JP2004004648A - Carrier for electrophotographic developer, and its manufacturing method - Google Patents

Carrier for electrophotographic developer, and its manufacturing method Download PDF

Info

Publication number
JP2004004648A
JP2004004648A JP2003080646A JP2003080646A JP2004004648A JP 2004004648 A JP2004004648 A JP 2004004648A JP 2003080646 A JP2003080646 A JP 2003080646A JP 2003080646 A JP2003080646 A JP 2003080646A JP 2004004648 A JP2004004648 A JP 2004004648A
Authority
JP
Japan
Prior art keywords
carrier
core material
particle size
firing
electrophotographic developer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003080646A
Other languages
Japanese (ja)
Other versions
JP4125164B2 (en
Inventor
Kaneo Kayamoto
茅本 金男
Kazumori Niimura
新村 一盛
Yuji Sato
佐藤 祐二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Powdertech Co Ltd
Original Assignee
Powdertech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Powdertech Co Ltd filed Critical Powdertech Co Ltd
Priority to JP2003080646A priority Critical patent/JP4125164B2/en
Publication of JP2004004648A publication Critical patent/JP2004004648A/en
Application granted granted Critical
Publication of JP4125164B2 publication Critical patent/JP4125164B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Dry Development In Electrophotography (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carrier for electrophotographic developer, which is reduced in particle size, free from problems such as carrier scattering and has superior image characteristics when used for a full-color developer, and its manufacturing method. <P>SOLUTION: A ferrite carrier which consists principally of iron oxide and mainly has a spinel structure and is of 20 to 45 μm in volume mean particle size has characteristics or properties as follows. (1) The magnetism in a magnetic field of 1 KOe is 65 to 80 emu/g and (2) the current value of a carrier core material is 50 to 150 μA; and (3) the surface smooth uniformity is ≥75% and (4) a resin coating is provided, the coating quantity being 0.1 to 5.0 wt.% for a carrier core material. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電子写真現像剤用キャリア及びその製造方法に関し、詳しくはフルカラー用現像剤に使用したときに、画像特性等に優れ、かつ長寿命化を達成した電子写真現像剤用キャリア及びその製造方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
電子写真法では、帯電、露光工程で感光体上に静電潜像を形成し、トナーを含む現像剤で静電潜像を現像し、転写、定着工程を経て可視化される。ここで用いられる現像剤は、トナーとキャリアからなる2成分現像剤と、磁性トナー等のように単独で使用される1成分現像剤がある。
【0003】
この中で、キャリアを用いた2成分現像剤は画質が優れている等の利点によりフルカラー用現像剤、高速機用現像剤等に幅広く使用されている。
【0004】
近年、急増しているフルカラー用現像剤は、補給されたトナーに素早く帯電を付与し、広い印字面積を連続して現像する能力を要求されている。さらに装置のコンパクト化が進み現像スリーブ径が細く、現像剤の量も少なくなり現像剤用キャリアはさらなる帯電能力の向上、長寿命化、高画質化が求められている。
【0005】
このような現状において、キャリアに求められる要求性状としては、トナーの保持性、帯電付与能力、磁気ブラシをソフトにするための小粒径化が挙げられる。しかし、小粒径化による弊害としてキャリア飛散の問題が常にクローズアップされ、これらの対策が多く提案されている。
【0006】
特許文献1では、高速現像においてキャリア付着による画像欠陥が生じないキャリア及び現像剤の提案がなされている。
【0007】
特許文献1では、キャリア飛散の防止のために原料の一次粒子の大きさを数平均一次粒子径(Dv)、体積平均一次粒子径(Dn)で磁化の均一化を図っている。しかしながら、特許文献1に記載のDv/Dnの比1.0〜2.0では平均粒径20〜45μmの小粒径フェライトに対してキャリア飛散を防止することはできなかった。
【0008】
すなわち、特許文献1の実施例では、平均粒径65μmのキャリアコア粒子による試験であり、キャリア飛散が生じやすい平均粒径20〜45μmではそれらの効果が低減されるものと考えられる。さらに、キャリアの平均粒径が小さくなればそれに応じて構成される原料の粒径も小粒径化が必要であることが推定される。
【0009】
また、磁気ブラシにキャリア粒子を保持するための磁気特性、粒径分布に関しては多くの提案がある。
【0010】
特許文献2では、キャリアの重量平均粒径が35〜55μm、22μm未満:0〜15%、88μm以上:0〜5%であって、特定の樹脂コートを施し、磁場1KOeにおける磁化70〜120emu/gのキャリアが提案されている。確かに磁気特性は高い方がキャリア飛散に関してマージンがあるが、反面磁気ブラシが硬くなり高品位なソフト現像が困難になってくる。
【0011】
また微粉側の含有量も少ない方がキャリア飛散に関して良好な傾向にあることは多くの報告がなされている。しかしながら、分級技術、歩留まり等の技術面、価格面の課題も多くあり総合的に満足な性能を有しているとは言い難い。
【0012】
一方、小粒径キャリアに関する提案は多くあるが、従来の平均粒径が60μm以上のフェライトキャリアにおける技術を、その延長線上として平均粒径20〜45μmのフェライトキャリアに適用したとしても、キャリア飛散に関して充分に対応することができなかった。
【0013】
従って、本発明の目的は、小粒径化が達成され、かつキャリア飛散等の問題が解消され、フルカラー用現像剤に使用したときに、画像特性等に優れる電子写真現像剤用キャリア及びその製造方法を提供することにある。
【0014】
【特許文献1】
特開平9−197721号公報
【特許文献2】
特開2001−27828号公報
【0015】
【課題を解決するための手段】
本発明者らは、鋭意検討した結果、均一なフェライト化反応を行う工程を採用することによりキャリア粒子間の磁気特性の均一化が可能になり、シャープな磁気特性によりキャリア飛散のマージンを上げた電子写真現像剤用キャリアの設計が可能になった。
【0016】
すなわち、本発明は、酸化鉄を主成分とし、主にスピネル構造を有した体積平均粒径が20〜45μmのフェライトキャリアであって、下記の特性又は性状を有することを特徴とする電子写真現像剤用キャリアを提供するものである。
(1)磁場1KOeにおける磁化が65〜80emu/g、
(2)キャリアコア材の電流値が50〜150μA、
(3)表面平滑均一度が75%以上、
(4)樹脂被覆が施されており、被覆量がキャリアコア材に対して0.1〜5.0重量%。
【0017】
また、本発明は、スラリー原料を造粒し、造粒物とした後、焼成した後、解砕、分級し、得られるキャリアコア材に樹脂を被覆する電子写真現像剤用キャリアの製造方法において、
上記スラリー原料の1次粒子径Ds10及びDs90が下記の関係にあることを特徴とする上記電子写真現像剤用キャリアの製造方法を提供するものである。
Ds90≦1μm
2.0≦Ds10/Ds90≦10.0
(構成原料粉砕時の10%体積粒径:Ds10、構成原料粉砕時の90%体積粒径:Ds90)
【0018】
【発明の実施の形態】
以下、本発明の電子写真現像剤用キャリア及びその製造方法の実施の形態について説明する。
【0019】
本発明の電子写真現像剤用キャリアは、酸化鉄を主成分とし、主にスピネル構造を有した体積平均粒径が20〜45μmのフェライトキャリアである。この体積平均粒径は、現在要求されているキャリアの小粒径化に対応したものである。体積平均粒径は、日機装株式会社製マイクロトラック粒度分析計(Model19320−X100)を用いて測定される。
