JP2993244B2 - 生体物質固定膜における生体物質の失活方法 - Google Patents

生体物質固定膜における生体物質の失活方法

Info

Publication number
JP2993244B2
JP2993244B2 JP3331456A JP33145691A JP2993244B2 JP 2993244 B2 JP2993244 B2 JP 2993244B2 JP 3331456 A JP3331456 A JP 3331456A JP 33145691 A JP33145691 A JP 33145691A JP 2993244 B2 JP2993244 B2 JP 2993244B2
Authority
JP
Japan
Prior art keywords
biological material
biosensor
electrode
alkaline solution
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3331456A
Other languages
English (en)
Other versions
JPH05137592A (ja
Inventor
健二 小椋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOTO KIKI KK
Original Assignee
TOTO KIKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOTO KIKI KK filed Critical TOTO KIKI KK
Priority to JP3331456A priority Critical patent/JP2993244B2/ja
Publication of JPH05137592A publication Critical patent/JPH05137592A/ja
Application granted granted Critical
Publication of JP2993244B2 publication Critical patent/JP2993244B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、生体物質を担持して形
成された生体物質固定膜の失活対象領域の生体物質を失
活させる方法に関する。
【0002】
【従来の技術】酵素や微生物といった生体物質と被測定
物質とで進行する生物化学反応を利用して被測定物質を
測定するバイオセンサは、一般に、生体物質固定膜で被
覆した電極(作用極)と当該固定膜を有しない電極(参
照極)とでなる電極対を備える。そして、この作用極側
で起きる生物化学反応を電気量変化に変換して被測定物
質を測定する。或いは、生体物質を担持しない膜で被覆
された対極をこれら作用極,参照極に加えて備え、作用
極・参照極間の電気変化量と対極・参照極間の電気変化
量との電気変化量の差をもって被測定物質以外の要因を
排除し、より正確に被測定物質を測定する。
【0003】このようなバイオセンサにあっては、作用
極のみを生体物質固定膜で被覆すれば足りるが、作用極
と他の電極の上面に同一の工程で生体物質固定膜を形成
し、その後、他の電極上の生体物質固定膜中の生体物質
を失活することが行なわれている。特に、作用極と対極
とでは、電極を被覆するよう形成された固定膜において
生体物質の有る無しが異なるに過ぎないため、上記のよ
うに生体物質を失活させることが有効であり、種々の技
術が提案されている。
【0004】例えば、特公昭62−14276号には、
電磁波を照射して生体物質を失活させる方法が、特開昭
63−247650号には、酸性溶液にセンサを浸漬さ
せて生体物質を失活させる方法が提案されている。
【0005】
【発明が解決しようとする課題】しかしながら、前者の
技術にあっては、電磁波照射装置をセンサ製造ラインに
設置する必要があるため、設置スペース上の制約を受け
たり、照射する電磁波の波長制御等が煩雑であるといっ
