JP2989092B2 - Method for regenerating Mn-Zn ferrite carrier - Google Patents

Method for regenerating Mn-Zn ferrite carrier

Info

Publication number
JP2989092B2
JP2989092B2 JP5242048A JP24204893A JP2989092B2 JP 2989092 B2 JP2989092 B2 JP 2989092B2 JP 5242048 A JP5242048 A JP 5242048A JP 24204893 A JP24204893 A JP 24204893A JP 2989092 B2 JP2989092 B2 JP 2989092B2
Authority
JP
Japan
Prior art keywords
heat treatment
carrier
temperature
secondary heat
saturation magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5242048A
Other languages
Japanese (ja)
Other versions
JPH0772665A (en
Inventor
裕正 金子
和幸 平松
丈夫 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP5242048A priority Critical patent/JP2989092B2/en
Publication of JPH0772665A publication Critical patent/JPH0772665A/en
Application granted granted Critical
Publication of JP2989092B2 publication Critical patent/JP2989092B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、回収した使用済のMn
−Zn系フェライトキャリアに2段階の加熱処理を施し
て再生する方法に関するものである。この方法は、電子
写真方式のプリンタ装置などの現像剤として用いられて
いるフェライトキャリアを回収して再利用する技術であ
る。
The present invention relates to a method for recovering used Mn.
The present invention relates to a method for regenerating a Zn-based ferrite carrier by performing a two-stage heat treatment. This method is a technique of recovering and reusing a ferrite carrier used as a developer in an electrophotographic printer or the like.

【0002】[0002]

【従来の技術】電子写真方式のプリンタ装置などの現像
剤として用いられているフェライトキャリアは、ある程
度使用するとトナーの付着やコート樹脂の剥離が生じ、
印刷品質が劣化してしまうため、交換、回収している。
2. Description of the Related Art A ferrite carrier used as a developer in an electrophotographic printer or the like, when used to some extent, causes adhesion of toner and peeling of a coating resin.
They are replaced and collected because the print quality deteriorates.

【0003】回収フェライトキャリアの再生方法として
は、特開昭63−212945号公報に見られる技術が
ある。ここでは、付着物を加熱除去する第1の加熱操作
と、第1の加熱操作で変化してしまった電気抵抗を調節
する第2の加熱操作により行っている。第1の加熱操作
の条件は、酸化雰囲気中で、概ね200〜900℃、好
ましくは400〜800℃であり、第2の加熱操作の条
件は、フェライト粒子製造時の焼成条件に対して±30
0℃、好ましくは±200℃である。なお実施例では、
いずれも第1の加熱操作を700℃で、また第2の加熱
操作を1100℃で行っている。
As a method for regenerating a recovered ferrite carrier, there is a technique disclosed in Japanese Patent Application Laid-Open No. 63-212945. Here, the first heating operation for heating and removing the attached matter and the second heating operation for adjusting the electric resistance changed by the first heating operation are performed. The conditions of the first heating operation are approximately 200 to 900 ° C., preferably 400 to 800 ° C. in an oxidizing atmosphere, and the conditions of the second heating operation are ± 30 ° C. with respect to the firing conditions at the time of ferrite particle production.
0 ° C., preferably ± 200 ° C. In the embodiment,
In each case, the first heating operation is performed at 700 ° C., and the second heating operation is performed at 1100 ° C.

【0004】[0004]

【発明が解決しようとする課題】ところでフェライトキ
ャリアの材質としては、低抵抗、高飽和磁化で、比較的
マグネタイトに特性が近いということから、Mn−Zn
系が用いられている。このMn−Zn系フェライトキャ
リアの場合は、通常、磁気特性向上のためにFe2 3
量を化学量論より多くしている。このため従来技術のよ
うに温度の高い酸化性雰囲気中で加熱処理すると、異相
が析出し、磁気特性が劣化してしまう。
The ferrite carrier is made of Mn-Zn because of its low resistance, high saturation magnetization and relatively close properties to magnetite.
A system is used. In the case of this Mn-Zn based ferrite carrier, usually, Fe 2 O 3
The amount is more than stoichiometric. Therefore, when heat treatment is performed in a high-temperature oxidizing atmosphere as in the related art, a hetero-phase is precipitated and magnetic properties are deteriorated.

