JP2649344B2 - Carrier regeneration method - Google Patents

Carrier regeneration method

Info

Publication number
JP2649344B2
JP2649344B2 JP62045345A JP4534587A JP2649344B2 JP 2649344 B2 JP2649344 B2 JP 2649344B2 JP 62045345 A JP62045345 A JP 62045345A JP 4534587 A JP4534587 A JP 4534587A JP 2649344 B2 JP2649344 B2 JP 2649344B2
Authority
JP
Japan
Prior art keywords
carrier
ferrite
heating
toner
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62045345A
Other languages
Japanese (ja)
Other versions
JPS63212945A (en
Inventor
潤 津田
治 山本
俊夫 本庄
康正 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PAUDAA TETSUKU KK
Fujifilm Business Innovation Corp
Original Assignee
PAUDAA TETSUKU KK
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PAUDAA TETSUKU KK, Fuji Xerox Co Ltd filed Critical PAUDAA TETSUKU KK
Priority to JP62045345A priority Critical patent/JP2649344B2/en
Publication of JPS63212945A publication Critical patent/JPS63212945A/en
Application granted granted Critical
Publication of JP2649344B2 publication Critical patent/JP2649344B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/107Developers with toner particles characterised by carrier particles having magnetic components
    • G03G9/108Ferrite carrier, e.g. magnetite

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Developing Agents For Electrophotography (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電子写真用現像剤の再生方法、特にフェライ
ト系回収キャリヤの再生方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for regenerating an electrophotographic developer, and more particularly, to a method for regenerating a ferrite-based recovery carrier.

[従来の技術] 電子写真用現像剤としてキャリヤとトナーの混合物か
らなる2成分現像剤が用いられている。これはキャリヤ
とトナーとを混合、撹拌し、キャリヤとトナーの相互摩
擦帯電により、トナーに所定の極性と量の電荷を持たせ
静電潜像を現像するためのものである。キャリヤとして
は、ガラス、鉄、ニッケル、コバルト、Fe2O3、Fe3O4
るいはフェライト等の粒子を用い、特に磁気ブラシ現像
方式の場合には、磁性粒子が用いられる。またこの様な
粒子表面を、アクリル樹脂、シリコン樹脂あるいはフッ
素樹脂等の有機材料で被覆したキャリヤも用いられてい
る。
2. Description of the Related Art A two-component developer composed of a mixture of a carrier and a toner is used as an electrophotographic developer. This is to mix and stir the carrier and the toner, and to develop the electrostatic latent image by imparting a predetermined polarity and amount of charge to the toner by mutual frictional charging of the carrier and the toner. As the carrier, particles such as glass, iron, nickel, cobalt, Fe 2 O 3 , Fe 3 O 4, or ferrite are used. In particular, in the case of a magnetic brush development system, magnetic particles are used. In addition, a carrier having such a particle surface coated with an organic material such as an acrylic resin, a silicon resin, or a fluororesin is also used.

キャリヤ粒子は現像装置中で撹拌作用を受けるため、
キャリヤ表面にトナーンが固着したり、あるいは被覆物
が脱落したりして、徐々に摩擦帯電性が低下し、遂には
必要な摩擦帯電ができなくなり、キャリヤの交換が必要
になる。この交換後のキャリヤを廃棄することなく、再
生して用いる提案が特開昭47−12286号でなされてい
る。
Since the carrier particles undergo a stirring action in the developing device,
As the toner adheres to the carrier surface or the coating falls off, the triboelectricity gradually decreases, so that the required triboelectricity cannot be achieved, and the carrier needs to be replaced. Japanese Patent Application Laid-Open No. 47-12286 proposes reusing the carrier after the replacement without discarding the carrier.

この提案は、回収キャリヤを少なくとも約1,000゜F
(約540℃)の温度でその頭初の特性に回復させるのに
充分な時間加熱処理し、キャリヤ表面の付着物を加熱除
去して再生をはかるものである。
The proposal requires a recovery carrier of at least about 1,000 ゜ F
Heat treatment is performed at a temperature (about 540 ° C.) for a period of time sufficient to restore the initial properties, and the deposits on the carrier surface are removed by heating to regenerate.