た欠点がある。一方、後者の技術では、酸性溶液にセン
サを浸漬する簡単な酸処理を行なえばよいので、このよ
うな欠点はないものの、次のような不具合がある。
【0006】人体から排出された正常な尿は、そのpH
値が5ないし6前後の範囲の酸性溶液であることがよく
知られている。一方で、グルコースオキシダーゼ(GO
D)は、弱酸性の環境下にあってもグルコースと生物化
学反応を起こすことが実験等により確認されている。従
って、参照極や対極上の固定膜におけるGODの失活
は、弱酸性の溶液では必ずしも十分とはいえない。この
ため、強酸性の溶液で失活させざるを得ないが、このよ
うな強酸性の溶液で酸処理すると、基板上に形成された
電極や、電極形成基板が合成樹脂である場合にはこの基
板を腐食させる虞がある。
【0007】本発明は、上記問題点を解決するためにな
され、生体物質を担持した固定膜における生体物質を確
実に失活させることができる生体物質の失活方法を提供
することを目的とする。
【0008】
【課題を解決するための手段】かかる目的を達成するた
めに本発明の採用した手順は、生体物質を担持して形成
された生体物質固定膜の失活対象領域表面に、アルカリ
性溶液を接触させることをその要旨とする。
【0009】この場合、アルカリ性溶液を生体物質固定
膜の失活対象領域表面に接触させるに当たって、まず、
失活対象領域表面に多孔質体を配置し、その後、多孔質
体にアルカリ性溶液を滴下することとした。
【0010】
【作用】上記構成の生体物質の失活方法によれば、生体
物質を担持して形成された生体物質固定膜の失活対象領
域表面にアルカリ性溶液を接触させることにより、アル
カリ性溶液を固定膜中に浸透させ、失活対象領域におけ
る生体物質固定膜の生体物質を失活させる。このように
アルカリ側で失活させるので、弱酸性の環境下にあって
も被測定物質と生物化学反応を起こす生体物質、例えば
グルコースと生物化学反応を起こすGODを確実に失活
させる。
【0011】
【実施例】以上説明した本発明の構成・作用を一層明ら
かにするために、以下本発明をグルコース測定用のバイ
オセンサの固定膜におけるグルコースオキシダーゼの失
活に適用した実施例について説明する。
【0012】実施例のバイオセンサ1は、平板型の電極
型バイオセンサであり、次のような構成を備える。即
ち、図1に示すように、バイオセンサ1は、ポリエチレ
ンテレフタレート(PET)から作成した板厚1.5m
mの絶縁基板3と、この絶縁基板3上に形成された作用
極5,参照極6及び対極7と、作用極5から参照極6に
渡ってその上面に積層して形成された固定膜8と、作用
極5及び参照極6,対極7の間を絶縁する絶縁層11
と、作用極5及び参照極6,対極7の端子部13,1
4,15とを備える。そして、固定膜8側を感応部17
とするとともに、作用極5の上面に当たる固定膜8の範
囲を、グルコースオキシダーゼを担持した識別層9とす
る。また、バイオセンサ1は、この他に、図示しない電
気測定部を備え、この電気測定部により作用極5と参照
極6間の電気変化量(電流値)と、対極7と参照極6間
の電気変化量との差をもって、被測定溶液、例えば尿中
のグルコース濃度を測定する。
【0013】次に、上記バイオセンサ1の製造工程につ
いて説明する。バイオセンサ1における作用極5及び参
照極6,対極7並びに端子部13,14,15は、絶縁
基板3上面への黒鉛ペーストのスクリーン印刷と、50
℃×1時間の乾燥処理を経て形成した。この際、黒鉛ペ
ーストとしては、粒径が0.5μmの黒鉛微粉末60w
t%と流動パラフィン40wt%とをロールミルにて混
練して得られたものを使用した。
【0014】その後、絶縁層11の形成と固定膜8の形
成とを順次行なった。絶縁層11の形成は、適宜な絶縁
剤、例えばエポキシ樹脂を印刷・乾燥させる周知な工程
で完了する。固定膜8は、グルコースに対する識別機能
を有するグルコースオキシターゼを担持して固定化させ
たものであり、次のようにして形成した。まず、75w
t%のアルブミンと25wt%のグルコースオキシター
ゼ(GOD)とを混合してGOD水溶液を調製する。そ
して、マイクロシリンジにて、感応部17側の作用極5
及び参照極6,対極7上面へこのGOD水溶液を約20
μmの厚さで塗布し、その後室温で2時間自然乾燥させ
て固化させ、固定膜8を形成した。
【0015】次いで、固定膜8における識別層9以外の
領域、即ち図1に示す失活対象領域10に担持されてい
るGODを、次のようにして失活させる。バイオセンサ
1の感応部17をA−A平面で断面視した図2に示すよ
うに、感応部17における固定膜8に密着してこれを覆
う被覆体20を固定膜8に被せて(図2(a))、感応
部17に被覆体20を重ねる。この被覆体20は、固定
膜8の盛り上がりに倣った凹部21を備え、失活対象領
域10に対向する位置に設けた窓22には、軟質ウレタ
ンを発泡させて連続気泡を有する多孔質発泡体23を充
填して備える。こうして感応部17に被覆体20が重な
った後には、失活対象領域10の表面には多孔質発泡体
23の下面が接触することになる。
【0016】その後、図2(b)に示すように、ノズル
30から多孔質発泡体23にアルカリ性溶液を滴下す
る。このアルカリ性溶液は、pH8.0に調製されたN
aOH水溶液或いはKOH水溶液である。アルカリ性溶
液の滴下は、図示するようにノズル30を図に向かって
左右方向及び前後方向に移動させつつ行なう。そして、
多孔質発泡体23に十分な量のアルカリ性溶液が保水さ
れた時点で滴下を停止して、室温で30分間そのまま放
置する。この場合、多孔質発泡体23における保水量を
決定する溶液滴下時間は、ノズル30からの時間当たり
の滴下量と多孔質発泡体23における保水可能量とに基
づいて予め定められている。上記所定時間の放置後に
は、被覆体20を感応部17から取り外し蒸留水にて水
洗し、自然乾燥させる。こうして本実施例のバイオセン
サ1が完成する。
【0017】次に、完成したバイオセンサ1におけるG
ODの失活程度の評価試験について説明する。下記の各
濃度に調製されたグルコース試薬中に上記実施例のバイ
オセンサ1を浸漬し、得られたセンサ出力(電流値)と
検量線とからグルコース濃度を求めた。センサ出力は1
-8Aのオーダーの電流値として観測され、各センサ出
力に対応する測定グルコース濃度は、それぞれ、以下の
通りであった。なお、グルコース試薬を尿に近似した組
成とするために、このグルコース試薬にはアスコルビン
酸,尿酸等が尿と近似した成分比で含有されている。バ
イオセンサ1からセンサ出力を得るに当たっては、作用
極5と参照極6との間及び対極7と参照極6との間に測
定用の微弱電圧をそれぞれ印加し、作用極5と参照極6
との間における測定電流値から対極7と参照極6との間
における測定電流値を差し引いた電流値をセンサ出力と
した。 調整グルコース濃度 → 測定グルコース濃度 10mg/dl → 9.5mg/dl 50mg/dl → 49.2mg/dl 80mg/dl → 78mg/dl 150mg/dl → 146mg/dl 250mg/dl → 244mg/dl 400mg/dl → 390mg/dl
【0018】実施例のバイオセンサ1における失活失活
対象領域10の固定膜8中のGODをpH6.0に調製
されたHCl水溶液で失活させた比較例バイオセンサに
て、上記の各濃度に調製されたグルコース試薬のグルコ
ース濃度を測定した。その結果は、次の通りである。 調整グルコース濃度 → 測定グルコース濃度 10mg/dl → 8.9mg/dl 50mg/dl → 48.1mg/dl 80mg/dl → 73mg/dl 150mg/dl → 140mg/dl 250mg/dl → 233mg/dl 400mg/dl → 342mg/dl
【0019】実施例のバイオセンサ1の測定グルコース
濃度と比較例バイオセンサの測定グルコース濃度との比
較から明かなように、実施例のバイオセンサ1によれ
ば、正確にグルコース濃度を測定することができる。こ
のように、正確なグルコース濃度を測定できたことは、
次のような理由による。
【0020】作用極5側では、作用極上面の識別層9に
おけるGODが溶液中のグルコースと生物化学反応し、
電極活性物質として酸素が消費されて過酸化水素が生成
される。この酸素の消費・過酸化水素の生成により作用
極5と参照極6の両電極間に電流が流れる。実施例のバ
イオセンサ1における作用極5と参照極6の両電極間の
電流を単独に測定したところ、10-8Aのオーダーの電
流値として観測され、その値は、バイオセンサ1として
の上記センサ出力(電流値)とほぼ同一のオーダーの電
流値であった。対極7と参照極6の両電極はGODが失
活された固定膜に接触しているため、両電極表面では生
物化学反応は進行せず、理論的には両電極間に流れる電
流はゼロである。ところが、未失活のGODが固定膜中
に存在すれば、被測定溶液中のアルコルビン酸,尿酸等
の妨害物質と僅かではあるが生物化学反応を起こすの
で、この反応に起因する電流が対極7と参照極6との間
に若干流れる。また、これらの妨害物質が膜中に拡散し
て電極表面に到達し、妨害物質が媒体となって対極7と
参照極6との間における電子の移動を引き起こす。この
ため、対極と参照極との間に若干の電流が流れる。な
お、妨害物質が媒体となったことに起因する電流値は、
GODの失活・未失活とは無関係であり妨害物質の存在
に依存し、その値は一定であると考えられる。
【0021】よって、失活対象領域におけるGODの失
活が不十分な場合には、妨害物質とGODとの生物化学
的反応に起因する対極7と参照極6との間の電流値が未
失活のGOD量に応じて増大する。
【0022】実施例のバイオセンサ1における対極7と
参照極6の両電極間の電流を単独に測定したところ、1
-9Aのオーダーの微少な電流値が観測されたに過ぎ
ず、バイオセンサ1における作用極5と参照極6の両電
極間の電流を単独に測定した場合の10-8Aのオーダー
の電流値より1桁低いオーダーの電流値であった。とこ
ろが、比較例バイオセンサにおける対極と参照極の両電
極間の電流を単独に測定した場合には、値そのものは小
さいものの10-8Aのオーダーの電流値が観測された。
【0023】つまり、実施例のバイオセンサ1にあって
は、次のように考察することができる。多孔質発泡体2
3に保水されたアルカリ性溶液(pH8.0)は、失活
対象領域10の表面と多孔質発泡体23の下面とが接触
しているので、滴下が開始されてから放置時間の間に亘
って、失活対象領域10の表面に接触して当該表面を通
過し、失活対象領域10範囲の固定膜8内に浸透する。
失活対象領域10範囲の固定膜8内では、当初担持され
ていたGODが膜中に浸透したアルカリ性溶液により確
実に失活したために妨害物質との間の生物化学反応が起
こらず、この生物化学的反応に起因する電流値が得られ
ない。この結果、対極7と参照極6の両電極間では、妨
害物質が媒体となった場合における電流しか観測され
ず、既述したような微少な電流値(10-9Aのオーダ
ー)しか得られない。これに対して、酸性溶液で失活さ
せる比較例バイオセンサでは、GODの失活が不十分な
ために、未失活のGODと妨害物質との生物化学反応が
起きて、10-8Aのオーダーの電流値が観測されたと考
えられる。
【0024】次に、本発明固有の技術であるアルカリ性
溶液による生体物質の失活の有効性をより明確にするた
めに、酸処理による生体物質の失活技術と次のようにし
て比較した。比較に供するバイオセンサとしてアルカリ
性溶液(pH8.0,10.8,14.0)を用いて上
記工程にてグルコース測定用の実施例バイオセンサを作
成し、塩酸(pH5.2,6.0,6.5)を用いて上
記工程にてグルコース測定用の比較例バイオセンサ(従
来品)を作成した。なお、固定膜の膜厚等は上記したバ
イオセンサと同一である。そして、種々の濃度に調製し
たグルコース試薬に各センサを浸漬し、対極7と参照極
6の両電極間を単独で測定して得られた電流値と、グル
コース濃度との関係を調べた。その結果を図3に示す。
【0025】図3から明らかなように、記号a,b,c
で示される比較バイオセンサでは、グルコース濃度に応
じた電流値の大きな変化が見られることから妨害物質と
GODとの生物化学反応が起きていると判断できる。こ
のため、対極と参照極の電極間からは、失活していない
GODによる妨害物質との生物化学反応を反映した電流
と妨害物質が媒体となったことに起因する電流とが合わ
せて測定される。よって、上記したpH値の酸性溶液に
よる酸処理を経てもGODの失活は不十分であり、比較
例バイオセンサでは、測定グルコース濃度の信頼性が低
くなる。特に、糖尿病により尿中のグルコース濃度が高
い場合には、尿中の高いグルコース濃度に起因して信頼
性の低下は顕著となる。
【0026】一方、記号d,e,fで示される実施例バ
イオセンサでは、比較例バイオセンサに比べて電流値の
変化の度合いが少ないことから、酸処理を行なった場合
に比べてGODをより確実に失活させることができる。
特に、pH10.8,14.0のアルカリ性溶液で失活
させた場合には、500mg/dlまでの範囲に亘って
3×10-9A程度の一定の電流しか得られなかったこと
から、GODは完全に失活し、妨害物質が媒体となった
ことだけに起因する電流しか得られないといえる。この
結果、アルカリ性溶液によりGODを失活させた実施例
バイオセンサによれば、より正確にグルコース濃度を測
定することができる。
【0027】以上説明したように、本実施例の失活方法
によれば、GODを簡単な操作でより確実に失活させる
ことができる。しかも、用いるアルカリ性溶液がpH
8.0の弱アルカリ性の溶液であってもGODの失活を
図ることができるので、PET製の絶縁基板3にアルカ
リ性溶液がかかったとしても当該基板に損傷を与えるこ
とがなく、取扱いも容易となる。
【0028】しかも、アルカリ性溶液を用いてGODを
失活させるに際しては、失活対象領域10の表面に多孔
質発泡体23を接触・載置させ、この多孔質発泡体23
にアルカリ性溶液を滴下・保水すればよいので、アルカ
リ性溶液によるGODの失活操作が簡単となる。
【0029】なお、この発明は上記実施例に限られるも
のではなく、その要旨を逸脱しない範囲において種々の
態様において実施することが可能であり、次のような変
形も可能である。例えば、グルコースオキシターゼに替
えて、グルコネート−5−デビドロゲナーゼ,乳酸オキ
シターゼ,ピルベート・オキシターゼ等の生体物質を用
いてもよい。また、アルカリ性溶液を固定膜に接触させ
るに当たって、軟質ウレタンを発泡させて形成した多孔
質発泡体23を用いたが、アルミナ多孔質体やメッシュ
の細かい網を積層した多孔質体等を用いることもでき
る。更には、これら多孔質体を、被覆体20を用いるこ
となく、固定膜における失活対象領域の表面に直接載置
して、アルカリ性溶液を滴下しても良い。加えて、アル
カリ性溶液のpH値は、固定膜に担持する生体物質の種
類等に応じて適宜決定すれば良い。
【0030】
【発明の効果】以上詳述したように、本発明にかかる生
体物質の失活方法によれば、失活対象領域における生体
物質固定膜中にその表面からアルカリ性溶液を浸透させ
て、失活対象領域における生体物質固定膜の生体物質を
確実に失活させることができる。しかも、失活に当たっ
ては多孔質体にアルカリ性溶液を保水させればよいの
で、簡単な操作で失活を行なうことができる。
【図面の簡単な説明】
【図1】実施例のバイオセンサ1の概略斜視図。
【図2】バイオセンサ1の感応部17をA−A平面で断
面視した断面図であるとともに、バイオセンサ1の製造
過程を説明するため用いた説明図。
【図3】本発明の効果を説明するために用いた説明図で
あり、対極と参照極間を測定して得られた微小電流値と
グルコース濃度との関係を示すグラフ。
【符号の説明】 1 バイオセンサ 3 絶縁基板 5 作用極 6 参照極 7 対極 8 固定膜 9 識別層 10 失活対象領域 17 感応部 20 被覆体 23 多孔質発泡体
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI G01N 27/28 331 G01N 27/28 331Z 27/327 27/30 353V

Claims (2)

    (57)【特許請求の範囲】
  1. 【請求項1】 生体物質を担持して形成された生体物質
    固定膜の失活対象領域表面に、アルカリ性溶液を接触さ
    せることを特徴とする生体物質固定膜における生体物質
    の失活方法。
  2. 【請求項2】 前記アルカリ性溶液を前記生体物質固定
    膜の失活対象領域表面に接触させるに当たって、 前記失活対象領域表面に、多孔質体を配置し、 該多孔質体に前記アルカリ性溶液を滴下する請求項1記
    載の生体物質固定膜における生体物質の失活方法。
JP3331456A 1991-11-19 1991-11-19 生体物質固定膜における生体物質の失活方法 Expired - Lifetime JP2993244B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3331456A JP2993244B2 (ja) 1991-11-19 1991-11-19 生体物質固定膜における生体物質の失活方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3331456A JP2993244B2 (ja) 1991-11-19 1991-11-19 生体物質固定膜における生体物質の失活方法

Publications (2)

Publication Number Publication Date
JPH05137592A JPH05137592A (ja) 1993-06-01
JP2993244B2 true JP2993244B2 (ja) 1999-12-20

Family

ID=18243853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3331456A Expired - Lifetime JP2993244B2 (ja) 1991-11-19 1991-11-19 生体物質固定膜における生体物質の失活方法

Country Status (1)

Country Link
JP (1) JP2993244B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5753720B2 (ja) * 2010-04-22 2015-07-22 アークレイ株式会社 バイオセンサ

Also Published As

Publication number Publication date
JPH05137592A (ja) 1993-06-01

Similar Documents

Publication Publication Date Title
US5217594A (en) Convenient determination of trace lead in whole blood and other fluids
EP1235068B1 (en) Biosensor
Koncki et al. Screen-printed ruthenium dioxide electrodes for pH measurements
Mousty et al. Trienzymatic biosensor for the determination of inorganic phosphate
JPH04340453A (ja) バイオセンサーおよびそれを用いた分離定量方法
JPH0777511A (ja) ガス測定用バイオセンサー及びその製造方法
EP0457892A4 (en) Enzyme electrical sensor electrode and method of making it
Mizutani et al. Rapid measurement of transaminase activities using an amperometric l-glutamate-sensing electrode based on a glutamate oxidase–polyion complex-bilayer membrane
CA2173551A1 (en) Enzyme electrode
Yuan et al. Eliminating the interference of ascorbic acid and uric acid to the amperometric glucose biosensor by cation exchangers membrane and size exclusion membrane
JPH0235933B2 (ja)
JP2993244B2 (ja) 生体物質固定膜における生体物質の失活方法
Rahman et al. Selective choline biosensors based on choline oxidase co-immobilized into self-assembled monolayers on micro-chips at low potential
Singh et al. Polyaniline based catalase biosensor for the detection of hydrogen peroxide and azide
Scavetta et al. Anti‐Interferent Properties of Oxidized Nickel Based on Layered Double Hydroxide in Glucose Amperometric Biosensors
Phanthong et al. The steady state current at a microdisk biosensor
Guadagnini et al. Ni (OH) 2 versus Ni/Al layered double hydroxides as matrices to immobilize glucose oxidase
GB2229005A (en) Biosensor device
Yun et al. Highly sensitive and renewable amperometric urea sensor based on self-assembled monolayer using porous silicon substrate
JPH04118554A (ja) 電気化学的酵素測定方法およびバイオセンサ
ANZAI et al. Enzyme Sensors Based on an Ion-Sensitive Field Effect Transistor Coated with Langmuir-Blodgett Membranes.: Use of Polyethyleneimine as a Spacer for Immobilizing α-Chymotrypsin
Guadagnini et al. Microscopy techniques for the characterization of modified electrodes in the development of glucose biosensors
JP2002221508A (ja) バイオセンサ
Shul'ga et al. An alternative microbiosensor for hydrogen peroxide based on an enzyme field effect transistor with a fast response
JPH0345336B2 (ja)