【0005】本発明の目的は、Mn−Zn系フェライト
の回収キャリアを、磁気特性をさほど低下させることな
く、再び使用できるように再生する方法を提供すること
である。
An object of the present invention is to provide a method for regenerating a recovered carrier of Mn-Zn ferrite so that it can be reused without significantly deteriorating magnetic properties.

【0006】[0006]

【課題を解決するための手段】本発明は、回収した使用
済のMn−Zn系フェライトキャリアを、付着トナー及
びコート樹脂を除去可能な温度以上で且つ500℃未満
の空気中で一次加熱処理を行い、その後、特性調整のた
め、400〜600℃の窒素雰囲気中で二次加熱処理し
て、そのまま窒素雰囲気中で冷却し、再び樹脂コートす
るMn−Zn系フェライトキャリアの再生方法である。
ここで一次加熱処理を400〜450℃で行い、二次加
熱処理を窒素雰囲気中で450〜550℃で行うのが好
ましい。なお、Mn−Zn系フェライトキャリア(新
品)の製造において、焼成温度は、通常、1250〜1
300℃である。それ故、本発明の一次及び二次加熱処
理温度は、いずれも焼成温度に比べるとかなり低い温度
である。
SUMMARY OF THE INVENTION According to the present invention, a primary heat treatment is performed on a recovered used Mn-Zn ferrite carrier in air at a temperature higher than a temperature at which adhered toner and coating resin can be removed and lower than 500 ° C. This is a method for regenerating a Mn-Zn ferrite carrier that is subjected to a secondary heat treatment in a nitrogen atmosphere at 400 to 600 ° C., cooled as it is in a nitrogen atmosphere, and coated again with a resin for characteristic adjustment.
Here, the primary heat treatment is preferably performed at 400 to 450 ° C., and the secondary heat treatment is preferably performed at 450 to 550 ° C. in a nitrogen atmosphere. In the production of a Mn-Zn ferrite carrier (new), the firing temperature is usually from 1250 to 1
300 ° C. Therefore, the primary and secondary heat treatment temperatures of the present invention are both considerably lower than the firing temperature.

【0007】[0007]

【作用】Mn−Zn系フェライトは酸化され易く、酸化
によって表面にヘマタイト層が生成されて磁気特性が悪
化するが、500℃未満の比較的低温で一次加熱処理を
行うことで、付着トナーやコート樹脂を完全に除去し、
且つMn−Zn系フェライトキャリアの酸化反応を抑
え、磁気特性の劣化を可能な限り少なくできる。そして
二次加熱処理を窒素雰囲気中で、且つ400〜600℃
の低温で行うことで、必要な電磁気的な特性に調整され
ると共に、磁気特性の劣化が抑制され、場合によっては
一次加熱処理で劣化した磁気特性が元の状態近くまで回
復する。
The Mn-Zn ferrite is easily oxidized and the oxidation causes a hematite layer to be formed on the surface to deteriorate magnetic properties. Completely remove the resin,
Moreover, the oxidation reaction of the Mn-Zn-based ferrite carrier can be suppressed, and the deterioration of the magnetic properties can be reduced as much as possible. Then, the secondary heat treatment is performed in a nitrogen atmosphere at 400 to 600 ° C.
By adjusting the temperature to a low temperature, the required electromagnetic characteristics are adjusted, and the deterioration of the magnetic characteristics is suppressed. In some cases, the magnetic characteristics deteriorated by the primary heat treatment are restored to near the original state.

