上5倍以下としたので、スケール
が付着する部位は、絶縁スペーサに沿った部分と海水の
流入口側の電極のコーナー部分だけに抑えることが可能
となり、また電極表面のスケールの成長を防止し、酸洗
滌などのメンテナンスの頻度を飛躍的に減らすことがで
きる。
According to the diaphragm-free electrolysis apparatus of the present invention, since the width of the electrode plates is 50 mm or more and 200 mm or less and the interval between the electrode plates is 3 times or more and 5 times or less of the electrode plate thickness, the scale adheres. The area can be limited only to the part along the insulating spacer and the corner of the electrode on the seawater inlet side.It also prevents scale growth on the electrode surface and dramatically reduces the frequency of maintenance such as acid cleaning. Can be reduced.

【0018】すなわち、電極板間隔を電極板厚の3倍以
上5倍以下としたので、海水の流入口側の電極先端部で
海水が渦を生じることがなく、従って海水は電極先端部
で止まることなく常によどみなく流れることができるの
で、スケール成長の要因となるPHを上昇させることが
ない。また電極面上では陰極反応でアルカリが生成する
と同時に水素が発生し、よどみなく流れる流速の早い海
水とその発生した水素の気泡が電極表面を離れるときの
被膜破壊力で電極表面に生成したカルシウムやマグネシ
ウムの被膜を取り去るのでスケールの成長がない。一
方、絶縁スペーサに沿ったところでは水素が発生せず、
また海水の流速も遅いのでPHが上がりスケールが成長
するが、絶縁スペーサに沿ったスケールは5mm程度成
長すると水素の発生に影響されてそれ以上は成長するこ
とがない。またスケールが発生しなければ、電極の発熱
は必要最低限に抑えられるために、電極板厚を必要以上
に厚くする必要がないため経済的な効果も得ることがで
きる。
That is, since the interval between the electrode plates is set to be not less than 3 times and not more than 5 times the thickness of the electrode plate, seawater does not vortex at the tip of the electrode on the inlet side of the seawater. Since it can flow constantly without stagnation, there is no increase in PH which causes scale growth. In addition, on the electrode surface, alkali is generated at the same time as alkali by the cathodic reaction, hydrogen is generated at the same time, and seawater with a fast flowing flow velocity and calcium generated on the electrode surface due to the film breaking force when the generated hydrogen bubbles leave the electrode surface, There is no scale growth because the magnesium coating is removed. On the other hand, no hydrogen is generated along the insulating spacer,
In addition, since the flow rate of seawater is low, PH rises and scale grows. However, when the scale along the insulating spacer grows by about 5 mm, it is affected by the generation of hydrogen and does not grow any further. Further, if no scale is generated, the heat generation of the electrodes can be suppressed to the minimum necessary, so that it is not necessary to make the electrode plate thicker than necessary, so that an economic effect can be obtained.

【0019】特に、本発明はスケールが非常に付着し易
い高濃度に硬質成分を含む海水において、従来の1ヶ月
に1度のメンテナンスを6ヶ月に1度にすることが可能
で、従来の6倍も使用初期の性能を維持できるという極
めてすぐれた効果を有するものである。
In particular, the present invention can reduce the conventional maintenance once a month to once every six months in seawater containing a hard component at a high concentration to which the scale is very likely to adhere. This has an extremely excellent effect that the performance in the initial stage of use can be maintained even twice.

【0020】なお、電極板の幅を50mm以上200m
m以下としたのは、電極幅が50mm以下の場合には、
絶縁スペーサ部分に付着するスケールの電極幅に対する
割合が大きく、たとえば電極幅が30mmの場合には片
側の絶縁スペーサに対して5mmのスケールが付着する
ので実質の電極幅が20mmになってしまい実用的では
ないためであり、また200mm以上とした場合には、
電極板厚を通常用いられる1mm〜2mmよりも厚いも
のとしなければならないため、この場合も実用的ではな
いためである。
The width of the electrode plate should be 50 mm or more and 200 m or more.
m or less, when the electrode width is 50 mm or less,
The ratio of the scale attached to the insulating spacer portion to the electrode width is large. For example, when the electrode width is 30 mm, the scale of 5 mm adheres to one of the insulating spacers, and the actual electrode width becomes 20 mm, which is practical. This is not the case, and if it is 200 mm or more,
This is because the electrode plate thickness must be larger than 1 mm to 2 mm which is usually used, and this case is not practical.