[発明が解決しようとする問題点] この再生方法は、二酸化チタン等のキャリヤ粒子を再
生するためには有用な方法であるが、フェライト系キャ
リヤを再生する場合、元の特性には回復しないことが判
明した。すなわち、表面にトナーが固着したフェライト
キャリヤを加熱し、表面付着物を除去した再生フェライ
ト粒子を用いて静電潜像を現像したところ、得られた複
写物は画像濃度が低く、かつカブリが発生していた。こ
の現像は新しいキャリヤでは発生せず、キャリヤの使用
回数が多くなりキャリヤ劣化が生じたときに発生する現
象に類似のものであった。つまり回収したフェライトキ
ャリヤを十分な時間加熱処理し、表面付着物を除去した
のみでは元の特性に戻すことはできない。
[Problems to be Solved by the Invention] This regenerating method is a useful method for regenerating carrier particles such as titanium dioxide, but when regenerating a ferrite-based carrier, the original characteristics are not restored. There was found. In other words, when the ferrite carrier with the toner adhered to the surface is heated, and the electrostatic latent image is developed using the regenerated ferrite particles from which the surface deposits have been removed, the resulting copy has a low image density and fog occurs. Was. This development did not occur with the new carrier and was similar to the phenomenon that occurs when the carrier is used many times and carrier degradation occurs. That is, the recovered ferrite carrier cannot be restored to the original characteristics only by heat-treating it for a sufficient time to remove the surface deposits.

従って、本発明は劣化したフェライト系キャリヤを元
の特性にもつものに回復するキャリヤの再生方法を提供
することを目的とする。
Accordingly, an object of the present invention is to provide a carrier regenerating method for recovering a deteriorated ferrite carrier to one having the original characteristics.

[問題点を解決するための手段] 本発明の目的は、表面付着物を除去しキャリヤを再生
する第1の加熱工程および第2の加熱工程からなり、第
2の加熱工程は第1の加熱工程よりも高い温度で、かつ
粒子を製造するときの焼成温度±300℃の温度範囲で行
なうフェライト系回収キャリヤの再生方法により達成す
ることができる。
[Means for Solving the Problems] An object of the present invention comprises a first heating step and a second heating step for removing the surface deposits and regenerating the carrier, and the second heating step comprises the first heating step. This can be achieved by a method for regenerating a ferrite-based recovery carrier, which is performed at a temperature higher than the process and in a temperature range of baking temperature ± 300 ° C. when producing particles.

以下、本発明の方法を説明する。 Hereinafter, the method of the present invention will be described.

本発明で再生の対象となるキャリヤは金属酸化物と酸
化鉄とを含む磁性酸化物であるフェライト、すなわち式
MFe2O4(Mはマンガン、コバルト、ニッケル、銅、鉄、
亜鉛、バリウム等の1種または2種以上の金属であ
る。)で示される酸化物を混合し、造粒後、焼成し粒状
化した30〜400μmの粒径、106〜1012Ω・cmの電気抵抗
を有する粒子状のフェライトである。
The carrier to be regenerated in the present invention is ferrite which is a magnetic oxide containing a metal oxide and iron oxide,
MFe 2 O 4 (M is manganese, cobalt, nickel, copper, iron,
One or more metals such as zinc and barium. ) Are mixed, granulated, fired and granulated to obtain a particulate ferrite having a particle size of 30 to 400 μm and an electric resistance of 10 6 to 10 12 Ω · cm.

劣化等で回収されたキャリヤはまずエアーブロー等に
よりキャリヤ粒子表面にゆるく付着したトナーや添加剤
を除去する。
The carrier recovered by deterioration or the like first removes toner and additives loosely attached to the surface of the carrier particles by air blow or the like.

この操作はトナーの付着量が少ない場合、必ずしも行
わなくともよい。
This operation need not always be performed when the amount of adhered toner is small.

次いでこのキャリヤ粒子に加熱操作を行う。 Next, a heating operation is performed on the carrier particles.