【0020】
また、本発明の電子写真現像剤用キャリアは、下記の特性又は性状を有することが必要である。
【0021】
(1)磁場1KOeにおける磁化が65〜80emu/gである。磁場1KOeにおける磁化は、振動型磁力測定機VSM−P7東英工業株式会社製を用いて測定される。磁化が65emu/gより下回るとキャリア粒子がマグネットロールに保持される力が小さくなりキャリア飛散が生じる。磁化が80emu/gを超えると磁気ブラシが硬くなりソフトな現像ができなくなる。
【0022】
(2)キャリアコア材の電流値が50〜150μAである。キャリアコア材の電流値は、アルミ素管に対向させた現像機にキャリアコア材を500gセットし、直流電圧を200V印加した時の導通電流の値を読みとることにより測定する。電流値が50μAを下回ると現像性が低下し、150μAを超えるとリーク等の問題がでてくる。
【0023】
(3)表面平滑均一度が75%以上である。ここでいう表面平滑均一度とは、SEMの倍率200倍の視野において、視野中の、粒子表面の1/2以上が平滑なコア粒子の個数と、全粒子個数を数え、(粒子表面の1/2以上が平滑なコア粒子の個数)/(全粒子個数)×100(%)により算出した割合である。表面平滑均一度が75%未満では、キャリア粒子間のフェライト化反応に差があり、低磁化粒子によるキャリア飛散が発生しやすくなる。
【0024】
(4)樹脂被覆が施されており、被覆量がキャリアコア材に対して0.1〜5.0重量%である。被覆量が0.1重量%を下回ると被覆樹脂の効果による帯電量制御、抵抗制御の効果が小さくなり、5.0重量%を超えると帯電量の立ち上がり不良、粒子間の付着による歩留まりの低下等の不具合を生じる。
【0025】
キャリアコア材を被覆する樹脂は、使用するトナーより適宜選択すればよいが、例えば、ポリプロピレン、ポリスチレン、アクリル樹脂、ポリアクリロニトリル樹脂、ストレートシリコーン樹脂及びその変性品、ポリテトラフルオロエチレン、ポリフッ化ビニデン等のフッ素樹脂、ポリカーボネート樹脂、エポキシ樹脂等が挙げられる。これらは単独或いは混合、変性して使用できる。高画質、長寿命等よりトナー汚染に対して優れているシリコーン系樹脂又はフッ素系樹脂を含む樹脂材料が好ましい。
【0026】
被覆樹脂として絶縁樹脂を用いると高抵抗になるので、必要に応じてカーボンブラック、酸化チタン等の公知の導電剤を樹脂中に分散して使用することができる。
【0027】
本発明で用いるキャリアコア材は、上記のように表面性が均一なため、被覆工程においても被膜の膜厚が一定に成りやすく、帯電量分布、耐久性等に非常に優れた性能を有した樹脂被覆キャリアとなる。
【0028】
被覆の方法は、樹脂溶液中にキャリアコア材を浸漬させ乾燥させる方法、キャリアコア材を流動させて樹脂溶液を噴霧する流動床コート、樹脂とキャリアコア材を混合しながら加熱させてキャリアコア材に被覆する乾式方法等を用いることができる。
【0029】
次に、本発明の電子写真現像剤用キャリアの製造方法について説明する。
本発明では、スラリー原料を造粒し、造粒物とした後、焼成した後、解砕、分級し、得られるキャリアコア材に樹脂を被覆する。
【0030】
本発明の製造方法では、上記スラリー原料の1次粒子径Ds10及びDs90が下記の関係にあることが必要である。
Ds90≦1μm
2.0≦Ds10/Ds90≦10.0
(構成原料粉砕時の10%体積粒径:Ds10、構成原料粉砕時の90%体積粒径:Ds90)
【0031】
スラリー原料の1次粒子径の体積粒径であるDs10は、粒子径の累積分布において、累積10%の時の粒子径を表す。またDs90は、粒子径の累積分布において、累積90%の時の粒子径を表す。キャリアコア材の製造において、Ds90とDs10の比率により造粒物を均一組成の状態に最密充填することが重要であることが判明した。
【0032】
上述した特許文献1では、体積平均一次粒子径(Mv)/数平均一次粒子径(Mn)を1.0〜2.0にすることを提案している。粉砕条件を一般的な水準から強化していくと、表1に示す状態で変化することが判明した。これらは上記マイクロトラック粒度分析計によって測定された値である。
【0033】
【表1】

Figure 2004004648
【0034】
表1に示されるように、粉砕条件3レベルでは、従来技術の範疇であるが、さらに粉砕強度を上げていくと粉砕条件4及び5で変化があることが確認された。これらの粉砕状態では、微粉側にもう一つの分布が存在する2ピークの分布を示している。これにより粉砕条件3以下と粉砕条件4及び5(Ds10/Ds90=2.0〜10.0)の状態による造粒物との特性の差が生じたと思われる。
【0035】
上記粉砕条件別で平均粒径20〜45μmの造粒物を焼成した場合、粉砕条件を強化することにより、キャリアコア材の表面性、球形度が大きく変わることが確認された。粉砕条件4及び5の1次粒子径を用いることによってキャリアコア材の表面性、球形度が著しく向上された。
【0036】
また、キャリアの飛散物量を測定した結果、粉砕条件4及び5の1次粒子径を用いたキャリアは、粉砕条件1〜3の1次粒子径を用いたキャリアに比べて少ないことが確認された。
【0037】
これは、粉砕条件1〜3レベルの1次粒子径を用いた場合、従来の平均粒径が80μm付近のキャリアコア材であれば、均一な表面性と球形度が可能であったが、キャリアコア材の平均粒径が小さくなることによって造粒物を構成する1次粒子が従来と同じレベルだと構成原料の偏析、熱履歴の変動が生じてフェライト化反応が不均一になり、磁気特性に関しても低磁化品の発生があり、キャリアの飛散物が多くなったと思われる。
【0038】
従って、Ds90≦1μm、2.0≦Ds10/Ds90≦10.0であることが必要であり、Ds90が1μmを超えたり、Ds10/Ds90が2.0未満では、構成粒子が大きくなり、粒子間のフェライト化反応にバラツキが生じ、キャリア飛散が増加する。Ds10/Ds90が10.0を超えると、原料粒子の反応性が高くなり、焼成時に粒子間の付着が発生し、形状が悪化してしまう。
【0039】
さらに、本発明の製造方法では、均一なフェライト化反応を付与するために、以下の工程を採用することが望ましい。
【0040】
すなわち、上記造粒物を焼成する前に微粉を除去する工程を採用することが望ましい。フェライトの造粒物は粒径が小さい程、熱に対して反応性が高く、これらを含んだ状態で焼成すると粒子間の熱に対する反応性分布が広くなり均一な焼成が困難になる。また、微粉が他の粒子間の空隙に入り込み結果、空隙が小さく密な状態での焼成となり、熱が均一に焼成物に伝わりにくくなり、均一な焼成を阻害する。さらに、微粉は他粒子に付着し、キャリア飛散の原因、形状の悪化(球形度低下)の原因になる。そこで、上記のように微粉を除去することが望ましいが、微粉のみならず、粗粉を除去してもよい。
【0041】
さらに、微粉除去後、バインダー等の添加物は、焼成時還元性ガスを発生しフェライト化反応のバラ付きの原因となるので、700〜900℃で加熱し除去する工程を採ることが望ましい。
【0042】
次に、焼成工程において、焼成時の酸素濃度を0.05%以下で焼成することが望ましい。高磁化フェライトの焼成においては、低酸素濃度の不活性な安定した焼成条件により均一な焼成が可能になる。また、焼成温度は1100〜1350℃、最高温度の滞留時間は1〜6時間であることが望ましい。
【0043】
また、焼成雰囲気の解除は、焼成物の温度が400℃以下で行うことより不均一な状態を避けることができる。400℃を超えた温度での解除は、再酸化等により低磁化品の発生に繋がる。
【0044】
以上の工程又は条件を設定することにより、焼成物の組成、熱履歴、反応性を均一化し、これにより磁気特性、電気抵抗等も必然的に均一になる。この結果、均一な表面性、一定の球形度を有するキャリアコア材を得ることができる。
【0045】
また、解砕、分級後、大気中で400〜600℃でキャリアコア材の表面を均一に熱処理を行い、次にメカノケミカル処理により表面の抵抗をさらに均一化させることが好ましい。
【0046】
最後に、得られるキャリアコア材に樹脂を被覆し、電子写真現像剤用キャリアとする。
【0047】
このような本発明の製造方法によって、表面性、磁気特性、抵抗のバラツキが小さく、表面平滑均一度が高く、キャリア飛散のマージンが高い小粒径キャリアを良好な生産性をもって得ることができる。
【0048】
本発明の電子写真現像剤は、上記キャリアと平均粒径4〜10μmのトナーを少なくとも混合してなる。また、必要に応じて平均粒径1.0μm以下の無機微粒子を混合する。
【0049】
本発明で使用される上記トナーは、結着物質と着色剤により構成される。結着物質としては、特に限定されるものではないが、エポキシ系樹脂、ポリエステル系樹脂、スチレン系樹脂、アクリル系樹脂、ポリアミド系樹脂、オレフィン系樹脂、酢酸ビニル重合体、ポリエーテルポリウレタン、パラフィンワックス及びそれらの共重合体等を単独でまたは混合して使用できる。
【0050】
着色剤としては、カーボンブラック、ニグロシン、アニリンブルー、クロムイエロー、ウルトラマリンブルー、パーマネントレッド、ハンザイエロー等を広く使用することができる。
【0051】
また、平均粒径1.0μm以下の無機微粒子、すなわち流動化剤や帯電量調整剤等も必要に応じて添加することができる。
【0052】
本発明の電子写真現像方法は、内部にマグネットを有する現像スリーブ上に、上記現像剤で磁気ブラシを形成させ、該磁気ブラシにより静電潜像担持体に担持された静電潜像を顕像化するものである。
【0053】
【実施例】
以下、実施例等に基づいて本発明を具体的に説明する。
【0054】
〔実施例1〕
酸化鉄55mol%、酸化マンガン40mol%、酸化マグネシウム5mol%及び酸化ストロンチウムを酸化鉄、酸化マンガン及び酸化マグネシウムに対して、0.8mol%添加し、固形分55%でアトライターにより湿式粉砕を行った。このスラリー中には、バインダー及び分散剤、消泡剤が添加されている。スラリー原料の粉砕分散を行い、表2示すように、マイクロトラック粒度分析計によるDs10=2.14μm、Ds90=0.24μm、Ds10/Ds90=8.92であるスラリー1を作製した。また、Mv、Mn、Mv/Mnを表2に示す。
【0055】