【0021】なお、複数の陽極と陰極の電極板を平行か
つ交互に配置し、両電極板間にゴムガスケットを挟みつ
けシールした構造の無隔膜電解装置において、スケール
が成長した場合に電極が発熱しても、陽極と陰極の電極
板間のゴムガスケットの内部に補強体を有するものとし
た場合には、ゴムガスケットが弓なりにならないのでシ
ール不良を起こすことがない。
In a non-diaphragm electrolytic device having a structure in which a plurality of anode and cathode electrode plates are arranged in parallel and alternately, and a rubber gasket is sandwiched between the two electrode plates to seal the electrodes, when the scale grows, the electrodes generate heat. However, if the rubber gasket has a reinforcing body inside the anode and cathode electrode plates, the rubber gasket does not become bow-shaped, so that a sealing failure does not occur.

【0022】[0022]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態について詳しく説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0023】まず、本発明の無隔膜電解装置の第一の実
施の形態として給電体式海水電解装置について説明す
る。図1は第一の実施の形態による給電体式海水電解装
置の平面図、図2はそのA−A線断面図である。(な
お、図面のハッチングは省略してある。) 第一の実施の形態に示す給電体式海水電解装置は、電解
槽1と、電解槽1の下部に海水の流入口6を一端に有す
る下部槽4と、電解槽1の上部に電解された海水の流出
口7を一端に有する上部槽5とを備えてなる略直方体の
電解装置であり、電解槽1は陰極板9と陽極板10を平
行に並べて収容してなり、陰極板9及び陽極板10はそ
れぞれ−給電体2及び+給電体3に接続されており、陰
極板9と+給電体3との間及び陽極板10と−給電体2
との間には絶縁スペーサ8が充填されている。
First, a feeder type seawater electrolysis apparatus will be described as a first embodiment of a diaphragmless electrolysis apparatus of the present invention. FIG. 1 is a plan view of a feeder type seawater electrolysis apparatus according to a first embodiment, and FIG. 2 is a cross-sectional view taken along line AA of FIG. (The hatching in the drawings is omitted.) The feeder-type seawater electrolyzer shown in the first embodiment has an electrolytic cell 1 and a lower tank having a seawater inlet 6 at one end below the electrolytic cell 1. 4 and an upper tank 5 having an outlet 7 for seawater electrolyzed at the upper part of the electrolytic cell 1 at one end. The electrolytic cell 1 has a cathode plate 9 and an anode plate 10 parallel to each other. The cathode plate 9 and the anode plate 10 are connected to the -feeder 2 and the + feeder 3, respectively, between the cathode plate 9 and the + feeder 3, and between the anode plate 10 and the -feeder. 2
Is filled with an insulating spacer 8.

【0024】続いて、この給電体式海水電解装置の動作
について説明する。流入口6から矢印方向に流入された
海水は、下部槽4で整流されて電解槽1の各電極板間
9、10を上方に向かって流れる。電解槽1に平行に並
べて収容された陰極板9及び陽極板10のそれぞれには
−給電体2、+給電体3から直流電流が流され、これに
より海水が電気分解されて次亜塩素酸ソーダが生成され
る。従って海水流出口7から流出される海水中には次亜
塩素酸ソーダが含まれることになり、この海水は例えば
上水や下水中に送り込まれて滅菌に利用されたり、海水
利用系中に注入されて海洋生物付着防止に利用すること
が可能である。
Next, the operation of the feeder type seawater electrolysis apparatus will be described. The seawater flowing in the direction of the arrow from the inflow port 6 is rectified in the lower tank 4 and flows upward between the electrode plates 9 and 10 of the electrolytic cell 1. A direct current is supplied from the -feeder 2 and the + feeder 3 to each of the cathode plate 9 and the anode plate 10 housed in parallel with the electrolytic cell 1 so that the seawater is electrolyzed and the sodium hypochlorite Is generated. Therefore, the seawater discharged from the seawater outlet 7 contains sodium hypochlorite, and this seawater is sent into, for example, tap water or sewage and used for sterilization, or injected into a seawater utilization system. It can be used to prevent marine organisms from sticking.