第1の加熱操作は、キャリヤ表面に固着したトナー等
の付着物を加熱除去するための操作であり、樹脂と着色
剤の混合物であるトナーが燃焼できる温度以上に加熱す
る。この際キャリヤが熱溶融したり団塊化したりしない
様温度の上限を定めておく。この加熱温度としては用い
るフェライトにより異なるが、概ね200〜900℃、好まし
くは400℃〜800℃である。この第1の加熱操作では、空
気あるいは酸素等を連続的に供給し、付着物の加熱除去
を促進してもよい。
The first heating operation is an operation for heating and removing extraneous matter such as toner adhered to the surface of the carrier, and is heated to a temperature at which the toner which is a mixture of the resin and the colorant can burn. At this time, the upper limit of the temperature is set so that the carrier does not melt or agglomerate. The heating temperature varies depending on the ferrite used, but is generally from 200 to 900C, preferably from 400 to 800C. In the first heating operation, air, oxygen, or the like may be continuously supplied to accelerate the removal of the attached matter by heating.

表面付着物が加熱除去されたキャリヤ粒子に対して、
次いで第2の加熱操作処理を行なう。この操作はキャリ
ヤ粒子の電気抵抗を回復させる為の操作であり、所望の
電気抵抗となるように、加熱温度を定める。
For carrier particles whose surface deposits have been removed by heating,
Next, a second heating operation is performed. This operation is an operation for restoring the electric resistance of the carrier particles, and the heating temperature is determined so as to obtain a desired electric resistance.

一般にフェライトは金属酸化物と酸化鉄の混合物を造
粒後、焼成して得られるものであり、焼成後のフェライ
ト粒子は更に加熱操作を行なってもその電気抵抗は変化
しないとされている。従って再生すべきキャリヤ粒子は
フェライト粒子の製造時の焼成工程を経ており再生時の
加熱工程によっても電気抵抗の変化が生じないと考えら
れるが、実際には加熱処理により電気抵抗が変化してし
まい、再生キャリヤを再度現像剤として用いたとき新し
いキャリヤに比べ劣った現像特性を示す原因となってい
た。そこで本発明では第1の加熱操作に加えて第2の加
熱操作を行ない所望の電気抵抗となる様調整を図るので
ある。第2の加熱操作においてはその温度条件の選択が
重要である。この温度はフェライト粒子を製造するとき
の焼成温度に対し±300℃、好ましくは±200℃の温度と
なる様にするのがよい。
In general, ferrite is obtained by granulating a mixture of a metal oxide and iron oxide and firing the mixture, and it is said that the ferrite particles after firing do not change their electrical resistance even when further heated. Therefore, the carrier particles to be regenerated have passed through the sintering process during the production of ferrite particles, and it is thought that the heating process during regenerating does not cause a change in electric resistance. When the regenerated carrier is used again as a developer, it causes poor development characteristics as compared with a new carrier. Therefore, in the present invention, the second heating operation is performed in addition to the first heating operation to adjust the electric resistance to a desired value. In the second heating operation, selection of the temperature condition is important. This temperature should be set to ± 300 ° C., preferably ± 200 ° C., with respect to the firing temperature at the time of producing ferrite particles.

第1の加熱操作と第2の加熱操作の温度は夫々前述し
た如くであるが、第2の加熱操作時の温度を第1の加熱
操作時の温度よりも高くすることにより電気抵抗の調整
が容易となる。更に過焼成により生じたフェライト微粉
末の影響を防止できる。第1の加熱操作と第2の加熱操
作は異なる加熱炉を用いてもよく、また同一の加熱炉を
用い、温度条件を異ならせる様にしてもよい。
Although the temperatures of the first heating operation and the second heating operation are as described above, the electric resistance can be adjusted by setting the temperature during the second heating operation higher than the temperature during the first heating operation. It will be easier. Further, the effect of ferrite fine powder generated by over-firing can be prevented. The first heating operation and the second heating operation may use different heating furnaces, or may use the same heating furnace and vary the temperature conditions.

この加熱操作には種々の加熱炉を用いることができ
る。
Various heating furnaces can be used for this heating operation.

この様な加熱炉の例としてはロータリーキルン焼成
炉、静置炉、流動床炉等を挙げることができる。
Examples of such a heating furnace include a rotary kiln firing furnace, a stationary furnace, and a fluidized-bed furnace.