作製したスラリーをスプレードライヤーにより平均粒径30μmの球状造粒乾燥物を得た。造粒物の微粉を気流分級により20μm以下を除去した。次にロータリーキルンによりバインダー等の添加物を700℃で除去した。焼成雰囲気が調整可能な電気炉を用いて、酸素濃度0.05%以下、焼成温度1300℃、最高温度の焼成時間5時間、焼成雰囲気を解除する時の焼成物温度350℃である条件で焼成した。焼成物を解砕、分級した後、平均粒径35μmのキャリア芯材を得た。キャリア芯材を回転式連続炉で内部の酸素濃度21%、温度500℃で熱処理し表面処理を行った後、さらに回転式容器で回転しメカノケミカルストレスを与え、キャリア芯材表面の抵抗を上げた。
【0056】
得られたキャリア芯材の表面平滑均一度は85%であった。また、各種物性(表面平滑均一度、平均粒径、磁気特性、電流値)を表3に示す。これらの測定方法は、上述した通りである。
【0057】
流動床コート装置を用いて、シリコーン樹脂(商品名:SR−2411、東レ・ダウコーニング・シリコーン(株)製)をキャリアコア材に対して、2.0重量%被覆した。被覆後、250℃で3時間焼き付けを行った後、250メッシュで分級し、磁力選鉱を行いキャリア1を製造した。
【0058】
(トナー作製)
プロポキシ化ビスフェノールとフマル酸を縮合して得られたポリエステル樹脂100重量部、フタロシアニン顔料4重量部、ジ−tert−ブチルサリチル酸のクロム錯体4重量部を原料とし、これをヘンシェルミキサーにより十分に予備混合を行い、2軸押し出式混練機により溶融混練し、冷却後ハンマーミルを用いて約1.5μm程度に粗粉砕し、次にジェットミルにより微粉砕した。さらに微粉砕物を分級して、重量平均粒径が8.2μmのシアン色の粉体を得た。該粉体100重量部と平均粒径0.05μmの酸化チタン1重量部をヘンシルミキサーで混合しトナー1を得た。
【0059】
(実機評価)
キャリア1とトナー1をトナー濃度8重量%で混合し、現像剤を作製した。シャープフルカラー複写機ARC−250改造機を用いて現像剤及びトナーの初期及び10万枚の画像評価を下記に具体的に示す方法により行った。評価結果を表4に示す。下記評価方法において、△以上が実使用上問題ないレベルである。
【0060】
▲1▼画像濃度
適正露光条件下でコピーしIDの評価を行った。ベタ部の画像濃度をX−Rite(日本平版機材製)にて測定してランク付けを行った。
◎:非常によい
○:目標画像濃度の範囲である。
△:画像濃度が若干低めであるが使用可能。
×:目標下限を下回っている
××:画像濃度が非常に低く使用不可能。
【0061】
▲2▼カブリ
◎:0.5未満
○:0.5〜1.0
△:1.0〜1.5
×:1.5〜2.5
××:2.5以上
【0062】
▲3▼キャリア飛散
画像上のキャリア飛散、白斑のレベルを評価した。
◎:A3用紙10枚中に白斑が無いこと。
○:A3用紙10枚中に1〜5個
△:A3用紙10枚中に6〜10個
×:A3用紙10枚中に11〜20
××:A3用紙10枚中に21個以上
【0063】
▲4▼トナー飛散
◎:全く見られない
○:ごく微量確認された
△:限界レベル
×:多い
××:非常に多い
【0064】
▲5▼横細線再現性
◎:非常に良く再現している
○:ほぼ再現している
△:限界レベル
×:切れカスレが目立つ
××:全く再現していない
【0065】
▲6▼ハーフトーン均一性
◎:非常に均一である
○:均一でムラがない
△:若干ムラが見られるが限界レベル
×:ムラが目立ち不均一
××:ムラが非常に多く不均一
【0066】
▲7▼トナー濃度安定性
◎:非常に安定している
○:安定している
△:若干不安定
×:変動が見られる
××:変動が非常に大きい
【0067】
〔実施例2〕
酸化鉄55mol%、酸化マンガン40mol%、酸化マグネシウム5mol%及び酸化ストロンチウムを酸化鉄、酸化マンガン及び酸化マグネシウムに対して、0.8mol%添加し、固形分55%でアトライターにより湿式粉砕を行った。スラりー中には、バインダー及び分散剤、消泡剤が添加されている。スラリー原料の粉砕分散を行い、表2に示すように、マイクロトラック粒度分析計によるDs10=2.36μm、Ds90=0.96μm、Ds10/Ds90=2.46であるスラリー2を作製した。また、Mv、Mn、Mv/Mnを表2に示す。
【0068】
作製したスラリーをスプレードライヤーを用いて球状造粒乾燥物を得た。造粒物の微紛を気流分級により16μm以下を除去し、焼成温度を1280℃とした以外は、実施例1と同様な操作によりキャリアコア材の平均粒径が25μmで、樹脂被覆したキャリア2を得た。このキャリアコア材の表面平滑均一度は80%であった。キャリアコア材の物性と現像剤及びトナーの画像評価を実施例1と同様に評価し、その結果を表3及び4に示す。
【0069】
〔実施例3〕
実施例1と同様の原料を用いて、原料の粉砕分散を行い、表2に示すように、マイクロトラック粒度分析計によるDs10=1.76μm、Ds90=0.26μm、Ds10/Ds90=6.77であるスラリー3を作製した。また、Mv、Mn、Mv/Mnを表2に示す。
【0070】
作製したスラリーをスプレードライヤーを用いて球状造粒乾燥物を得た。造粒物の微粉を気流分級により24μm以下を除去した。次にロータリーキルンによりバインダー等を700℃で除去した。焼成温度を1320℃とする以外は実施例1と同様な操作によりコア材の平均粒径45μmで、樹脂被覆したキャリア3を得た。このキャリアコア材の表面平滑均一度は90%であった。キャリアコア材の物性と現像剤及びトナーの画像評価を実施例1と同様に評価し、その結果を表3及び4に示す。
【0071】
〔比較例1〕
実施例1と同様な原料を用いて、原料の粉砕分散を行い、表2に示すように、マイクロトラック粒度分析計によるDs10=3.58μm、Ds90=2.10μm、Ds10/Ds90=1.70のスラリー4を得た。体積平均径(Mv)=2.80、数平均径(Mn)=2.467、Mv/Mn=1.13の1次粒子径であった。
【0072】
作製したスラリーをスプレードライヤーにより平均粒径30μmの球状造粒乾燥物を得た後は、実施例1と同様な操作によってキャリア4を得た。このキャリアコア材の表面平滑均一度は65%であった。キャリアコア材の物性と現像剤及びトナーの画像評価を実施例1と同様に評価し、その結果を表3及び4に示す。
【0073】
〔比較例2〕
酸化鉄50mol%、酸化マンガン40mol%、酸化マグネシウム10mol%及び酸化ストロンチウムを酸化鉄、酸化マンガン及び酸化マグネシウムに対して、0.5mol%添加とした以外は実施例1と同様にしてスラリー5を得た。
【0074】
このスラリーをスプレードライヤーで造粒した後、微粉除去を行わない以外は、実施例1と同様にしてキャリア5を得た。このキャリアコア材の表面平滑均一度は65%であった。キャリアコア材の物性と現像剤及びトナーの画像評価を実施例1と同様に評価し、その結果を表3及び4に示す。
【0075】
〔比較例3〕
酸化鉄80mol%、酸化マンガン20mol%を用いた以外は、実施例1と同様な操作によりキャリア6を得た。このキャリアコア材の表面平滑均一度は55%であった。キャリアコア材の物性と現像剤及びトナーの画像評価を実施例1と同様に評価し、その結果を表3及び4に示す。
【0076】
【表2】
Figure 2004004648
【0077】
【表3】
Figure 2004004648
【0078】
【表4】
Figure 2004004648
【0079】
表3に示されるように、実施例1〜3は、比較例1〜3に比して、高い表面平滑均一度を有し、磁気特性及び電流値も好適な範囲にある。また、表4に示されるように、実施例1〜3は、比較例1〜3に比して、現像剤及びトナーの初期及び10万枚の画像特性に優れる。
【0080】
【発明の効果】
本発明の電子写真現像剤用キャリアにより、小粒径化が達成され、かつキャリア飛散等の問題が解消され、フルカラー用現像剤に使用したときに、画像特性等に優れる。また、本発明の製造方法によって、上記キャリアが良好な生産性をもって得られる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a carrier for an electrophotographic developer and a method for producing the same, and more particularly, to a carrier for an electrophotographic developer which has excellent image characteristics and a long life when used for a full-color developer, and production thereof. About the method.
[0002]
Problems to be solved by the prior art and the invention
In the electrophotographic method, an electrostatic latent image is formed on a photoreceptor in a charging and exposing step, the electrostatic latent image is developed with a developer containing a toner, and visualized through a transfer and fixing step. The developer used here includes a two-component developer composed of a toner and a carrier, and a one-component developer used alone such as a magnetic toner.
[0003]
Among them, a two-component developer using a carrier is widely used for a full-color developer, a developer for a high-speed machine, and the like due to advantages such as excellent image quality.
[0004]