【0025】海水中にはカルシウムイオンやマグネシウ
ムイオンなどが含まれるので、海水電解装置の運転に伴
って、陰極板9の表面ではCa(OH)2、Mg(O
H)2などが生成するが、同時に発生する水素の気泡が
電極表面で成長し、電極表面を離れるときに生じる被膜
破壊力と、電極9、10間を流れる海水の流れによって
電極表面に生成したCa(OH)2、Mg(OH)2など
の被膜を取り去るのでスケールが発生しない。また、絶
縁スペーサ8に沿った電極部分では水素が発生せず、ま
た壁面の海水の流速が遅いためPHが上昇し、図7に示
すように(図7中矢印は海水の流れる方向を示す)、ス
ケール70は絶縁スペーサ8に沿った部分と海水の流入
口側の電極のコーナー部分に発生するが、絶縁スペーサ
8から電極の中心に向けて5mm程度成長すると電極表
面の水素の発生に影響され、それ以上は成長しない。
Since seawater contains calcium ions, magnesium ions, and the like, Ca (OH) 2 , Mg (O)
H) 2 and the like are generated, and simultaneously generated hydrogen bubbles grow on the electrode surface and are generated on the electrode surface by the film breaking force generated when leaving the electrode surface and the flow of seawater flowing between the electrodes 9 and 10. Since the coating of Ca (OH) 2 or Mg (OH) 2 is removed, no scale is generated. Further, no hydrogen is generated at the electrode portion along the insulating spacer 8, and the PH rises due to the low flow velocity of the seawater on the wall surface, as shown in FIG. 7 (arrows in FIG. 7 indicate the direction in which the seawater flows). The scale 70 is generated at the portion along the insulating spacer 8 and at the corner of the electrode on the seawater inlet side. When the scale 70 grows about 5 mm from the insulating spacer 8 toward the center of the electrode, it is affected by the generation of hydrogen on the electrode surface. , No further growth.

【0026】次に本発明の無隔膜電解装置の第二の実施
の形態としてガスケットシール式海水電解装置について
説明する。図3は第二の実施の形態によるガスケットシ
ール式海水電解装置の平面図、図4はそのB−B線断面
図である。
Next, a gasket seal type seawater electrolysis apparatus will be described as a second embodiment of the diaphragmless electrolysis apparatus of the present invention. FIG. 3 is a plan view of a gasket-sealed seawater electrolysis apparatus according to a second embodiment, and FIG. 4 is a cross-sectional view taken along line BB.

【0027】第二の実施の形態に示すガスケットシール
式海水電解装置は、電解槽31と、電解槽31の下部に
海水の流入口36を一端に有する下部槽34と、電解槽
31の上部に電解された海水の流出口37を一端に有す
る上部槽35とを備えてなる略直方体の電解装置であ
り、電解槽31は陰極板39と陽極板40を平行に並べ
て収容してなり、陰極板39と陽極板40はゴムガスケ
ット32で挟み付けられてシールされ、ゴムガスケット
32の内側には絶縁スペーサ38が充填されている。ゴ
ムガスケット32の外側にはボルト33を通すボルト孔
33aが配されている。ゴムガスケット32は図5に示
すように、陰極板39と陽極板40の間を挟み付けてシ
ールしていてもよいし、また図6に示すように陽極板4
0(あるいは陰極板39)をボルト33から後方に位置
させて陰極板39aと陰極板39bの間を挟み付けてシ
ールしてもよい。ゴムガスケット32は内部に補強体4
5を有するが、補強体45は図5に示すようにゴムガス
ケット32のボルト33側に露出していても良いし、図
6に示すようにゴムガスケット32の内部に完全に埋め
込まれていても良い。補強体45がゴムガスケット32
のボルト33側に露出している場合には、図5に示すよ
うに補強体45が露出している部分とボルト33が接触
するようにゴムガスケット32を配すると、ゴムガスケ
ット32全体の強度をより上げることができる。
A gasket-sealed seawater electrolyzer according to the second embodiment has an electrolytic cell 31, a lower tank 34 having a seawater inlet 36 at one end below the electrolytic cell 31, and an upper part of the electrolytic cell 31. This is a substantially rectangular parallelepiped electrolysis apparatus including an upper tank 35 having an outlet 37 at one end of an electrolyzed seawater. The electrolysis tank 31 includes a cathode plate 39 and an anode plate 40 arranged in parallel and accommodated. 39 and the anode plate 40 are sandwiched and sealed by a rubber gasket 32, and an insulating spacer 38 is filled inside the rubber gasket 32. A bolt hole 33 a through which the bolt 33 passes is provided outside the rubber gasket 32. The rubber gasket 32 may be sandwiched and sealed between the cathode plate 39 and the anode plate 40 as shown in FIG. 5, or may be sealed as shown in FIG.
0 (or the cathode plate 39) may be located rearward from the bolt 33, and the gap may be sandwiched between the cathode plate 39a and the cathode plate 39b for sealing. The rubber gasket 32 has a reinforcing member 4 inside.
5, the reinforcing member 45 may be exposed on the bolt 33 side of the rubber gasket 32 as shown in FIG. 5, or may be completely embedded in the rubber gasket 32 as shown in FIG. good. Reinforcing member 45 is rubber gasket 32
If the rubber gasket 32 is arranged so that the bolt 33 comes into contact with the portion where the reinforcing member 45 is exposed as shown in FIG. Can be raised more.