2度の加熱操作を行なった後は冷却し、必要に応じて
分別し、再生キャリヤとする。この冷却は加熱操作後、
徐々に冷却する方法が好ましい。
After performing the heating operation twice, it is cooled, separated if necessary, and used as a regenerated carrier. This cooling is performed after the heating operation.
A method of gradually cooling is preferred.

本発明により再生されたキャリヤは、そのまま用いて
もよく、また被覆剤で表面被覆して用いてもよい。
The carrier regenerated according to the present invention may be used as it is, or may be used after being surface-coated with a coating agent.

再生キャリヤはトナーと混合し現像剤とするが、更に
流動化剤、研磨剤等を添加してもよい。トナーとしては
結着樹脂中に着色剤を分散した微粒子であり結着樹脂と
してはスチレン系樹脂、ポリエステル系樹脂、エポキシ
系樹脂種々の公知のものが用いられる。
The regenerated carrier is mixed with the toner to form a developer, but may further include a fluidizing agent, an abrasive, and the like. The toner is fine particles in which a colorant is dispersed in a binder resin, and various known resins such as a styrene resin, a polyester resin, and an epoxy resin are used as the binder resin.

着色剤としてはカーボンブラックの他、染料、顔料で
あり、更に帯電制御剤、流動化剤を添加してもよい。
Colorants include dyes and pigments in addition to carbon black, and may further include a charge control agent and a fluidizing agent.

[実施例] 以下本発明の方法を実施例により説明する。なお下記
の例中、部は重量部を現わす。
[Examples] Hereinafter, the method of the present invention will be described with reference to Examples. In the following examples, parts mean parts by weight.

実施例1 フェライトキャリヤ100部とトナー6部とを混合し現
像剤とした。このフェライトキャリヤは電気抵抗が109
Ω・cmであった。この現像剤を用い磁気ブラシ現像法に
より静電潜像を現像し、50,000回の複写操作を行なっ
た。複写回数が多くなるにつれて画像濃度の低下、カブ
リの増大が生じ、キャリヤの表面にはトナーが固着して
おり、又その摩擦帯電性が大幅に低下し、キャリヤ劣化
が生じていた。
Example 1 A developer was prepared by mixing 100 parts of a ferrite carrier and 6 parts of a toner. This ferrite carrier has an electrical resistance of 10 9
Ω · cm. Using this developer, an electrostatic latent image was developed by a magnetic brush development method, and 50,000 copying operations were performed. As the number of copies increases, the image density decreases and fog increases, toner adheres to the surface of the carrier, and the triboelectrification of the carrier is significantly reduced, resulting in deterioration of the carrier.

この劣化が生じたキャリヤを取り出し、エアーブロー
でゆるく付着したトナーを吹き飛ばし、次いでロータリ
ーキルン中で700℃で5分間加熱操作を行なった。
The carrier in which the deterioration occurred was taken out, and the loosely adhered toner was blown off with an air blow, and then heated in a rotary kiln at 700 ° C. for 5 minutes.

この操作後のキャリヤ粒子表面にはトナー等の固着物
はほとんどなくなっており、この加熱操作により大部分
の表面付着物が除去されていた。このときの電気抵抗は
107Ω・cmであった。次に静置炉により1,100℃で3.5時
間加熱操作を行なった。このときの電気抵抗は109Ω・c
mであった。
After the operation, there was almost no adhered matter such as toner on the surface of the carrier particles, and most of the surface attached matter was removed by this heating operation. The electrical resistance at this time is
It was 10 7 Ω · cm. Next, a heating operation was performed in a standing furnace at 1,100 ° C. for 3.5 hours. The electrical resistance at this time is 10 9 Ω · c
m.

この2段階の加熱操作により得た再生キャリヤ100部
とトナー6部とを混合し、前記と同様にして複写操作を
行なったところ50,000回の良好な複写が行なわれ、再生
キャリヤの特性は新しいものと差がなかった。
When 100 parts of the reproduction carrier obtained by the two-stage heating operation and 6 parts of the toner were mixed, and the copying operation was performed in the same manner as above, 50,000 good copies were performed, and the characteristics of the reproduction carrier were new. And there was no difference.

実施例2 フェライトコアにアクリル樹脂0.5部を被覆して得ら
れたキャリヤにトナー6部を混合し現像剤とした。この
樹脂被覆フェライトキャリヤは電気抵抗が1016Ω・cmで
あった。
Example 2 To a carrier obtained by coating a ferrite core with 0.5 part of an acrylic resin, 6 parts of a toner was mixed to prepare a developer. This resin-coated ferrite carrier had an electrical resistance of 10 16 Ω · cm.

この現像剤を用い実施例1と同じ50,000回の複写操作
を行なった。
Using this developer, the same 50,000 copying operations as in Example 1 were performed.

この劣化が生じたキャリヤを取り出し、エアーブロー
で予じめゆるく、付着したトナーを吹きとばし、次いで
ロータリーキルン中で700℃で7分間加熱操作を行なっ
た。
The carrier in which the deterioration occurred was taken out, and the adhered toner was blown loosely and loosely by air blow, and then heated at 700 ° C. for 7 minutes in a rotary kiln.

この操作後、キャリヤ粒子表面の大部分のトナー被覆
剤は除去されていた。このときの電気抵抗は107Ω・cm
であった。
After this operation, most of the toner coating on the surface of the carrier particles had been removed. The electrical resistance at this time is 10 7 Ωcm
Met.

次に静置炉により1,100℃で3.5時間加熱処理した。 Next, heat treatment was performed in a standing furnace at 1,100 ° C. for 3.5 hours.

この操作で電気抵抗は109Ω・cmとなった。With this operation, the electric resistance became 10 9 Ω · cm.

この2度の加熱処理後得られた粒状フェライトを0.5
部のアクリル樹脂で被覆し、再生コートキャリヤを調整
し、このキャリヤをトナー6部と混合し現像剤とした。
The granular ferrite obtained after these two heat treatments was
Parts of the resin was coated with an acrylic resin to prepare a recycled coat carrier, and this carrier was mixed with 6 parts of toner to obtain a developer.

この現像剤を用い、前記と同様に複写操作を行なった
ところ、50,000回の良好な複写が行なわれ、再生キャリ
ヤのコア材(フェライト)の特性は新しいものと全く差
がなかった。
When a copying operation was carried out in the same manner as above using this developer, 50,000 good copies were made, and the characteristics of the core material (ferrite) of the reproduction carrier were not different from those of the new one.

[発明の効果] 本発明は表面付着物を除去しキャリヤを再生する第1
の加熱工程および第2の加熱工程からなり、第2の加熱
工程は第1の加熱工程よりも高い温度で、かつ粒子を製
造するときの焼成温度±300℃の温度範囲で行なうフェ
ライト系回収キャリヤの再生方法を提供したものであ
り、本発明の方法で再生されたキャリヤは新しいキャリ
ヤと全く同様の性能を示す。
[Effects of the Invention] The first aspect of the present invention is to remove surface deposits and regenerate carriers.
And a second heating step, wherein the second heating step is performed at a temperature higher than that of the first heating step and at a temperature range of baking temperature ± 300 ° C. for producing particles. Wherein the carrier regenerated by the method of the present invention exhibits exactly the same performance as the new carrier.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 本庄 俊夫 柏市十余二217番地 日本鉄粉株式会社 内 (72)発明者 池田 康正 柏市十余二217番地 日本鉄粉株式会社 内 (56)参考文献 特開 昭47−12286(JP,A) 特開 昭61−191522(JP,A) 特開 昭61−48430(JP,A) 特開 昭59−111928(JP,A) 特開 昭59−111926(JP,A) ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshio Honjo 217, Juyo, Kashiwa-shi Nippon Iron Powder Co., Ltd. (72) Inventor Yasumasa Ikeda 217, Juyo, Kashiwa-shi Nikko Iron Powder Co., Ltd. (56) References JP JP-A-47-12286 (JP, A) JP-A-61-191522 (JP, A) JP-A-61-48430 (JP, A) JP-A-59-111928 (JP, A) JP-A-59-111926 (JP, A) , A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】表面付着物を除去しキャリヤを再生する第
1の加熱工程および第2の加熱工程からなり、第2の加
熱工程は第1の加熱工程よりも高い温度で、かつ粒子を
製造するときの焼成温度±300℃の温度範囲で行なうこ
とを特徴とするフェライト系回収キャリヤの再生方法。
The present invention comprises a first heating step and a second heating step for regenerating a carrier by removing surface deposits, wherein the second heating step is performed at a higher temperature than the first heating step and produces particles. A method for regenerating a ferrite-based recovery carrier, wherein the method is performed at a firing temperature of ± 300 ° C.
JP62045345A 1987-03-02 1987-03-02 Carrier regeneration method Expired - Lifetime JP2649344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62045345A JP2649344B2 (en) 1987-03-02 1987-03-02 Carrier regeneration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62045345A JP2649344B2 (en) 1987-03-02 1987-03-02 Carrier regeneration method

Publications (2)

Publication Number Publication Date
JPS63212945A JPS63212945A (en) 1988-09-05
JP2649344B2 true JP2649344B2 (en) 1997-09-03

Family

ID=12716695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62045345A Expired - Lifetime JP2649344B2 (en) 1987-03-02 1987-03-02 Carrier regeneration method

Country Status (1)

Country Link
JP (1) JP2649344B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69823154T2 (en) * 1998-01-08 2004-08-26 Powdertech Co. Ltd., Kashiwa Regeneration of carrier particles
JP5597487B2 (en) * 2010-08-31 2014-10-01 Dowaエレクトロニクス株式会社 Manufacturing method of recycled carrier
JP5635351B2 (en) * 2010-09-29 2014-12-03 Dowaエレクトロニクス株式会社 Method for producing regenerated carrier, regenerated carrier, carrier core material for regenerated carrier, electrophotographic developer, and method for producing electrophotographic developer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59111926A (en) * 1982-12-15 1984-06-28 Hitachi Metals Ltd Ferrite carrier for electrophotography
JPS59111928A (en) * 1982-12-15 1984-06-28 Hitachi Metals Ltd Ferrite carrier for electrophotography
JPH0723975B2 (en) * 1984-08-13 1995-03-15 富士電気化学株式会社 Method of manufacturing ferrite carrier for electrostatic copying
JPS61191522A (en) * 1985-02-20 1986-08-26 Hitachi Metals Ltd Production of ferrite carrier for developer of electrostatic charge image

Also Published As

Publication number Publication date
JPS63212945A (en) 1988-09-05

Similar Documents

Publication Publication Date Title
US3847604A (en) Electrostatic imaging process using nodular carriers
EP1965263B1 (en) Resin coat ferrite carrier for electrophotography developer and its production method, and electrophotography developer employing that resin coat ferrite carrier
CA1140784A (en) Conductive powder coated electrostatographic carriers
JP2649344B2 (en) Carrier regeneration method
EP0374851A2 (en) Magnetic toner
US7144670B2 (en) Carrier for electrophotographic developer and process of producing the same
JP3139715B2 (en) Method for producing coated carrier particles
JP2004004648A (en) Carrier for electrophotographic developer, and its manufacturing method
JP2000227679A (en) Method for regenerating carrier
US4175962A (en) Electrostatographic toner material
WO1990015365A1 (en) Method for making magnetic particles use in electrostatography
JP3267750B2 (en) How to regenerate your career
JP2905338B2 (en) Electrophotographic carrier and method of manufacturing the same
JPH0651556A (en) Magnetic toner
US5965317A (en) Regeneration of carrier and electrophotographic developer containing regenerated carrier
JP2007047341A (en) Method for regenerating carrier for two-component electrostatic charge image dry developer
JP2997111B2 (en) Production of thermosetting resin coated carrier
JPH01126670A (en) Electrophotographic image producing method
JP3489387B2 (en) Electrostatic image developing toner and image forming method using the toner
JPS5914750B2 (en) Carrier for developing electrostatic images
JPH023497B2 (en)
JPH0158501B2 (en)
JPH11258856A (en) Method for regenerating carrier and electrophotographic developer using regenerated carrier
JPH10177279A (en) Electrostatic latent image developing carrier and its manufacture and electrostatic latent image developer
JPS5880650A (en) Magnetic toner

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term