In recent years, a rapidly increasing full-color developer is required to have a capability of quickly charging a replenished toner and continuously developing a wide printing area. Further, as the size of the apparatus has been reduced, the diameter of the developing sleeve has been reduced, and the amount of the developer has been reduced. As a result, the developer carrier has been required to have further improved charging ability, longer life, and higher image quality.
[0005]
Under such circumstances, the required properties of the carrier include toner holding properties, charge-imparting ability, and reduction in particle size for softening the magnetic brush. However, the problem of carrier scattering as a detrimental effect due to the reduction in particle size has always been brought up, and many countermeasures have been proposed.
[0006]
Patent Document 1 proposes a carrier and a developer that do not cause image defects due to carrier adhesion in high-speed development.
[0007]
In Patent Literature 1, in order to prevent carrier scattering, the size of the primary particles of the raw material is set to be a number average primary particle diameter (Dv) and a volume average primary particle diameter (Dn) to achieve uniform magnetization. However, at a Dv / Dn ratio of 1.0 to 2.0 described in Patent Document 1, carrier scattering could not be prevented for ferrite having a small grain size having an average grain size of 20 to 45 μm.
[0008]
That is, in the example of Patent Document 1, the test is performed using carrier core particles having an average particle diameter of 65 μm, and it is considered that those effects are reduced at an average particle diameter of 20 to 45 μm where carrier scattering easily occurs. Further, it is presumed that as the average particle size of the carrier becomes smaller, the particle size of the raw material formed accordingly needs to be reduced.
[0009]
Further, there are many proposals regarding magnetic properties and particle size distribution for holding carrier particles on a magnetic brush.
[0010]
In Patent Document 2, the weight average particle diameter of the carrier is 35 to 55 μm, less than 22 μm: 0 to 15%, and more than 88 μm: 0 to 5%, a specific resin coat is applied, and the magnetization is 70 to 120 emu / in a magnetic field of 1 KOe. g carriers have been proposed. Certainly, higher magnetic properties have a margin for carrier scattering, but on the other hand, the magnetic brush becomes harder, and high-quality soft development becomes difficult.
[0011]
Many reports have also been made that the smaller the content of the fine powder, the better the carrier scattering. However, there are many technical issues such as classification technology, yield, etc., and price issues, so that it cannot be said that they have satisfactory performance in total.
[0012]
On the other hand, although there are many proposals regarding a small particle size carrier, even if the conventional technology for a ferrite carrier having an average particle size of 60 μm or more is applied to a ferrite carrier having an average particle size of 20 to 45 μm as an extension of the conventional technology, the carrier scattering is not improved. I couldn't respond enough.
[0013]
Accordingly, an object of the present invention is to provide a carrier for an electrophotographic developer which is excellent in image characteristics and the like when used in a full-color developer, in which a reduction in particle size is achieved, and problems such as carrier scattering are eliminated. It is to provide a method.
[0014]
[Patent Document 1]
JP-A-9-197721 [Patent Document 2]
JP 2001-27828 A
[Means for Solving the Problems]
The present inventors have conducted intensive studies and as a result, by adopting a step of performing a uniform ferrite-forming reaction, it has become possible to make the magnetic properties uniform among the carrier particles, and the sharp magnetic properties have increased the carrier scattering margin. The design of carriers for electrophotographic developers has become possible.
[0016]
That is, the present invention provides a ferrite carrier containing iron oxide as a main component, mainly having a spinel structure and having a volume average particle diameter of 20 to 45 μm, and having the following characteristics or properties. It is intended to provide an agent carrier.
(1) magnetization at a magnetic field of 1 KOe is 65 to 80 emu / g,
(2) The carrier core material has a current value of 50 to 150 μA,
(3) Surface smoothness uniformity of 75% or more,
(4) Resin coating is applied, and the coating amount is 0.1 to 5.0% by weight based on the carrier core material.
[0017]
Further, the present invention provides a method for producing a carrier for an electrophotographic developer in which a slurry raw material is granulated, formed into a granulated product, fired, then crushed and classified, and the obtained carrier core material is coated with a resin. ,
An object of the present invention is to provide a method for producing the carrier for an electrophotographic developer, wherein the primary particle diameters Ds10 and Ds90 of the slurry raw material have the following relationship.
Ds90 ≦ 1 μm
2.0 ≦ Ds10 / Ds90 ≦ 10.0
(10% volume particle size at the time of pulverizing constituent raw material: Ds10, 90% volume particle size at the time of pulverizing constituent material: Ds90)
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the carrier for an electrophotographic developer and the method for producing the same according to the present invention will be described.
[0019]
The carrier for an electrophotographic developer of the present invention is a ferrite carrier containing iron oxide as a main component, mainly having a spinel structure and a volume average particle diameter of 20 to 45 μm. This volume average particle size corresponds to the currently required reduction in carrier particle size. The volume average particle size is measured using a Microtrac particle size analyzer (Model 19320-X100) manufactured by Nikkiso Co., Ltd.
[0020]
Further, the carrier for an electrophotographic developer of the present invention needs to have the following properties or properties.
[0021]
(1) The magnetization at a magnetic field of 1 KOe is 65 to 80 emu / g. The magnetization in a magnetic field of 1 KOe is measured using a vibrating magnetometer VSM-P7 manufactured by Toei Kogyo Co., Ltd. When the magnetization is lower than 65 emu / g, the force for holding the carrier particles on the magnet roll becomes small, and carrier scattering occurs. If the magnetization exceeds 80 emu / g, the magnetic brush becomes hard and soft development cannot be performed.
[0022]
(2) The current value of the carrier core material is 50 to 150 μA. The current value of the carrier core material is measured by setting 500 g of the carrier core material in a developing machine opposed to the aluminum tube and reading the value of the conduction current when a DC voltage of 200 V is applied. When the current value is less than 50 μA, the developability is reduced. When the current value exceeds 150 μA, problems such as leaks occur.
[0023]
(3) The surface smoothness uniformity is 75% or more. The term "surface smoothness uniformity" as used herein refers to the number of core particles in which 1/2 or more of the particle surface is smooth and the total number of particles in the visual field of the SEM at a magnification of 200 times. / 2 or more is the ratio calculated by the number of smooth core particles / (the total number of particles) × 100 (%). If the surface smoothness is less than 75%, there is a difference in the ferrite-forming reaction between the carrier particles, and carrier scattering due to low-magnetization particles tends to occur.
[0024]
(4) Resin coating is applied, and the coating amount is 0.1 to 5.0% by weight based on the carrier core material. When the coating amount is less than 0.1% by weight, the effect of the charge amount control and the resistance control by the effect of the coating resin is reduced. When the coating amount is more than 5.0% by weight, the rising of the charge amount is poor, and the yield is reduced due to adhesion between particles. And the like.
[0025]
The resin for coating the carrier core material may be appropriately selected depending on the toner to be used. For example, polypropylene, polystyrene, acrylic resin, polyacrylonitrile resin, straight silicone resin and its modified products, polytetrafluoroethylene, polyvinylidene fluoride, etc. Fluorocarbon resin, polycarbonate resin, epoxy resin and the like. These can be used alone or in combination or modified. A resin material containing a silicone-based resin or a fluorine-based resin which is superior in toner contamination due to high image quality and long life is preferable.
[0026]
If an insulating resin is used as the coating resin, a high resistance is obtained. Therefore, a known conductive agent such as carbon black or titanium oxide can be dispersed in the resin and used as necessary.
[0027]
Since the carrier core material used in the present invention has a uniform surface property as described above, the film thickness of the film tends to be constant even in the coating step, and the charge core distribution has extremely excellent performance such as durability. It becomes a resin-coated carrier.
[0028]
The coating method is a method of dipping and drying a carrier core material in a resin solution, a fluidized bed coat in which the carrier core material is fluidized and a resin solution is sprayed, and a carrier core material which is heated while mixing the resin and the carrier core material. And a dry method of coating.
[0029]
Next, a method for producing the carrier for an electrophotographic developer of the present invention will be described.
In the present invention, the slurry raw material is granulated, granulated, fired, then crushed and classified, and the obtained carrier core material is coated with a resin.
[0030]
In the production method of the present invention, it is necessary that the primary particle diameters Ds10 and Ds90 of the slurry raw material have the following relationship.
Ds90 ≦ 1 μm
2.0 ≦ Ds10 / Ds90 ≦ 10.0
(10% volume particle size at the time of pulverizing constituent raw material: Ds10, 90% volume particle size at the time of pulverizing constituent material: Ds90)
[0031]
Ds10, which is the volume particle diameter of the primary particle diameter of the slurry raw material, represents the particle diameter at a cumulative 10% in the cumulative distribution of the particle diameter. Ds90 represents the particle diameter when the accumulation is 90% in the cumulative distribution of the particle diameter. In the production of the carrier core material, it has been found that it is important to pack the granules in a state of uniform composition by the ratio of Ds90 to Ds10.
[0032]
Patent Document 1 mentioned above proposes that the volume average primary particle diameter (Mv) / number average primary particle diameter (Mn) be 1.0 to 2.0. It was found that when the grinding conditions were strengthened from a general level, the conditions changed as shown in Table 1. These are values measured by the Microtrac particle size analyzer.
[0033]
[Table 1]
Figure 2004004648
[0034]
As shown in Table 1, it was confirmed that at the level of the pulverization condition 3, which was within the category of the prior art, there was a change in the pulverization conditions 4 and 5 as the pulverization strength was further increased. In these pulverized states, a distribution of two peaks having another distribution on the fine powder side is shown. It seems that this resulted in a difference in characteristics between the granulated product under the conditions of grinding conditions 3 or less and grinding conditions 4 and 5 (Ds10 / Ds90 = 2.0 to 10.0).
[0035]
It was confirmed that when the granulated product having an average particle size of 20 to 45 μm was baked under each of the above pulverization conditions, the surface properties and sphericity of the carrier core material were significantly changed by strengthening the pulverization conditions. By using the primary particle diameters under pulverization conditions 4 and 5, the surface properties and sphericity of the carrier core material were significantly improved.
[0036]
In addition, as a result of measuring the amount of scattered particles of the carrier, it was confirmed that the number of carriers using the primary particle diameter under the crushing conditions 4 and 5 was smaller than the number of carriers using the primary particle diameter under the crushing conditions 1 to 3. .
[0037]
This is because, when primary particle diameters of pulverization conditions 1 to 3 were used, uniform surface properties and sphericity were possible with a conventional carrier core material having an average particle diameter of about 80 μm. If the average particle diameter of the core material becomes smaller and the primary particles constituting the granulated material are at the same level as the conventional one, segregation of the constituent materials and fluctuation of the heat history occur, and the ferrite formation reaction becomes non-uniform and the magnetic properties It is considered that low magnetized products were also generated and that the amount of scattered carriers was increased.
[0038]
Therefore, it is necessary that Ds90 ≦ 1 μm and 2.0 ≦ Ds10 / Ds90 ≦ 10.0. When Ds90 exceeds 1 μm, or when Ds10 / Ds90 is less than 2.0, constituent particles become large, The ferrite conversion reaction varies, and carrier scattering increases. If Ds10 / Ds90 exceeds 10.0, the reactivity of the raw material particles will increase, and adhesion between the particles will occur during firing, resulting in poor shape.
[0039]
Furthermore, in the production method of the present invention, it is desirable to employ the following steps in order to impart a uniform ferrite-forming reaction.
[0040]
That is, it is desirable to employ a step of removing fine powder before firing the granulated product. The smaller the particle size of the ferrite granules, the higher the reactivity to heat, and if fired in a state containing these, the distribution of heat reactivity between the particles becomes wide and uniform firing becomes difficult. In addition, as a result of the fine powder entering the voids between the other particles, firing is performed in a dense state with small voids, making it difficult for heat to be uniformly transmitted to the fired product, impeding uniform firing. Furthermore, the fine powder adheres to other particles, causing carrier scattering and shape deterioration (sphericity reduction). Therefore, it is desirable to remove fine powder as described above, but not only fine powder but also coarse powder may be removed.
[0041]
Further, after the removal of fine powder, additives such as a binder generate a reducing gas at the time of firing and cause a variation in ferrite formation reaction. Therefore, it is desirable to adopt a step of removing by heating at 700 to 900 ° C.
[0042]
Next, in the firing step, it is desirable to fire at an oxygen concentration of 0.05% or less during firing. In the firing of the high magnetization ferrite, uniform firing can be performed under inert and stable firing conditions with a low oxygen concentration. The firing temperature is desirably 1100 to 1350 ° C, and the residence time at the highest temperature is desirably 1 to 6 hours.
[0043]
In addition, when the firing atmosphere is released at a temperature of the fired product of 400 ° C. or lower, an uneven state can be avoided. Release at a temperature exceeding 400 ° C. leads to generation of a low magnetization product due to reoxidation or the like.
[0044]
By setting the above steps or conditions, the composition, heat history, and reactivity of the fired product are made uniform, whereby the magnetic properties, electric resistance, and the like are necessarily made uniform. As a result, a carrier core material having uniform surface properties and a constant sphericity can be obtained.
[0045]
After crushing and classification, it is preferable to uniformly heat-treat the surface of the carrier core material at 400 to 600 ° C. in the air, and then to further uniform the surface resistance by mechanochemical treatment.
[0046]
Finally, the obtained carrier core material is coated with a resin to obtain a carrier for an electrophotographic developer.
[0047]
According to the production method of the present invention, a carrier having a small particle diameter with small variations in surface properties, magnetic properties, and resistance, high surface smoothness uniformity, and a high carrier scattering margin can be obtained with good productivity.
[0048]
The electrophotographic developer of the present invention is obtained by mixing at least the above carrier and a toner having an average particle diameter of 4 to 10 μm. Further, if necessary, inorganic fine particles having an average particle size of 1.0 μm or less are mixed.
[0049]
The toner used in the present invention is composed of a binder and a colorant. Examples of the binder include, but are not particularly limited to, an epoxy resin, a polyester resin, a styrene resin, an acrylic resin, a polyamide resin, an olefin resin, a vinyl acetate polymer, a polyether polyurethane, and a paraffin wax. And their copolymers can be used alone or as a mixture.
[0050]
As the coloring agent, carbon black, nigrosine, aniline blue, chrome yellow, ultramarine blue, permanent red, Hansa yellow and the like can be widely used.
[0051]
In addition, inorganic fine particles having an average particle size of 1.0 μm or less, that is, a fluidizing agent, a charge control agent, and the like can be added as necessary.
[0052]
According to the electrophotographic developing method of the present invention, a magnetic brush is formed with the developer on a developing sleeve having a magnet therein, and the electrostatic latent image carried on the electrostatic latent image carrier is visualized by the magnetic brush. It becomes something.
[0053]
【Example】
Hereinafter, the present invention will be specifically described based on examples and the like.
[0054]
[Example 1]
0.8 mol% of iron oxide, manganese oxide and magnesium oxide was added to 55 mol% of iron oxide, 40 mol% of manganese oxide, 5 mol% of magnesium oxide, and strontium oxide, and wet pulverization was performed by an attritor at a solid content of 55%. . A binder, a dispersant, and an antifoaming agent are added to the slurry. The slurry raw material was pulverized and dispersed, and as shown in Table 2, Slurry 1 in which Ds10 = 2.14 μm, Ds90 = 0.24 μm, and Ds10 / Ds90 = 8.92 was prepared using a Microtrac particle size analyzer. Table 2 shows Mv, Mn, and Mv / Mn.
[0055]
The prepared slurry was dried with a spray dryer to obtain a spherical granulated dried product having an average particle size of 30 μm. Fine particles of the granules were removed by air current classification to remove particles of 20 μm or less. Next, additives such as a binder were removed at 700 ° C. by a rotary kiln. Using an electric furnace whose firing atmosphere can be adjusted, firing is performed under the conditions of an oxygen concentration of 0.05% or less, a firing temperature of 1300 ° C., a firing time of the maximum temperature of 5 hours, and a firing temperature of 350 ° C. when the firing atmosphere is released. did. After crushing and classifying the fired product, a carrier core material having an average particle size of 35 μm was obtained. The carrier core material is heat-treated in a rotary continuous furnace at an internal oxygen concentration of 21% at a temperature of 500 ° C. to perform surface treatment, and then further rotated in a rotary container to apply mechanochemical stress to increase the resistance of the carrier core material surface. Was.
[0056]
The surface smoothness of the obtained carrier core material was 85%. Table 3 shows various physical properties (surface smoothness uniformity, average particle size, magnetic properties, current value). These measuring methods are as described above.
[0057]
Using a fluidized bed coater, 2.0% by weight of a silicone resin (trade name: SR-2411, manufactured by Dow Corning Toray Silicone Co., Ltd.) was coated on the carrier core material. After coating, baking was performed at 250 ° C. for 3 hours, followed by classification with 250 mesh, and magnetic separation to produce Carrier 1.
[0058]
(Toner production)
100 parts by weight of a polyester resin obtained by condensing propoxylated bisphenol and fumaric acid, 4 parts by weight of a phthalocyanine pigment, and 4 parts by weight of a chromium complex of di-tert-butylsalicylic acid were used as raw materials and thoroughly mixed with a Henschel mixer. The mixture was melt-kneaded by a twin-screw extruder, cooled, coarsely ground to about 1.5 μm using a hammer mill, and then finely ground by a jet mill. The finely pulverized product was further classified to obtain a cyan powder having a weight average particle size of 8.2 μm. 100 parts by weight of the powder and 1 part by weight of titanium oxide having an average particle size of 0.05 μm were mixed with a Hensyl mixer to obtain Toner 1.
[0059]
(Actual machine evaluation)
Carrier 1 and toner 1 were mixed at a toner concentration of 8% by weight to prepare a developer. Using a sharp full-color copying machine ARC-250 modified machine, the initial evaluation of the developer and the toner and the image evaluation of 100,000 sheets were carried out according to the methods specifically shown below. Table 4 shows the evaluation results. In the following evaluation methods, “△” or more is a level that does not cause any problem in practical use.
[0060]
{Circle around (1)} An image was copied under an appropriate exposure condition for image density, and the ID was evaluated. The solid image density was measured with an X-Rite (manufactured by Nippon Lithographic Equipment) and ranked.
◎: very good :: target image density range
Δ: Image density is slightly lower but usable.
X: lower than the target lower limit xx: image density is extremely low and cannot be used.
[0061]
(2) Fog ◎: less than 0.5 ○: 0.5 to 1.0
Δ: 1.0 to 1.5
×: 1.5 to 2.5
XX: 2.5 or more
(3) The level of carrier scattering and white spots on the carrier scattering image was evaluated.
A: No white spots on 10 A3 sheets.
:: 1 to 5 out of 10 A3 sheets Δ: 6 to 10 out of 10 A3 sheets ×: 11 to 20 out of 10 A3 sheets
XX: 21 or more out of 10 A3 sheets.
{Circle around (4)} Toner scattering :: not seen at all :: very small amount confirmed △: limit level x: many xx: very large
(5) Horizontal fine line reproducibility :: Reproducible very well :: Almost reproduced △: Limit level X: Cut-out is noticeable XX: Not reproduced at all [0065]
{Circle around (6)} Uniformity of halftone 非常: very uniform :: uniform and non-uniform △: slight unevenness is observed, but limit level X: unevenness is noticeable and non-uniform XX: non-uniformity is very large and non-uniform ]
{Circle around (7)} Toner density stability :: very stable :: stable △: slightly unstable x: fluctuation is observed xx: fluctuation is extremely large
[Example 2]
0.8 mol% of iron oxide, manganese oxide and magnesium oxide was added to 55 mol% of iron oxide, 40 mol% of manganese oxide, 5 mol% of magnesium oxide, and strontium oxide, and wet pulverization was performed by an attritor at a solid content of 55%. . In the slurry, a binder, a dispersant and an antifoaming agent are added. The slurry raw material was pulverized and dispersed, and as shown in Table 2, Slurry 2 in which Ds10 = 2.36 μm, Ds90 = 0.96 μm, and Ds10 / Ds90 = 2.46 by a Microtrac particle size analyzer was prepared. Table 2 shows Mv, Mn, and Mv / Mn.
[0068]
The prepared slurry was used to obtain a spherical granulated dried product using a spray dryer. The same procedure as in Example 1 was carried out except that the fine powder of the granulated material was removed to 16 μm or less by airflow classification, and the firing temperature was set to 1280 ° C., and the carrier-coated carrier 2 having an average particle size of 25 μm was used. Got. The surface smoothness uniformity of this carrier core material was 80%. The physical properties of the carrier core material and the image evaluation of the developer and toner were evaluated in the same manner as in Example 1, and the results are shown in Tables 3 and 4.
[0069]
[Example 3]
Using the same raw materials as in Example 1, the raw materials were pulverized and dispersed, and as shown in Table 2, Ds10 = 1.76 μm, Ds90 = 0.26 μm, and Ds10 / Ds90 = 6.77 by a Microtrac particle size analyzer. Was prepared. Table 2 shows Mv, Mn, and Mv / Mn.
[0070]
The prepared slurry was used to obtain a spherical granulated dried product using a spray dryer. Fine particles of the granules were removed by air current classification to remove 24 μm or less. Next, the binder and the like were removed at 700 ° C. by a rotary kiln. Carrier 3 coated with resin having an average core particle size of 45 μm was obtained in the same manner as in Example 1 except that the firing temperature was changed to 1320 ° C. The surface smoothness of the carrier core material was 90%. The physical properties of the carrier core material and the image evaluation of the developer and toner were evaluated in the same manner as in Example 1, and the results are shown in Tables 3 and 4.
[0071]
[Comparative Example 1]
Using the same raw materials as in Example 1, the raw materials were pulverized and dispersed, and as shown in Table 2, Ds10 = 3.58 μm, Ds90 = 2.10 μm, and Ds10 / Ds90 = 1.70 by a Microtrac particle size analyzer. Slurry 4 was obtained. The volume average diameter (Mv) was 2.80, the number average diameter (Mn) was 2.467, and the primary particle diameter was Mv / Mn = 1.13.
[0072]
After a spherical granulated dried product having an average particle size of 30 μm was obtained from the produced slurry by a spray dryer, a carrier 4 was obtained in the same manner as in Example 1. The surface smoothness uniformity of this carrier core material was 65%. The physical properties of the carrier core material and the image evaluation of the developer and toner were evaluated in the same manner as in Example 1, and the results are shown in Tables 3 and 4.
[0073]
[Comparative Example 2]
Slurry 5 was obtained in the same manner as in Example 1, except that iron oxide, manganese oxide and magnesium oxide were added in an amount of 0.5 mol% to iron oxide, manganese oxide and magnesium oxide, respectively. Was.
[0074]
After granulating this slurry with a spray drier, a carrier 5 was obtained in the same manner as in Example 1 except that fine powder was not removed. The surface smoothness uniformity of this carrier core material was 65%. The physical properties of the carrier core material and the image evaluation of the developer and toner were evaluated in the same manner as in Example 1, and the results are shown in Tables 3 and 4.
[0075]
[Comparative Example 3]
Carrier 6 was obtained in the same manner as in Example 1, except that 80 mol% of iron oxide and 20 mol% of manganese oxide were used. The surface smoothness of the carrier core material was 55%. The physical properties of the carrier core material and the image evaluation of the developer and toner were evaluated in the same manner as in Example 1, and the results are shown in Tables 3 and 4.
[0076]
[Table 2]
Figure 2004004648
[0077]
[Table 3]
Figure 2004004648
[0078]
[Table 4]
Figure 2004004648
[0079]
As shown in Table 3, Examples 1 to 3 have higher surface smoothness uniformity than Comparative Examples 1 to 3, and the magnetic properties and the current value are also in suitable ranges. Further, as shown in Table 4, Examples 1 to 3 are superior to Comparative Examples 1 to 3 in the initial properties of the developer and the toner and the image characteristics of 100,000 sheets.
[0080]
【The invention's effect】
The carrier for an electrophotographic developer according to the present invention achieves a reduction in particle size, eliminates problems such as carrier scattering, and has excellent image characteristics when used in a full-color developer. Further, the carrier can be obtained with good productivity by the production method of the present invention.

Claims (6)

酸化鉄を主成分とし、主にスピネル構造を有した体積平均粒径が20〜45μmのフェライトキャリアであって、下記の特性又は性状を有することを特徴とする電子写真現像剤用キャリア。
(1)磁場1KOeにおける磁化が65〜80emu/g、
(2)キャリアコア材の電流値が50〜150μA、
(3)表面平滑均一度が75%以上、
(4)樹脂被覆が施されており、被覆量がキャリアコア材に対して0.1〜5.0重量%。
A ferrite carrier mainly composed of iron oxide, mainly having a spinel structure and having a volume average particle diameter of 20 to 45 μm, and having the following characteristics or properties, and a carrier for an electrophotographic developer.
(1) magnetization at a magnetic field of 1 KOe is 65 to 80 emu / g,
(2) The carrier core material has a current value of 50 to 150 μA,
(3) Surface smoothness uniformity of 75% or more,
(4) Resin coating is applied, and the coating amount is 0.1 to 5.0% by weight based on the carrier core material.
スラリー原料を造粒し、造粒物とした後、焼成した後、解砕、分級し、得られるキャリアコア材に樹脂を被覆する電子写真現像剤用キャリアの製造方法において、
上記スラリー原料の1次粒子径Ds10及びDs90が下記の関係にあることを特徴とする請求項1記載の電子写真現像剤用キャリアの製造方法。
Ds90≦1μm
2.0≦Ds10/Ds90≦10.0
(構成原料粉砕時の10%体積粒径:Ds10、構成原料粉砕時の90%体積粒径:Ds90)
After the slurry raw material is granulated and granulated, after firing, crushed, classified, in a method for producing a carrier for an electrophotographic developer, the obtained carrier core material is coated with a resin,
The method for producing a carrier for an electrophotographic developer according to claim 1, wherein the primary particle diameters Ds10 and Ds90 of the slurry raw material have the following relationship.
Ds90 ≦ 1 μm
2.0 ≦ Ds10 / Ds90 ≦ 10.0
(10% volume particle size at the time of pulverizing constituent raw material: Ds10, 90% volume particle size at the time of pulverizing constituent material: Ds90)
上記造粒物の焼成を行う前に微粉を取り除く工程、及び該造粒物中の添加物を加熱により除去する工程を有し、上記焼成時の酸素濃度が0.05%以下、焼成温度が1100〜1350℃、最高温度の滞留時間1〜6時間であり、焼成雰囲気を解除する時の焼成物温度が400℃以下である請求項2記載の電子写真現像剤用キャリアの製造方法。A step of removing fine powder before firing the granulated material, and a step of removing additives in the granulated material by heating, wherein the oxygen concentration during the firing is 0.05% or less, and the firing temperature is The method for producing a carrier for an electrophotographic developer according to claim 2, wherein the carrier temperature is 1100 to 1350 ° C, the residence time at the highest temperature is 1 to 6 hours, and the temperature of the fired product when the firing atmosphere is released is 400 ° C or less. 上記分級後、キャリアコア材の表面を熱処理及び/又はメカノケミカル処理する工程を有する請求項2又は3記載の電子写真現像剤用キャリアの製造方法。The method for producing a carrier for an electrophotographic developer according to claim 2 or 3, further comprising a step of subjecting the surface of the carrier core material to heat treatment and / or mechanochemical treatment after the classification. 請求項1に記載のキャリアと平均粒径4〜10μmのトナーとを少なくとも混合してなる電子写真現像剤。An electrophotographic developer comprising at least a mixture of the carrier according to claim 1 and a toner having an average particle size of 4 to 10 μm. 内部にマグネットを有する現像スリーブ上に、請求項5記載の現像剤で磁気ブラシを形成させ、該磁気ブラシにより静電潜像担持体に担持された静電潜像を顕像化することを特徴とする電子写真現像方法。A magnetic brush is formed with a developer according to claim 5 on a developing sleeve having a magnet inside, and the electrostatic latent image carried on the electrostatic latent image carrier is visualized by the magnetic brush. Electrophotographic development method.
JP2003080646A 2002-03-26 2003-03-24 Electrophotographic developer carrier and method for producing the same Expired - Lifetime JP4125164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003080646A JP4125164B2 (en) 2002-03-26 2003-03-24 Electrophotographic developer carrier and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002085633 2002-03-26
JP2003080646A JP4125164B2 (en) 2002-03-26 2003-03-24 Electrophotographic developer carrier and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004004648A true JP2004004648A (en) 2004-01-08
JP4125164B2 JP4125164B2 (en) 2008-07-30

Family

ID=30445995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003080646A Expired - Lifetime JP4125164B2 (en) 2002-03-26 2003-03-24 Electrophotographic developer carrier and method for producing the same

Country Status (1)

Country Link
JP (1) JP4125164B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006201648A (en) * 2005-01-24 2006-08-03 Sharp Corp Toner and developer comprising the toner
JP2007011295A (en) * 2005-06-27 2007-01-18 Toshiba Corp Image forming apparatus and method for forming image
JP2012076955A (en) * 2010-09-30 2012-04-19 Dowa Electronics Materials Co Ltd Ferrite particle, and electrophotographic developing carrier and electrophotographic developer using the same
WO2012105078A1 (en) 2011-01-31 2012-08-09 パウダーテック株式会社 Ferrite carrier core material for electrophotographic developers, ferrite carrier, and manufacturing processes for both, and electrophotographic developers using the ferrite carrier
JP5898807B1 (en) * 2015-08-06 2016-04-06 Dowaエレクトロニクス株式会社 Ferrite particles, electrophotographic developer carrier and electrophotographic developer using the same
JP2016118646A (en) * 2014-12-19 2016-06-30 Dowaエレクトロニクス株式会社 Ferrite particles, and carrier for electrophotography and developer for electrophotography using the same
JP2018155826A (en) * 2017-03-16 2018-10-04 Dowaエレクトロニクス株式会社 Carrier core material, and carrier for electrophotographic development and developer for electrophotography using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006201648A (en) * 2005-01-24 2006-08-03 Sharp Corp Toner and developer comprising the toner
JP2007011295A (en) * 2005-06-27 2007-01-18 Toshiba Corp Image forming apparatus and method for forming image
JP2012076955A (en) * 2010-09-30 2012-04-19 Dowa Electronics Materials Co Ltd Ferrite particle, and electrophotographic developing carrier and electrophotographic developer using the same
WO2012105078A1 (en) 2011-01-31 2012-08-09 パウダーテック株式会社 Ferrite carrier core material for electrophotographic developers, ferrite carrier, and manufacturing processes for both, and electrophotographic developers using the ferrite carrier
KR20140001986A (en) 2011-01-31 2014-01-07 파우더테크 컴퍼니 리미티드 Ferrite carrier core material for electrophotographic developers, ferrite carrier, and manufacturing processes for both, and electrophotographic developers using the ferrite carrier
US9081318B2 (en) 2011-01-31 2015-07-14 Powdertech Co., Ltd. Ferrite carrier core material and ferrite carrier for electrophotographic developer, methods for manufacturing these, and electrographic developer using the ferrite carrier
JP2016118646A (en) * 2014-12-19 2016-06-30 Dowaエレクトロニクス株式会社 Ferrite particles, and carrier for electrophotography and developer for electrophotography using the same
JP5898807B1 (en) * 2015-08-06 2016-04-06 Dowaエレクトロニクス株式会社 Ferrite particles, electrophotographic developer carrier and electrophotographic developer using the same
JP2017031031A (en) * 2015-08-06 2017-02-09 Dowaエレクトロニクス株式会社 Ferrite particle, carrier for developing electrophotography and developing agent for electrophotography using the same
JP2018155826A (en) * 2017-03-16 2018-10-04 Dowaエレクトロニクス株式会社 Carrier core material, and carrier for electrophotographic development and developer for electrophotography using the same

Also Published As

Publication number Publication date
JP4125164B2 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
EP1965263B1 (en) Resin coat ferrite carrier for electrophotography developer and its production method, and electrophotography developer employing that resin coat ferrite carrier
EP1975731B1 (en) Resin-coated ferrite carrier for electrophotographic developer and electrophotographic developer using the resin-coated ferrite carrier
EP2402820B1 (en) Ferrite carrier core material and ferrite carrier for electrophotographic developer, and electrophotographic developer using the ferrite carrier
US4996126A (en) Developer having specific spheriodicity
US20090239173A1 (en) Resin-filled carrier for electrophotographic developer, and electrophotographic developer using the resin-filled carrier
US20090263739A1 (en) Resin-filled carrier for electrophotographic developer, and electrophotographic developer using the resin-filled carrier
US8431311B2 (en) Resin-filled carrier for electrophotographic developer, and electrophotographic developer using the resin-filled carrier
EP1840661A1 (en) Ferrite carrier for electrophotographic developer, method for producing the same, and electrophotographic developer
JP2010039368A (en) Carrier core material for electrophotographic developer, carrier, method for manufacturing them, and electrophotographic developer using the carrier
US8293446B2 (en) Resin-coated carrier method of manufacturing the same, two-component developer including resin-coated carrier, developing device and image forming apparatus
WO2017175646A1 (en) Ferrite carrier core material for electrophotographic developer, ferrite carrier for electrophotographic developer, electrophotographic developer, and method for producing ferrite carrier core material for electrophotographic developer
JP2012083389A (en) Resin coated carrier and two-component developer
US8092971B2 (en) Resin-coated carrier for electrophotographic developer and process for producing the same, and electrophotographic developer comprising the resin-coated carrier
JP2002296846A (en) Carrier for electrophotographic developer and developer using this carrier
JP4746815B2 (en) Image forming method and image forming apparatus
JP2007273505A (en) Ferromagnetic material powder, carrier for electrophotography developer and their production process, and electrophotography developer
JP4125164B2 (en) Electrophotographic developer carrier and method for producing the same
US7144670B2 (en) Carrier for electrophotographic developer and process of producing the same
JP2003034533A (en) Ferromagnetic material powder and carrier of developing agent for electronic photograph
JP2799230B2 (en) Carrier for electrostatic charge development
JP7001954B2 (en) Carrier for electrostatic latent image development, two-component developer, developer for replenishment, image forming apparatus, process cartridge, and image forming method.
WO2017175647A1 (en) Ferrite carrier core material for electrophotographic developer, ferrite carrier for electrophotographic developer, electrophotographic developer, and method for producing ferrite carrier core material for electrophotographic developer
JPWO2018181845A1 (en) Ferrite carrier core material for electrophotographic developer, ferrite carrier, production method thereof, and electrophotographic developer using the ferrite carrier
JP2002207324A (en) Electrophotographic carrier, production thereof, electrophotographic developer, and image forming method
JP2002207323A (en) Electrophotographic carrier, production thereof, and electrophotographic developer

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20051220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080430

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4125164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term