【0028】なお、第二の実施の形態に示すガスケット
シール式海水電解装置の動作は、陰極板39及び陽極板
40のそれぞれに直接電流が流される点を除けば、第一
の実施の形態に示す給電体式海水電解装置の動作と同じ
である。
The operation of the gasket-sealed seawater electrolyzer shown in the second embodiment is the same as that of the first embodiment except that a current is directly applied to each of the cathode plate 39 and the anode plate 40. The operation is the same as the operation of the feeder type seawater electrolysis apparatus shown.

【0029】上記第一の実施の形態による給電体式海水
電解装置を用いた実施例を以下に示す。
An example using the feeder type seawater electrolysis apparatus according to the first embodiment will be described below.

【0030】(実施例1)電極幅11を100mm、電
極高さ14を480mmの給電体式海水電解装置におい
て、海水の電極間流速を1m/sとし、陰極板9及び陽
極板10の電極板厚13がそれぞれ1mmの場合につい
て、電極板間隔12を変えてスケールの付着量を調べ
た。図14は電極板厚1mmの時のスケール付着量の経
時変化を示すグラフである。電極板間隔12が2mm
(電極板厚の2倍)の場合には、スケールの付着量が経
時的に上昇し、約8週間で300gものスケールが付着
したが、電極板間隔12が3mm(電極板厚の3倍)、
4mm(電極板厚の4倍)、5mm(電極板厚の5倍)
の場合には、約4週間でスケールの付着量が一定とな
り、それ以上は成長せず、8週間経過してもスケールの
付着量は100g前後であり、電極板厚が2倍の場合に
比較してスケールの付着量は約3分の1程度でしかなか
った。
(Embodiment 1) In a feeder type seawater electrolysis apparatus having an electrode width 11 of 100 mm and an electrode height 14 of 480 mm, the flow rate between seawater electrodes was 1 m / s, and the electrode plate thickness of the cathode plate 9 and the anode plate 10 was When the thickness of each of the electrodes 13 was 1 mm, the amount of the scale adhered was examined by changing the distance 12 between the electrode plates. FIG. 14 is a graph showing the change over time in the amount of scale attached when the electrode plate thickness is 1 mm. Electrode plate interval 12 is 2mm
In the case of (two times the electrode plate thickness), the amount of scale attached increased with time, and as much as 300 g of scale adhered in about eight weeks, but the electrode plate interval 12 was 3 mm (three times the electrode plate thickness). ,
4 mm (4 times the electrode thickness), 5 mm (5 times the electrode thickness)
In the case of, the amount of scale adhered became constant after about 4 weeks, and did not grow any more. The amount of scale adhered was about 100 g even after 8 weeks, and compared with the case where the electrode plate thickness was doubled. As a result, the amount of adhered scale was only about one third.