【0008】一次加熱処理を空気中で行うのは、それに
よってコート樹脂を飛ばすためである。コート樹脂が飛
散する温度は、熱重量分析等で調べることができる。そ
の分析結果によれば、使用されているコート樹脂の種類
にもよるが、通常、空気中で370℃程度に加熱するこ
とで除去できる。一次加熱処理温度を500℃未満、二
次加熱処理温度を400〜600℃としたのは、それぞ
れ加熱温度−飽和磁化σs の特性分布図から、再生キャ
リアの特性が新品キャリアの特性よりも大幅に低下しな
いようにするためである。
[0008] The primary heat treatment is performed in the air to remove the coating resin. The temperature at which the coating resin scatters can be determined by thermogravimetric analysis or the like. According to the analysis result, although it depends on the type of the coating resin used, it can be usually removed by heating to about 370 ° C. in air. The primary heat treatment temperature was set at less than 500 ° C. and the secondary heat treatment temperature was set at 400 to 600 ° C. From the characteristic distribution diagram of the heating temperature-saturation magnetization σs, the characteristics of the reproduced carrier are significantly larger than those of the new carrier. This is so as not to decrease.

【0009】[0009]

【実施例】本発明の再生処理フローを図1に示す。まず
Mn−Zn系フェライトの回収キャリア10を空気中で
450℃で一次加熱処理を施し、キャリア表面の付着物
の除去を行い一次加熱処理品12を得た。この一次加熱
処理品12の飽和磁化は、83.18emu/g であった。
なお、本来のMn−Zn系フェライトキャリア(新品)
の飽和磁化は86.65emu/g である。次に、一次加熱
処理により劣化してしまった電気抵抗を調整するため
に、二次加熱処理を行った。その場合、飽和磁化をこれ
以上劣化させないように、100%窒素雰囲気中におい
て500℃で行い、そのまま冷却した。得られた二次加
熱処理品14の飽和磁化は、85.78emu/g であっ
た。この二次加熱処理品14に樹脂コートを施して、再
生キャリア16とした。この再生キャリアは、電気抵抗
も新しいキャリア(新品)と変わらず、印刷結果も良好
であった。
FIG. 1 shows a reproduction processing flow of the present invention. First, the Mn-Zn-based ferrite recovery carrier 10 was subjected to a primary heat treatment at 450 ° C. in air to remove deposits on the carrier surface, thereby obtaining a primary heat-treated product 12. The saturation magnetization of the primary heat-treated product 12 was 83.18 emu / g.
The original Mn-Zn ferrite carrier (new)
Has a saturation magnetization of 86.65 emu / g. Next, a secondary heat treatment was performed in order to adjust electric resistance that was deteriorated by the primary heat treatment. In that case, in order to prevent the saturation magnetization from deteriorating further, it was performed at 500 ° C. in a 100% nitrogen atmosphere, and was cooled as it was. The resulting secondary heat-treated product 14 had a saturation magnetization of 85.78 emu / g. This secondary heat-treated product 14 was coated with a resin to obtain a recycled carrier 16. This regenerated carrier had the same electrical resistance as a new carrier (new) and had good printing results.

【0010】上記の結果をふまえて、一次加熱処理温度
と二次加熱処理温度を変化させて再生キャリアを製造す
る実験を行い、飽和磁化の測定を行った。まず一次加熱
処理温度を、上記の450℃の他に、500℃及び60
0℃として、一次加熱処理品を作製した。それらの飽和
磁化は表1に示す通りである。加熱処理温度が高くなる
ほど、飽和磁化の劣化が甚だしくなることが分かる。
On the basis of the above results, an experiment was carried out to manufacture a reproduced carrier by changing the primary heat treatment temperature and the secondary heat treatment temperature, and the saturation magnetization was measured. First, in addition to the above 450 ° C., the primary heat treatment temperature was set to 500 ° C. and 60 ° C.
At a temperature of 0 ° C., a primary heat-treated product was produced. Their saturation magnetization is as shown in Table 1. It can be seen that the higher the heat treatment temperature, the more the saturation magnetization deteriorates.

【0011】[0011]

【表1】 [Table 1]

【0012】次に一次加熱処理品について、更に300
〜700℃の範囲で二次加熱処理温度を変えて、二次加
熱処理品を作製した。それらの飽和磁化(emu/g )を表
2に示す。二次加熱処理温度が高過ぎても低過ぎても飽
和磁化の劣化が大きくなることが分かる。
Next, for the primary heat-treated product, 300
A secondary heat-treated product was produced by changing the secondary heat treatment temperature in the range of -700 ° C. Table 2 shows their saturation magnetization (emu / g). It can be seen that the saturation magnetization is greatly deteriorated when the secondary heat treatment temperature is too high or too low.

【0013】[0013]

【表2】 [Table 2]

【0014】種々の実験により一次及び二次の加熱処理
温度と飽和磁化σs の関係を示したのが図2である。こ
れは横軸に一次加熱処理温度を、縦軸に二次加熱処理温
度を設定し、どの条件範囲で飽和磁化がどの程度になる
かを表している。これによって、一次加熱処理温度を5
00℃未満、二次加熱処理温度を400〜600℃とす
ると、飽和磁化がほぼ80emu/g もしくはそれ以上とな
ることが分かる。最も好ましいのは、一次加熱処理温度
を450℃程度、二次加熱処理温度を500℃程度とす
ることである。この最適条件では、一次加熱処理で若干
低下した飽和磁化が、二次加熱処理によって回復し、新
品のMn−Zn系フェライトキャリアとほぼ同等の極め
て良好な特性を呈する。
FIG. 2 shows the relationship between the primary and secondary heat treatment temperatures and the saturation magnetization σs through various experiments. This shows that the primary heat treatment temperature is set on the horizontal axis and the secondary heat treatment temperature is set on the vertical axis, and the condition range and the degree of saturation magnetization are shown. As a result, the primary heat treatment temperature is reduced to 5
It can be seen that when the secondary heat treatment temperature is less than 00 ° C. and the secondary heat treatment temperature is 400 to 600 ° C., the saturation magnetization becomes approximately 80 emu / g or more. Most preferably, the primary heat treatment temperature is about 450 ° C. and the secondary heat treatment temperature is about 500 ° C. Under these optimum conditions, the saturation magnetization slightly reduced by the primary heat treatment is recovered by the secondary heat treatment, and exhibits extremely good characteristics almost equivalent to a new Mn-Zn ferrite carrier.

【0015】[0015]

【発明の効果】本発明は上記のように、500℃未満の
空気中で一次加熱処理を行い、特性調整のため400〜
600℃の窒素雰囲気中で二次加熱処理する再生方法で
あるから、Mn−Zn系フェライトの回収キャリアを、
異相が析出することなく、飽和磁化の低下を許容限度内
に抑制し、キャリアとしての性能に何ら問題なく、再び
使用できるように再生することができる。
According to the present invention, as described above, the primary heat treatment is performed in air at less than 500 ° C.
Since it is a regeneration method in which secondary heat treatment is performed in a nitrogen atmosphere at 600 ° C., a recovery carrier of Mn—Zn-based ferrite is
It is possible to regenerate the carrier so that it can be used again without any problem in the performance as a carrier, with no reduction in the saturation magnetization within an allowable limit without precipitation of a heterogeneous phase.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る再生処理フローの説明図。FIG. 1 is an explanatory diagram of a reproduction processing flow according to the present invention.

【図2】一次及び二次の加熱処理温度と飽和磁化の関係
を示す説明図。
FIG. 2 is an explanatory diagram showing a relationship between primary and secondary heat treatment temperatures and saturation magnetization.

【符号の説明】[Explanation of symbols]

10 回収キャリア 12 一次加熱処理品 14 二次加熱処理品 16 再生キャリア Reference Signs List 10 recovery carrier 12 primary heat-treated product 14 secondary heat-treated product 16 recycled carrier

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G03G 9/10 Continuation of front page (58) Field surveyed (Int.Cl. 6 , DB name) G03G 9/10

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 回収した使用済のMn−Zn系フェライ
トキャリアを、付着トナー及びコート樹脂を除去可能な
温度以上で且つ500℃未満の空気中で一次加熱処理を
行い、その後、特性調整のため、400〜600℃の
雰囲気中で二次加熱処理して、そのまま窒素雰囲気中
で冷却し、再び樹脂コートすることを特徴とするMn−
Zn系フェライトキャリアの再生方法。
1. A primary heat treatment of the recovered used Mn—Zn-based ferrite carrier in air at a temperature higher than a temperature at which the attached toner and the coating resin can be removed and lower than 500 ° C. , 400~600 ℃ of nitrogen
A secondary heat treatment in an elementary atmosphere, cooling as it is in a nitrogen atmosphere, and coating with a resin again.
A method for regenerating a Zn-based ferrite carrier.
【請求項2】 一次加熱処理を400〜450℃で行
い、二次加熱処理を窒素雰囲気中で450〜550℃で
行う請求項1記載の再生方法。
2. The method according to claim 1, wherein the first heat treatment is performed at 400 to 450 ° C., and the second heat treatment is performed at 450 to 550 ° C. in a nitrogen atmosphere.
JP5242048A 1993-09-02 1993-09-02 Method for regenerating Mn-Zn ferrite carrier Expired - Lifetime JP2989092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5242048A JP2989092B2 (en) 1993-09-02 1993-09-02 Method for regenerating Mn-Zn ferrite carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5242048A JP2989092B2 (en) 1993-09-02 1993-09-02 Method for regenerating Mn-Zn ferrite carrier

Publications (2)

Publication Number Publication Date
JPH0772665A JPH0772665A (en) 1995-03-17
JP2989092B2 true JP2989092B2 (en) 1999-12-13

Family

ID=17083500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5242048A Expired - Lifetime JP2989092B2 (en) 1993-09-02 1993-09-02 Method for regenerating Mn-Zn ferrite carrier

Country Status (1)

Country Link
JP (1) JP2989092B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5597487B2 (en) * 2010-08-31 2014-10-01 Dowaエレクトロニクス株式会社 Manufacturing method of recycled carrier
EP2746855B1 (en) 2012-12-20 2016-03-23 Ricoh Company Ltd. Method of removing coating material

Also Published As

Publication number Publication date
JPH0772665A (en) 1995-03-17

Similar Documents

Publication Publication Date Title
JP3240672B2 (en) Magnetic recording media
CN1095154C (en) Spin valve magnetoresistive head and manufacturing method therefor
JP2989092B2 (en) Method for regenerating Mn-Zn ferrite carrier
JPH03256223A (en) Magnetic transfering method
JPH0216361B2 (en)
US5705234A (en) Method for manufacturing magnetic hard disk
JP2649344B2 (en) Carrier regeneration method
JPH0219164B2 (en)
JP2843124B2 (en) Method for producing metal magnetic powder
EP0200192B1 (en) Magnetic recording/reproduction apparatus
JP3049373B2 (en) Method for producing acicular cobalt-containing iron oxide magnetic powder
JP3051464B2 (en) Manufacturing method of magnetic recording media
JP2894495B2 (en) Manufacturing method of metal magnetic powder for magnetic recording media
JP3001830B2 (en) Manufacturing method of metal magnetic powder for magnetic recording media
JP2646901B2 (en) Substrates for magnetic recording media
JPH0836730A (en) Magnetic recording medium
JPS6023402B2 (en) magnetic recording method
JPH0798847A (en) Magnetic recording medium
JPS60261027A (en) Vertical magnetic recording medium
JPS5924874A (en) Method of obtaining toner image with improved resolution
Ura et al. Off-track characteristics of laminated heads in azimuth recording
JPH08181008A (en) Magnetic powder and magnetic recording medium and magnetic recording method using magnetic recording medium
JPH087230A (en) Production of magnetoresistance effect type head
JPS6025014A (en) Magnetic recording and reproducing device
JPS63226011A (en) Manufacture of high frequency magnetic core