【0031】(実施例2)電極幅11、電極高さ14、
海水の電極間流速は実施例1と同じ条件で、陰極板9及
び陽極板10の電極板厚13をそれぞれ1.5mmと
し、電極板間隔12を変えてスケールの付着量を調べ
た。図15は電極板厚1.5mmの時のスケール付着量
の経時変化を示すグラフである。電極板間隔12が2m
m(電極板厚の約1.3倍)の場合、及び3mm(電極
板厚の2倍)の場合には、スケールの付着量が経時的に
上昇し、約8週間で3mmの場合には300g、2mm
の場合には450gものスケールが付着したが、4.5
mm(電極板厚の3倍)の場合には、約4週間でスケー
ルの付着量が一定となり、それ以上は成長せず、8週間
経過してもスケールの付着量は100g前後であり、電
極板厚が1.3倍の場合に比較してスケールの付着量は
約5分の1〜4分の1程度、電極板厚が2倍の場合に比
較して約3分の1程度でしかなかった。
(Embodiment 2) Electrode width 11, electrode height 14,
The seawater flow rate between the electrodes was the same as in Example 1, the electrode plate thickness 13 of each of the cathode plate 9 and the anode plate 10 was 1.5 mm, and the distance between the electrode plates 12 was changed to examine the amount of scale adhesion. FIG. 15 is a graph showing the change with time of the amount of adhered scale when the electrode plate thickness is 1.5 mm. Electrode plate interval 12 is 2m
m (approximately 1.3 times the electrode plate thickness) and 3 mm (2 times the electrode plate thickness), the amount of scale attached increases with time. 300g, 2mm
In the case of, as much as 450 g of scale adhered, but 4.5 g
mm (three times the electrode plate thickness), the amount of the scale adhered was constant in about 4 weeks, did not grow any more, and the amount of scale adhered was about 100 g even after 8 weeks. The amount of scale attached is only about 1/5 to 1/4 as compared with the case where the plate thickness is 1.3 times, and only about 1/3 as compared with the case where the electrode plate thickness is 2 times. Did not.

【0032】(実施例3)電極幅11、電極高さ14、
海水の電極間流速は実施例1と同じ条件で、陰極板9及
び陽極板10の電極板厚13を2mmとし、電極板間隔
12を変えてスケールの付着量を調べた。図16は電極
板厚2mmの時のスケール付着量の経時変化を示すグラ
フである。電極板間隔12が4mm(電極板厚の約2
倍)の場合、及び5mm(電極板厚の2.5倍)の場合
には、スケールの付着量が経時的に上昇し、約8週間で
5mmの場合には300g、4mmの場合には450g
ものスケールが付着したが、6mm(電極板厚の3倍)
の場合には、約4週間でスケールの付着量が一定とな
り、それ以上は成長せず、8週間経過してもスケールの
付着量は150g弱であり、電極板厚が2倍の場合に比
較してスケールの付着量は約3分の1程度、電極板厚が
2.5倍の場合に比較して約2分の1程度でしかなかっ
た。
(Embodiment 3) Electrode width 11, electrode height 14,
The seawater flow rate between the electrodes was the same as in Example 1, the electrode plate thickness 13 of the cathode plate 9 and the anode plate 10 was set to 2 mm, and the electrode plate interval 12 was changed to examine the amount of scale adhesion. FIG. 16 is a graph showing the change over time in the amount of scale attached when the electrode plate thickness is 2 mm. The electrode plate interval 12 is 4 mm (approximately 2
Times) and 5 mm (2.5 times the electrode plate thickness), the amount of scale attached increases with time, and 300 g for 5 mm and 450 g for 4 mm in about 8 weeks.
6mm (three times the electrode plate thickness)
In the case of, the amount of scale adhered was constant in about 4 weeks, did not grow any more, the amount of scale adhered was less than 150 g even after 8 weeks, and compared to the case where the electrode plate thickness was doubled. As a result, the amount of adhered scale was about one third, and was only about one half as compared with the case where the electrode plate thickness was 2.5 times.

【0033】(実施例4)電極幅11を50mmとし、
その他の条件は実施例1から3と同様にしてスケールの
付着量を調べた。実験結果は、実施例1から3と同じ傾
向であり、スケールの絶対量もほぼ同じであった。
(Embodiment 4) The electrode width 11 was set to 50 mm,
The other conditions were the same as in Examples 1 to 3 to examine the amount of scale attached. The experimental results showed the same tendency as in Examples 1 to 3, and the absolute amount of the scale was almost the same.

【0034】(実施例5)海水の電極間流速を経済的な
流速の上限とされている2.5m/sとし、その他の条
件は実施例1から3と同様にしてスケールの付着量を調
べた。実験結果は、実施例1から3と同様の傾向を示
し、スケールの付着量の絶対値は全て約2分の1に減少
した。
(Example 5) The flow rate between sea electrodes was set to 2.5 m / s, which is the upper limit of the economic flow rate, and the other conditions were the same as in Examples 1 to 3 to determine the amount of scale adhesion. Was. The experimental results showed the same tendency as in Examples 1 to 3, and the absolute values of the amounts of the attached scales were all reduced to about half.

【0035】以上説明した実施例は、給電体式海水電解
装置について行ったものであるが、本発明は給電体式海
水電解装置に限られず、ガスケットシール式海水電解装
置をはじめ全ての無隔膜式電解装置に適用が可能であ
る。
Although the above-described embodiment has been described with respect to the feeder type seawater electrolyzer, the present invention is not limited to the feeder type seawater electrolyzer, and all the non-diaphragm type electrolyzers including the gasket seal type seawater electrolyzer can be used. It can be applied to

【図面の簡単な説明】[Brief description of the drawings]

【図1】第一の実施の形態による給電体式海水電解装置
の平面図
FIG. 1 is a plan view of a feeder type seawater electrolysis apparatus according to a first embodiment.

【図2】第一の実施の形態による給電体式海水電解装置
のA−A線断面図
FIG. 2 is a sectional view taken along line AA of the feeder type seawater electrolysis apparatus according to the first embodiment.

【図3】第二の実施の形態によるガスケットシール式海
水電解装置の平面図
FIG. 3 is a plan view of a gasket-sealed seawater electrolysis apparatus according to a second embodiment.

【図4】第二の実施の形態によるガスケットシール式海
水電解装置のB−B線断面図
FIG. 4 is a sectional view taken along line BB of a gasket-sealed seawater electrolysis apparatus according to a second embodiment.

【図5】図4の装置のガスケットとボルトを拡大して示
す図
FIG. 5 is an enlarged view showing a gasket and a bolt of the apparatus of FIG. 4;

【図6】第二の実施の形態のさらに異なる変形例を図5
と同様に拡大して示す図
FIG. 6 shows still another modification of the second embodiment in FIG.
Fig.

【図7】給電式海水電解装置にスケールが付着した様子
を示す側断面図
FIG. 7 is a side cross-sectional view showing a scale attached to a feed-type seawater electrolysis apparatus.

【図8】従来のガスケットシール式海水電解装置の断面
FIG. 8 is a cross-sectional view of a conventional gasket-sealed seawater electrolysis apparatus.

【図9】図8の装置のガスケットとボルトを拡大して示
す構成図
FIG. 9 is an enlarged configuration diagram showing a gasket and a bolt of the apparatus of FIG. 8;

【図10】図8の装置の平面図FIG. 10 is a plan view of the apparatus of FIG. 8;

【図11】さらに異なる従来のガスケットシール式海水
電解装置の断面図
FIG. 11 is a cross-sectional view of another conventional gasket-sealed seawater electrolysis apparatus.

【図12】図11の装置のガスケットとボルトを拡大し
て示す構成図
FIG. 12 is a configuration diagram showing a gasket and a bolt of the apparatus of FIG. 11 in an enlarged manner.

【図13】図11の装置の平面図FIG. 13 is a plan view of the apparatus of FIG. 11;

【図14】電極板厚1mmの時のスケール付着量の経時
変化を示すグラフ
FIG. 14 is a graph showing the change over time in the amount of scale attached when the electrode plate thickness is 1 mm.

【図15】電極板厚1.5mmの時のスケール付着量の
経時変化を示すグラフ
FIG. 15 is a graph showing the change over time in the amount of scale attached when the electrode plate thickness is 1.5 mm.

【図16】電極板厚2mmの時のスケール付着量の経時
変化を示すグラフ
FIG. 16 is a graph showing the change over time in the amount of scale attached when the electrode plate thickness is 2 mm.

【符号の説明】[Explanation of symbols]

1 電解槽 9 陰極板 10 陽極板 11 電極板幅 12 電極板間隔 13 電極板厚 32 ゴムガスケット 45 補強体 DESCRIPTION OF SYMBOLS 1 Electrolyzer 9 Cathode plate 10 Anode plate 11 Electrode plate width 12 Electrode plate interval 13 Electrode plate thickness 32 Rubber gasket 45 Reinforcement

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平10−87381(JP,A) 特開 平4−173991(JP,A) (58)調査した分野(Int.Cl.7,DB名) C25B 1/00 - 15/08 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-10-87381 (JP, A) JP-A-4-173991 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C25B 1/00-15/08

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数の陽極と陰極の電極板が平行かつ交
互に配置され、前記陽極と陰極の電極板に印加する電圧
が常に同位相である電解槽の極間に海水が流される無隔
膜電解装置において、前記電極板の幅が50mm以上2
00mm以下であって、且つ前記電極板間隔が前記電極
板厚の3倍以上5倍以下であることを特徴とする無隔膜
電解装置。
1. A diaphragm in which a plurality of anode and cathode electrode plates are arranged in parallel and alternately, and seawater flows between electrodes of an electrolytic cell in which voltages applied to the anode and cathode electrode plates are always in phase. In the electrolysis apparatus, the width of the electrode plate is 50 mm or more and 2
A diaphragmless electrolysis apparatus, wherein the electrode plate interval is not more than 00 mm and the electrode plate interval is not less than 3 times and not more than 5 times the electrode plate thickness.
【請求項2】 前記陽極と陰極の電極板間に、ゴムガス
ケットが挾着され、該ゴムガスケットが内部に補強体を
有するものであることを特徴とする請求項1、2または
3記載の無隔膜電解装置。
2. A rubber gasket according to claim 1, wherein a rubber gasket is sandwiched between the anode and cathode electrode plates, and the rubber gasket has a reinforcing member inside. Diaphragm electrolyzer.
【請求項3】 内部に補強体を有することを特徴とする
請求項1記載の無隔膜電解装置に使用するためのゴムガ
スケット。
3. A rubber gasket for use in a diaphragm-free electrolytic device according to claim 1, further comprising a reinforcing member inside.
JP11033795A 1999-02-12 1999-02-12 Non-diaphragm electrolyzer Expired - Fee Related JP2997267B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11033795A JP2997267B1 (en) 1999-02-12 1999-02-12 Non-diaphragm electrolyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11033795A JP2997267B1 (en) 1999-02-12 1999-02-12 Non-diaphragm electrolyzer

Publications (2)

Publication Number Publication Date
JP2997267B1 true JP2997267B1 (en) 2000-01-11
JP2000234192A JP2000234192A (en) 2000-08-29

Family

ID=12396417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11033795A Expired - Fee Related JP2997267B1 (en) 1999-02-12 1999-02-12 Non-diaphragm electrolyzer

Country Status (1)

Country Link
JP (1) JP2997267B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113330145A (en) * 2019-01-23 2021-08-31 三菱重工环境·化学工程株式会社 Single-pole type electrolytic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113330145A (en) * 2019-01-23 2021-08-31 三菱重工环境·化学工程株式会社 Single-pole type electrolytic device

Also Published As

Publication number Publication date
JP2000234192A (en) 2000-08-29

Similar Documents

Publication Publication Date Title
KR101624095B1 (en) Seawater electrolysis system and seawater electrolysis method
SE429449B (en) ELECTRIC LIGHT CELL FOR ELECTRIC LIGHT OF THE SEA WATER
JP5791377B2 (en) Seawater electrolysis system and seawater electrolysis method
JPS5949318B2 (en) Electrolytic production method of alkali metal hypohalite salt
JP5069292B2 (en) Equipment for electrochemical water treatment
Kelsall Hypochlorite electro-generation. I. A parametric study of a parallel plate electrode cell
KR102579989B1 (en) monopolar electrolytic device
US4064021A (en) Method of improving electrolyte circulation
CN109423661A (en) High concentration subacidity electrolysis water generation method and device
JP2997267B1 (en) Non-diaphragm electrolyzer
JP4302386B2 (en) Electrolyzer
US6200435B1 (en) Ion exchange membrane electrolyzer
AU678410B2 (en) Electrolytic cell and electrode therefor
JP4789043B2 (en) Seawater electrolyzer
KR890006975Y1 (en) Electrolytic bath for electrolyzing seawater
JPH0217008Y2 (en)
CN218917273U (en) Anode chlorine evolution potential testing device and system
CN216890231U (en) High-temperature electrodialysis electrolysis equipment
JPS62146286A (en) Auxiliary electrode
JPH1085750A (en) Electrolytic equipment for seawater
FI74692B (en) FARING EQUIPMENT FOR ELECTRICAL EQUIPMENT BEARING AV AVERAGE.
JP2007117986A (en) Water electrolytic device and method for preventing scale from being deposited thereon
JPH10306390A (en) Method for electrolytically preventing seawater contamination as well as electric corrosion and device therefor
JP2007154256A (en) Stain prevention device and stain prevention method for heat exchanger
JPS61120687A (en) Method for preventing fouling of marine organisms to seawater piping

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991005

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees