JP2007047341A - Method for regenerating carrier for two-component electrostatic charge image dry developer - Google Patents

Method for regenerating carrier for two-component electrostatic charge image dry developer Download PDF

Info

Publication number
JP2007047341A
JP2007047341A JP2005230266A JP2005230266A JP2007047341A JP 2007047341 A JP2007047341 A JP 2007047341A JP 2005230266 A JP2005230266 A JP 2005230266A JP 2005230266 A JP2005230266 A JP 2005230266A JP 2007047341 A JP2007047341 A JP 2007047341A
Authority
JP
Japan
Prior art keywords
carrier
resin
toner
developer
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005230266A
Other languages
Japanese (ja)
Inventor
Motoharu Hazama
元晴 陌間
Hiroshi Ishigaki
博 石垣
Takeshi Itakoshi
剛 板越
Toshio Honjo
俊夫 本庄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Powdertech Co Ltd
Nankai Kogyo KK
Original Assignee
Powdertech Co Ltd
Nankai Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Powdertech Co Ltd, Nankai Kogyo KK filed Critical Powdertech Co Ltd
Priority to JP2005230266A priority Critical patent/JP2007047341A/en
Publication of JP2007047341A publication Critical patent/JP2007047341A/en
Pending legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for regenerating a carrier for a two-component electrostatic charge image dry developer, by which spent toner on the carrier surface and resin coating the carrier surface can be completely removed and the initial characteristics can easily be recovered. <P>SOLUTION: The method for regenerating a carrier for a two-component electrostatic charge image dry developer aims to regenerate the carrier having resin coated on the surface of a core material, and is characterized in that a used two-component developer or a resin coated carrier obtained by separating a toner component by a toner removing process on the used developer is subjected to carbonization and then to decarbonization followed by characteristic processing. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複写機、プリンター等に用いられる、電子写真方式における二成分系静電荷像乾式現像剤用キャリアの再生方法に関するものであり、特に芯材の表面を樹脂被覆した二成分系静電荷像乾式現像剤用キャリアの再生方法に関する。   The present invention relates to a method for reproducing a carrier for a two-component electrostatic charge image dry developer in an electrophotographic system used for a copying machine, a printer, and the like, and in particular, a two-component electrostatic charge in which the surface of a core material is coated with a resin. The present invention relates to a method for reproducing a carrier for an image dry developer.

電子写真方式における二成分系静電荷像乾式現像剤は、トナーとキャリアで構成されており、キャリアは現像槽内でトナーと混合撹拌され、トナーに所望の帯電を与え、電荷を帯びたトナーをマグネットロール上から、感光体上の静電潜像へと運び、トナー像を形成させる担体物質である。感光体へ移行されたトナーは、転写、定着という工程を経て、画像として用紙上に複写される。一方、キャリアは、トナー像を形成した後も、マグネットに保持されることでマグネットロ−ル上に残り、再び現像槽内に戻り、新たに補給されるトナーと再び混合撹拌され、繰り返し使用される。従って、繰り返し複写されるにあたって、所望の画像品質を安定して維持するためには、キャリアの特性が使用期間中、安定していることが要求されている。   The two-component electrostatic charge image dry developer in the electrophotographic system is composed of a toner and a carrier, and the carrier is mixed and agitated with the toner in the developing tank to give the toner a desired charge and charge the toner. It is a carrier material that is carried from the magnet roll to the electrostatic latent image on the photoreceptor to form a toner image. The toner transferred to the photoconductor is copied on a sheet as an image through steps of transfer and fixing. On the other hand, even after the toner image is formed, the carrier remains on the magnet roll by being held by the magnet, returns to the developing tank again, is again mixed and stirred with newly supplied toner, and is repeatedly used. The Therefore, in order to stably maintain desired image quality during repeated copying, it is required that the characteristics of the carrier be stable during the period of use.

近年、二成分系静電荷像乾式現像剤用キャリアの多くは、数万枚以上繰り返し複写される中で、より高品質な画像を安定して得るために、キャリア表面に樹脂の被覆が施されている。   In recent years, many of the two-component electrostatic charge image dry developer carriers are repeatedly copied over tens of thousands of sheets, and in order to stably obtain higher quality images, the carrier surface is coated with a resin. ing.

しかしながら、現像剤は、繰り返し使用される間、粒子同士の衝突あるいは現像槽及び感光体等の部材との衝突等のストレスを絶えず受けるため、発熱によりキャリア表面にトナー成分が融着する、あるいはトナーに含有されているTiOやSiO等の外添剤がキャリア表面に埋没する、いわゆるスペントが生じる。このスペントが発生すると、キャリアに融着したトナーあるいは埋没した外添剤に阻害され、トナーに適切な電荷を付与することができず、結果的には、カブリ、トナー飛散や階調性の劣化等の画像欠陥を招くこととなる。 However, since the developer is constantly subjected to stress such as collision between particles or collision with a member such as a developing tank and a photoreceptor during repeated use, the toner component is fused to the carrier surface due to heat generation, or the toner. This causes a so-called spent in which an external additive such as TiO 2 or SiO 2 contained in is buried in the carrier surface. When this spent occurs, it is hindered by the toner fused to the carrier or the buried external additive, and an appropriate charge cannot be imparted to the toner. As a result, fogging, toner scattering, and gradation deterioration are caused. Such as image defects.

また、同時に、前記のようなストレスにより、キャリア表面に被覆されている樹脂が剥離する、いわゆるコート剥離が生じる。このコート剥離が発生すると、キャリアの電気抵抗が低くなり、細線再現性悪化やキャリア付着による画像欠陥の原因となる。また、トナーに適切な電荷を付与することができず、結果的には、帯電量低下によるカブリ、トナー飛散や階調性の劣化等の画像欠陥、あるいは帯電量上昇による画像濃度不足やキャリア飛散等の画像欠陥を招くことにもなる。   At the same time, so-called coat peeling occurs in which the resin coated on the carrier surface peels due to the stress as described above. When this coat peeling occurs, the electrical resistance of the carrier is lowered, causing deterioration of fine line reproducibility and image defects due to carrier adhesion. In addition, an appropriate charge cannot be imparted to the toner, and as a result, fogging due to a decrease in charge amount, image defects such as toner scattering and gradation deterioration, or insufficient image density or carrier scattering due to an increase in charge amount. This also causes image defects such as.

このように、キャリア特性は、複写機、プリンター等での繰り返し複写において、使用時間と共に劣化するため、現像剤自体を新たなものに交換する必要が生じる。   As described above, since the carrier characteristics deteriorate with use time in repeated copying using a copying machine, a printer, or the like, the developer itself needs to be replaced with a new one.

このようなキャリア特性の劣化を防止するために、従来からキャリア表面に被覆する樹脂の種類の検討が行われてはいるが、スペントやコート剥離の防止は、未だ不充分なのが現状である。   In order to prevent such deterioration of the carrier characteristics, the type of resin to be coated on the carrier surface has been studied conventionally, but at present, prevention of spent and coat peeling is still insufficient.

従来は、前記のようなキャリア特性の劣化により交換、回収された現像剤は廃棄されていたが、近年、産業廃棄物による環境汚染が問題視され、回収現像剤の再利用が課題の一つとなっている。   Conventionally, the developer that has been exchanged and recovered due to the deterioration of the carrier characteristics as described above has been discarded. However, in recent years, environmental pollution due to industrial waste has been regarded as a problem, and reuse of the recovered developer is one of the issues. It has become.

回収した現像剤、特にキャリアの再利用に関しては、例えば、特許文献1(特開平3−89254号公報)、特許文献2(特開平6−149132号公報)及び特許文献3(特開平7−28280号公報)にそれぞれ記載されているが、これらの各特許文献ではキャリア表面にスペント化したトナー成分の除去のみを目的としており、被覆樹脂の除去を目的とするものではなく、再生処理された後もキャリア表面に樹脂が被覆されたままとなっている。前記のように、繰り返し複写によりキャリア表面に被覆されている樹脂には少なからずスペントやコート剥離が生じているため、これらの各特許文献に開示されている発明では、再生後のキャリア特性が安定せず、初期の電気抵抗、帯電性等の諸特性が再生できなかったり、あるいは再使用の際、キャリア寿命が短くなったりすることがある。   Regarding the reuse of the collected developer, especially the carrier, for example, Patent Document 1 (JP-A-3-89254), Patent Document 2 (JP-A-6-149132) and Patent Document 3 (JP-A-7-28280). However, in each of these patent documents, the purpose is only to remove the toner component spent on the carrier surface, not to remove the coating resin. Also, the carrier surface remains coated with the resin. As described above, since the resin coated on the surface of the carrier by repeated copying has not a little spent or coat peeling, the invention disclosed in each of these patent documents has stable carrier characteristics after reproduction. Therefore, various characteristics such as initial electrical resistance and chargeability may not be regenerated, or the carrier life may be shortened when reused.

特許文献4(特開昭47−12286号公報)には、回収キャリアを少なくとも約1000°F(約540℃)の高温で加熱再生する方法が提案されているが、この方法では、キャリア表面の特定の種類の被覆樹脂を除去できるものの、高温加熱処理により電気抵抗や飽和磁化等のキャリア特性が劣化してしまう。   Patent Document 4 (Japanese Patent Laid-Open No. 47-12286) proposes a method of heating and regenerating the recovered carrier at a high temperature of at least about 1000 ° F. (about 540 ° C.). Although a specific type of coating resin can be removed, carrier characteristics such as electric resistance and saturation magnetization are deteriorated by high-temperature heat treatment.

更に、特許文献5(特許第2649344号公報)、特許文献6(特開平7−72665号公報)あるいは特許文献7(特開2000−231224号公報)では、前記課題を解決するために、2段階の加熱処理を行うことを提案している。すなわち、第1の加熱処理において被覆樹脂を除去することを目的とし、第2の加熱処理にて焼成温度あるいは焼成雰囲気を調整することで、フェライトキャリアの特性を元の状態まで復元することを目的としている。   Further, in Patent Document 5 (Japanese Patent No. 2649344), Patent Document 6 (Japanese Patent Laid-Open No. 7-72665) or Patent Document 7 (Japanese Patent Laid-Open No. 2000-231224), two steps are required to solve the above-mentioned problem. It is proposed to perform the heat treatment. That is, the purpose is to remove the coating resin in the first heat treatment, and the purpose is to restore the properties of the ferrite carrier to the original state by adjusting the firing temperature or firing atmosphere in the second heat treatment. It is said.

しかしながら、前記方法では、第1の加熱処理においては、キャリア表面の被覆樹脂の熱溶融による処理装置内壁への付着あるいは被覆樹脂の燃焼熱の蓄積による処理装置の熱暴走が生じ易く、供給安定性や焼成温度制御等の観点から製造上所期の目的を達成することは困難であった。   However, in the above-described method, in the first heat treatment, thermal runaway of the processing apparatus is likely to occur due to adhesion of the coating resin on the carrier surface to the inner wall of the processing apparatus due to thermal melting or accumulation of combustion heat of the coating resin, and supply stability. From the viewpoint of controlling the firing temperature and the like, it has been difficult to achieve the objectives of manufacturing.

それと共に、第1の加熱処理においては、被覆樹脂の除去が完全ではなく、回収された現像剤中のトナーの濃度に依存し、処理されたキャリア粒子間での特性のバラツキが大きいものであった。そのため、前記現象を抑制するためにも、回収された現像剤中のトナーの濃度を限りなく低くすべく、トナーを除去するための前処理を行わなければならなかった。   At the same time, in the first heat treatment, the removal of the coating resin is not complete, and depending on the concentration of the toner in the collected developer, there is a large variation in characteristics between the treated carrier particles. It was. For this reason, in order to suppress the phenomenon, a pretreatment for removing the toner has to be performed in order to reduce the concentration of the toner in the collected developer as much as possible.

また、第1の加熱処理において残存した被覆樹脂成分は、第2の加熱処理においては還元剤として機能することから、焼成雰囲気の制御が困難であり、また、電気抵抗や飽和磁化等のキャリア特性を元のレベルに戻すことができず、画像特性の劣化あるいはキャリア飛散の原因となる。   In addition, since the coating resin component remaining in the first heat treatment functions as a reducing agent in the second heat treatment, it is difficult to control the firing atmosphere, and carrier characteristics such as electric resistance and saturation magnetization Cannot be restored to the original level, causing deterioration of image characteristics or carrier scattering.

更には、最終的に得られた再生キャリアにも被覆樹脂成分が残存し、本来の目的であるキャリア表面の被覆樹脂の除去が達成できないことがあった。これにより、再度、新たに芯材の表面に樹脂被覆した場合には、残存した被覆樹脂成分により、芯材表面と新たな被覆樹脂との密着性が阻害され、特に、繰り返し複写による被覆樹脂の剥離が助長される原因となる。   Furthermore, the coating resin component remains in the finally obtained regenerated carrier, and removal of the coating resin on the carrier surface, which is the original purpose, may not be achieved. As a result, when the surface of the core material is newly coated with the resin again, the remaining coating resin component inhibits the adhesion between the core material surface and the new coating resin. It causes peeling.

特開平3−89254号公報JP-A-3-89254 特開平6−149132号公報Japanese Patent Laid-Open No. 6-149132 特開平7−28280号公報JP-A-7-28280 特開昭47−12286号公報JP-A-47-12286 特許第2649344号公報Japanese Patent No. 2649344 特開平7−72665号公報JP 7-72665 A 特開2000−231224号公報Japanese Patent Laid-Open No. 2000-231224

従って、本発明の目的は、キャリア表面にスペント化したトナー及びキャリア表面に被覆されている樹脂を完全に除去し、初期の特性に回復させることや所望の特性を得ることが容易に実現できる二成分系静電荷像乾式現像剤用キャリアの再生方法を提供することである。   Accordingly, it is an object of the present invention to completely remove the spent toner on the carrier surface and the resin coated on the carrier surface to easily restore the initial characteristics and obtain desired characteristics. It is an object of the present invention to provide a method for regenerating a carrier for a component electrostatic charge image dry developer.

本発明者らは、前記した従来技術の問題点を解決すべく、鋭意検討した結果、使用され、回収された二成分系静電荷像乾式現像剤又は該現像剤からトナー成分を除去した樹脂被覆キャリアに、炭化処理を施した後、脱炭処理及び特性調整処理を施すことによって、前記目的が達成し得ることを知見した。   The present inventors have made extensive studies to solve the above-described problems of the prior art, and have been used and recovered as a two-component electrostatic image dry developer or a resin coating from which the toner component has been removed from the developer. It has been found that the above object can be achieved by subjecting the carrier to carbonization treatment, followed by decarburization treatment and property adjustment treatment.

すなわち、本発明は、芯材の表面を樹脂被覆したキャリアの再生処理方法であって、使用済み二成分系現像剤を炭化処理した後、脱炭処理を行い、次いで特性処理を施すことを特徴とする二成分系静電荷像乾式現像剤用キャリアの再生方法を提供するものである。   That is, the present invention is a method for regenerating a carrier in which the surface of a core is coated with a resin, wherein the used two-component developer is carbonized, decarburized, and then subjected to characteristic processing. A two-component electrostatic charge image dry developer carrier regeneration method is provided.

また、本発明は、芯材の表面を樹脂被覆したキャリアの再生処理方法であって、使用済み二成分系現像剤を脱トナー処理によりトナー成分を分離して得られた樹脂被覆キャリアを炭化処理した後、脱炭処理を行い、次いで特性処理を施すことを特徴とする二成分系静電荷像乾式現像剤用キャリアの再生方法を提供するものである。   The present invention also relates to a method for regenerating a carrier in which the surface of a core material is resin-coated, and the resin-coated carrier obtained by separating toner components from a used two-component developer by detoning treatment is carbonized. Then, a method for regenerating a carrier for a two-component electrostatic charge image dry developer, characterized by performing a decarburization process and then a characteristic process.

本発明に係る前記キャリアの再生方法において、前記炭化処理を500〜800℃の無酸素雰囲気下で行うことが望ましい。   In the carrier regeneration method according to the present invention, the carbonization treatment is preferably performed in an oxygen-free atmosphere at 500 to 800 ° C.

本発明に係る前記キャリアの再生方法において、前記脱炭処理を600〜900℃の燃焼雰囲気下で行うことが望ましい。   In the carrier regeneration method according to the present invention, it is preferable that the decarburization treatment is performed in a combustion atmosphere of 600 to 900 ° C.

本発明に係る前記キャリアの再生方法において、前記特性調整処理を1100℃〜1300℃、0〜5体積%の酸素濃度で行うことが望ましい。   In the carrier regeneration method according to the present invention, it is desirable that the characteristic adjustment process is performed at an oxygen concentration of 1100 ° C. to 1300 ° C. and 0 to 5% by volume.

本発明に係る前記キャリアの再生方法において、前記特性調整処理前の残存炭素量が0.1重量%以下であることが好ましい。   In the carrier regeneration method according to the present invention, it is preferable that the amount of residual carbon before the property adjustment treatment is 0.1% by weight or less.

本発明に係る前記キャリアの再生方法において、内部にスクリュ−を具備した加熱可能な円筒体を上下2段に重ねて配置し、更に冷却部を有する装置を用い、上段円筒体部で前記炭化処理、下段円筒体部で前記脱炭処理を連続的に行うことが望ましい。   In the carrier recycling method according to the present invention, a heatable cylindrical body having a screw therein is arranged in two upper and lower stages, and further using a device having a cooling unit, the carbonization treatment is performed at the upper cylindrical body part. It is desirable that the decarburization process is continuously performed in the lower cylindrical portion.

本発明に係る二成分系静電荷像乾式現像剤用キャリアの再生方法によって、キャリア表面にスペント化したトナー及びキャリア表面に被覆されている樹脂を完全に除去できるのみならず、キャリアの初期の特性に回復させることが容易に実現できる。   The two-component electrostatic charge image dry developer carrier regeneration method according to the present invention can not only completely remove the spent toner on the carrier surface and the resin coated on the carrier surface, but also the initial characteristics of the carrier. Can be easily recovered.

以下、本発明に係る二成分系静電荷像乾式現像剤用キャリアの再生方法の実施の形態について説明する。   Hereinafter, an embodiment of a method for regenerating a carrier for a two-component electrostatic charge image dry developer according to the present invention will be described.

本発明に係るキャリアの再生方法は、使用済み二成分系現像剤、又は使用済み二成分系現像剤を脱トナー処理によりトナー成分を分離して得られた樹脂被覆キャリアをそれぞれ炭化処理した後、脱炭処理を行い、次いで特性処理を施す。   In the carrier regeneration method according to the present invention, the used two-component developer, or the resin-coated carrier obtained by separating the toner component from the used two-component developer by detoning treatment is carbonized, respectively. A decarburization process is performed, and then a characteristic process is performed.

ここで二成分系現像剤からトナーや外添加剤等のトナー成分を分離し、樹脂被覆キャリアを得る脱トナー処理方法とは、まず、繰り返し複写に使用され、回収された二成分系現像剤からブローオフ、風篩、気流分級機等の風力によりトナー成分を分離する方法や水、有機溶媒等にて洗浄し、トナー成分を分離する方法、あるいはこれらを組み合わせた方法であり、キャリアに静電的に付着しているトナーあるいはトナー中の流動化剤として使用されている外添剤といったトナー成分を分離する。   Here, a toner removal method for separating a toner component such as a toner and an external additive from a two-component developer to obtain a resin-coated carrier is a method of first using repeatedly collected and recovered two-component developer. This is a method of separating toner components by wind force such as blow-off, wind sieve, airflow classifier, etc., a method of separating toner components by washing with water, organic solvent, etc., or a combination of these methods. The toner components such as the toner adhering to the toner or the external additive used as a fluidizing agent in the toner are separated.

このとき、風力による方法においては、処理する現像剤からキャリア粒子が除去されない程度の風量で行う。また、回収された現像剤には、目視でも見えるような大粒径のトナー塊が含まれていることもあり、風力による方法では除去できない場合がある。この際には振動篩、ジャイロシフター等のような篩網で除去できる。有機溶媒により洗浄する方法においては、トナーが可溶な有機溶剤を選択するのが好ましい。このようにして、回収された使用済み二成分系現像剤は、樹脂被覆キャリアとトナー成分とに分離される。   At this time, in the method using wind power, the air volume is such that carrier particles are not removed from the developer to be processed. In addition, the collected developer may contain a large-particle-size toner lump that can be seen with the naked eye, and may not be removed by a method using wind power. In this case, it can be removed with a sieve screen such as a vibrating sieve or a gyro shifter. In the method of washing with an organic solvent, it is preferable to select an organic solvent in which the toner is soluble. In this way, the collected used two-component developer is separated into a resin-coated carrier and a toner component.

但し、本発明においては、炭化処理及び脱炭処理での除去効果が強く、キャリアに静電的に付着しているトナーあるいはトナー中の流動化剤として使用されている外添剤等のトナー成分が残存していても問題ないことから、前記脱トナー処理を省略することもできる。すなわち、前記のように使用済み二成分系現像剤をそのまま炭化処理した後、脱炭処理を行い、次いで特性処理を施してもよい。   However, in the present invention, a toner component such as a toner having a strong removal effect in the carbonization treatment and decarburization treatment and electrostatically adhering to the carrier or an external additive used as a fluidizing agent in the toner. Therefore, the toner removal process can be omitted. That is, as described above, the used two-component developer may be carbonized as it is, then decarburized, and then subjected to characteristic processing.

次に、使用済み二成分現像剤又は前記のようにして得られた樹脂被覆キャリアを炭化処理する。   Next, the used two-component developer or the resin-coated carrier obtained as described above is carbonized.

炭化処理は、キャリア表面にスペント化したトナー及び被覆された被覆樹脂層を炭化することが目的であり、加熱温度及び滞留時間はスペント化したトナー及び被覆樹脂の熱特性や被覆量により適宜選択される。加熱温度が低いと、スペント化したトナー及び被覆された被覆樹脂層の炭化が不十分となり易く、次の脱炭処理において、残存したスペント化したトナー及び被覆樹脂の燃焼による処理装置の熱暴走が生じ易く、供給安定性や焼成温度制御等の観点から、製造上所期の目的を達成することは困難となる場合がある。500℃未満では、炭化が充分に進まない。このことから、500〜800℃の加熱温度で15分間〜2時間の滞留時間にて処理することが好ましく、600〜700℃の加熱温度で処理することがより好ましい。   The purpose of carbonization is to carbonize the spent toner and the coated coating resin layer on the carrier surface, and the heating temperature and residence time are appropriately selected according to the thermal characteristics and coating amount of the spent toner and coating resin. The If the heating temperature is low, carbonization of the spent toner and the coated coating resin layer tends to be insufficient, and in the next decarburization treatment, thermal runaway of the processing device due to combustion of the remaining spent toner and coating resin is likely to occur. In terms of supply stability and firing temperature control, it may be difficult to achieve the intended purpose of manufacturing. If it is less than 500 degreeC, carbonization will not fully advance. Therefore, the treatment is preferably performed at a heating temperature of 500 to 800 ° C. for a residence time of 15 minutes to 2 hours, more preferably at a heating temperature of 600 to 700 ° C.

前記炭化処理は、無酸素雰囲気下で処理されることが望ましい。酸素が存在している状態で加熱されると、スペント化したトナー及び被覆樹脂が炭化反応せずに、通常の燃焼反応となってしまい、スペント化したトナー及び被覆樹脂の燃焼による処理装置の熱暴走が生じ易く、供給安定性や焼成温度制御等の観点から、製造上所期の目的を達成することは困難となる場合がある。   The carbonization is preferably performed in an oxygen-free atmosphere. When heated in the presence of oxygen, the spent toner and coating resin do not carbonize and become a normal combustion reaction, and heat of the processing device due to combustion of the spent toner and coating resin. Runaway is likely to occur, and it may be difficult to achieve the objective of manufacturing from the viewpoint of supply stability, firing temperature control, and the like.

前記炭化処理に用いられる装置としては、前記雰囲気、加熱温度及び滞留時間を実現できるものであれば、公知の加熱処理装置が使用でき、例えば、ロータリーキルン型、スクリュー型、トンネル−トロッコ型、流動層型、シャフロ型あるいは遙動型が挙げられるが、生産性あるいはキャリア特性の制御の観点から炭化処理にはスクリュー型加熱処理炉が好ましい。   As the apparatus used for the carbonization treatment, a known heat treatment apparatus can be used as long as it can realize the atmosphere, heating temperature and residence time. For example, rotary kiln type, screw type, tunnel-trolley type, fluidized bed A die type, a shuffling type or a peristaltic type can be mentioned, but a screw type heat treatment furnace is preferable for carbonization from the viewpoint of control of productivity or carrier characteristics.

次に、前記炭化処理で得られたスペント化したトナー及び樹脂被覆層が炭化されたキャリアに脱炭処理を行う。炭化処理で炭化したスペント化したトナー及び被覆樹脂を燃焼雰囲気下で脱炭処理、いわゆる無煙燃焼をさせ、二酸化炭素として除去する。この炭化処理と脱炭処理とを組み合せて行うことで、次の工程の特性調整処理を安定して行うことができ、最終的には再生されたキャリア特性の安定化が図れる。   Next, a decarburization process is performed on the spent toner obtained by the carbonization process and the carrier on which the resin coating layer is carbonized. The spent toner carbonized by the carbonization treatment and the coating resin are decarburized in a combustion atmosphere, so-called smokeless combustion, and removed as carbon dioxide. By performing this carbonization treatment and decarburization treatment in combination, the characteristic adjustment process in the next step can be stably performed, and finally, the regenerated carrier characteristics can be stabilized.

逆に、炭化処理と脱炭処理終了後、つまりは特性調整処理前に、スペント化したトナー及び被覆樹脂が多量に残存していると、特性調整処理を経て、キャリア(芯材)まで再生された時点でもこれらが残存する可能性があり、再度被覆されたキャリアの特性が安定せず、初期の電気抵抗、帯電性等の諸特性が再生できなかったり、あるいは再使用の際、キャリア寿命が短くなったりすることがある。そればかりではなく、特性調整処理において、残存したスペント化したトナー及び被覆樹脂が還元剤として作用し、焼成雰囲気の制御が困難となり、電気抵抗や飽和磁化等のキャリア特性を元のレベルに戻すことができない場合がある。よって、脱炭処理後のトナー成分や被覆樹脂等が除去されたキャリア(芯材)の炭素含有量は0.1重量%以下であることが望ましい。   Conversely, if a large amount of spent toner and coating resin remain after the carbonization and decarburization processes, that is, before the characteristic adjustment process, the carrier (core material) is regenerated through the characteristic adjustment process. However, the characteristics of the carrier coated again may not be stable, and various characteristics such as initial electrical resistance and chargeability may not be regenerated, or the carrier lifetime may be reduced when reused. It may become shorter. Not only that, but in the property adjustment process, the remaining spent toner and coating resin act as a reducing agent, making it difficult to control the firing atmosphere and returning carrier properties such as electrical resistance and saturation magnetization to their original levels. May not be possible. Therefore, it is desirable that the carbon content of the carrier (core material) from which the toner component, coating resin, and the like after the decarburization treatment are removed is 0.1% by weight or less.

脱炭効果を充分に発揮させ、残存炭素量を極力低減させるためには、脱炭処理時の雰囲気は燃焼雰囲気が望ましい。また、600〜900℃、15分間〜2時間で処理されることが好ましく、700〜800℃の加熱温度で処理することがより好ましい。600℃未満であると、炭化処理で炭化したスペント化したトナー及び被覆樹脂が充分に酸素と結合せず、多量に残存してしまう。900℃を超えて処理を施すと、表面の酸化によりヘマタイト層が析出しやすくなり、飽和磁化の低下、電気抵抗の増大あるいは非磁性粒子の発生を招きやすくなる。   In order to sufficiently exhibit the decarburization effect and reduce the residual carbon amount as much as possible, the atmosphere during the decarburization treatment is preferably a combustion atmosphere. Moreover, it is preferable to process at 600-900 degreeC for 15 minutes-2 hours, and it is more preferable to process at the heating temperature of 700-800 degreeC. When the temperature is lower than 600 ° C., the spent toner and the coating resin carbonized by the carbonization treatment are not sufficiently combined with oxygen and remain in a large amount. When the treatment is performed at a temperature exceeding 900 ° C., a hematite layer is likely to be precipitated due to surface oxidation, and this tends to cause a decrease in saturation magnetization, an increase in electrical resistance, or generation of nonmagnetic particles.

前記脱炭処理に用いられる装置は、前記炭化処理と同様の公知の加熱処理装置が使用でき、生産性あるいはキャリア特性の制御の観点から脱炭処理においてもスクリュー型加熱処理炉が好ましい。   As the apparatus used for the decarburization process, a known heat treatment apparatus similar to the carbonization process can be used, and a screw-type heat treatment furnace is preferable also in the decarburization process from the viewpoint of control of productivity or carrier characteristics.

前記炭化処理及び脱炭処理に用いられる装置は下記に示すようなものが望ましい。すなわち、この装置は、内部にスクリュ−を具備した円筒体を上下2段に重ねて配置し、更に冷却装置を装備する。上段円筒体部では、内部を無酸素状態とし、炭化処理を行い、下段円筒体部では、空気を供給することにより内部を燃焼雰囲気にし、脱炭処理を行う。   The apparatus used for the carbonization and decarburization is preferably as shown below. In other words, this apparatus is provided with a cylindrical body having a screw inside and stacked in two upper and lower stages, and further equipped with a cooling device. In the upper cylindrical part, the inside is made oxygen-free and carbonized, and in the lower cylindrical part, the inside is made into a combustion atmosphere by supplying air and decarburized.

上段円筒体には、片方の端部に供給装置を設け、他方の端部には連通路により下段円筒体と連結する。中央付近上部には炭化(乾留)ガスを排出させるための炭化(乾留)ガス排気口を設ける。前記供給装置は空気の混入を極力防ぐために、スクリュ−フィ−ダ−方式を採用し、使用済み二成分系現像剤、又は使用済み二成分系現像剤を脱トナー処理によりトナー成分を分離して得られた樹脂被覆キャリアを密充填しながら供給することが望ましく、窒素ガスを導入することがより好ましい。前記連通路には上段円筒体部と下段円筒体部の雰囲気を区別するために、ダブルダンパ−を設けることが望ましい。   The upper cylindrical body is provided with a supply device at one end, and the other end is connected to the lower cylindrical body by a communication path. A carbonization (dry distillation) gas exhaust port for discharging carbonization (dry distillation) gas is provided in the upper part near the center. In order to prevent air contamination as much as possible, the supply device adopts a screw feeder method, and separates toner components from used two-component developer or used two-component developer by detoning process. It is desirable to supply the obtained resin-coated carrier while being closely packed, and it is more preferable to introduce nitrogen gas. In order to distinguish the atmosphere of the upper cylindrical portion and the lower cylindrical portion in the communication path, it is desirable to provide a double damper.

下段円筒体には、上段円筒体と接続されている連通路側から前記処理物の流れ方向に空気を供給する装置を設置し、他方の端部には、下部に脱炭処理された前記処理物を排出するための排出口及び上部に燃焼ガスを排出する燃焼ガス排気口を設ける。下段円筒体内部の燃焼状態は前記空気供給装置により制御される。   The lower cylinder is provided with a device for supplying air in the flow direction of the processed material from the communication path side connected to the upper cylinder, and the other end is decarburized at the lower part. A discharge port for discharging the object and a combustion gas exhaust port for discharging the combustion gas are provided at the top. The combustion state inside the lower cylindrical body is controlled by the air supply device.

排出された前記処理物を冷却するために、下段円筒体の排出口に冷却装置を接続し、連続的に処理できるようにする。   In order to cool the discharged processed material, a cooling device is connected to the discharge port of the lower cylindrical body so that it can be continuously processed.

前記上下2段の円筒体を加熱する方式はプロパンを燃料とした外部加熱式が好ましいが、上段円筒体の炭化(乾留)ガス排気口から排出される炭化(乾留)ガスは排気ダクトを通じて燃焼空気の供給流により吸引し、燃焼空気と混合され、熱風発生装置内で燃焼させることで燃焼エネルギ−とすることがより好ましい。   The method of heating the upper and lower two-stage cylinders is preferably an external heating type using propane as fuel, but the carbonization (dry distillation) gas discharged from the carbonization (dry distillation) gas exhaust port of the upper stage cylinder is combusted air through the exhaust duct. It is more preferable that the combustion energy is obtained by suctioning with the supply flow of the gas, mixing with the combustion air, and burning in the hot air generator.

更に、前記脱炭処理でスペント化したトナー及び被覆樹脂がほとんど除去されたキャリアの特性を調整することを目的に、特性調整処理を行う。これにより、炭化処理又は脱炭処理で生じてしまったキャリアの特性劣化を正常な状態に戻すことができる。   Furthermore, the characteristic adjustment process is performed for the purpose of adjusting the characteristic of the carrier from which the toner and coating resin that have been spent in the decarburization process are almost removed. Thereby, the characteristic deterioration of the carrier which has arisen by the carbonization process or the decarburization process can be returned to a normal state.

特性調整処理は、酸素濃度を制御した雰囲気下で行われ、0〜5体積%の酸素濃度で行うことが好ましい。加熱温度及び滞留時間は、通常、1100〜1300℃で1〜5時間、好ましくは3時間前後の滞留時間にて行われる。酸素濃度が5体積%を超える、あるいは加熱温度が1100℃未満であると、前記キャリアの磁気特性の劣化や低磁化粒子の発生等の欠陥の回復が充分ではなく、再生され、再使用された際に、キャリア付着等の画像欠陥を招くこととなる。また、加熱温度が1300℃を超えるとキャリア粒子が溶融してしまい、粒子形状を保てない。   The characteristic adjustment process is performed in an atmosphere in which the oxygen concentration is controlled, and is preferably performed at an oxygen concentration of 0 to 5% by volume. The heating temperature and the residence time are usually 1100 to 1300 ° C. for 1 to 5 hours, preferably about 3 hours. When the oxygen concentration exceeds 5% by volume or the heating temperature is less than 1100 ° C., the recovery of defects such as the deterioration of the magnetic properties of the carriers and the generation of low-magnetized particles is not sufficient, and they are regenerated and reused. At this time, image defects such as carrier adhesion are caused. On the other hand, when the heating temperature exceeds 1300 ° C., the carrier particles are melted and the particle shape cannot be maintained.

前記特性調整処理に用いられる装置としては、前記酸素雰囲気、加熱温度及滞留時間を実現できるものであれば、公知の加熱処理装置が使用でき、例えば、ロータリーキルン型、スクリュー型、トンネル−トロッコ型、流動層型、シャフロ型あるいは遙動型が挙げられるが、安定した雰囲気制御が容易に実現できることから、トンネル−トロッコ型の電気炉が好ましい。   As the apparatus used for the characteristic adjustment treatment, a known heat treatment apparatus can be used as long as it can realize the oxygen atmosphere, heating temperature and residence time, for example, rotary kiln type, screw type, tunnel-trolley type, A fluidized bed type, a shuffling type, or a peristaltic type may be mentioned. A tunnel-trolley type electric furnace is preferable because stable atmosphere control can be easily realized.

このようにして、スペント化したトナー及び被覆樹脂が除去されたキャリアは、原材料から新たにつくられたキャリア(芯材)と同等まで再生され、残存するスペント化したトナーあるいは被覆樹脂に起因する炭素残存量は極微量となる。   In this way, the carrier from which the spent toner and the coating resin are removed is regenerated to the same level as the carrier (core material) newly made from the raw material, and the carbon caused by the remaining spent toner or coating resin. The remaining amount is extremely small.

本発明に係るキャリアの再生方法に適用できる使用済み現像剤を構成するキャリアとしては、既に公知であるものも含め、全ての二成分系静電荷像乾式現像剤キャリアが対象とされ、鉄粉キャリア、マグネタイトキャリアやCu、Zn、Mg、Mn、Ca、Li、Sr、Sn、Ni、Al、Ba、Co、Bi、Zr等を用いたフェライトキャリア等が挙げられるが、本発明においてはフェライトキャリアが好ましく、Mn−Mg系フェライトキャリアが特に好ましく対象とされる。   As a carrier constituting a used developer applicable to the carrier regeneration method according to the present invention, all two-component electrostatic charge image dry developer carriers, including those already known, are targeted, and an iron powder carrier , Magnetite carriers and ferrite carriers using Cu, Zn, Mg, Mn, Ca, Li, Sr, Sn, Ni, Al, Ba, Co, Bi, Zr, etc. Preferably, a Mn—Mg ferrite carrier is particularly preferred.

また、前記キャリアの形状、表面性、粒径、磁気特性、抵抗値、帯電性等の特性には制限はない。   Moreover, there is no restriction | limiting in characteristics, such as a shape of the said carrier, surface property, a particle size, a magnetic characteristic, resistance value, and charging property.

本発明に係るキャリアの再生方法に適用できる使用済み現像剤を構成するキャリアの表面に被覆される樹脂としては、特に制限は無く、従来から知られている各種の樹脂が挙げられる。例えば、尿素−ホルムアルデヒド樹脂、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、及びポリアミド樹脂等のアミノ系樹脂が挙げられ、更にポリビニル及びポリビニリデン系樹脂、アクリル樹脂、ポリメチルメタクリレート樹脂、ポリアクリロニトリル樹脂、ポリビニルアセテート樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂、ポリビニルブチラール樹脂、エチルセルロース樹脂等のセルロース系樹脂、ポリスチレン樹脂、ポリエチレン樹脂、ポリ弗化ビニル樹脂、ポリ弗化ビニリデン樹脂、ポリトリフルオロエチレン樹脂、ポリヘキサフルオロプロピレン樹脂、弗化ビニリデンとアクリル単量体との共重合体、弗化ビニリデンと弗化ビニルとの共重合体、テトラフルオロエチレンと弗化ビニリデンと非弗化単量体とのターポリマー等のフルオロターポリマー、シリコーン樹脂、あるいはアクリル樹脂、ポリエステル樹脂、エポキシ樹脂、アルキッド樹脂、ウレタン樹脂、フッ素樹脂等で変性した変性シリコーン樹脂、及びこれらの樹脂の混合体が挙げられる。   The resin coated on the surface of the carrier constituting the used developer that can be applied to the carrier recycling method according to the present invention is not particularly limited, and various conventionally known resins can be mentioned. For example, amino-type resins such as urea-formaldehyde resin, melamine resin, benzoguanamine resin, urea resin, and polyamide resin may be mentioned. Furthermore, polyvinyl and polyvinylidene resins, acrylic resin, polymethyl methacrylate resin, polyacrylonitrile resin, polyvinyl acetate Resin, polyvinyl acetate resin, polyvinyl alcohol resin, polyvinyl butyral resin, cellulose resin such as ethyl cellulose resin, polystyrene resin, polyethylene resin, polyvinyl fluoride resin, polyvinylidene fluoride resin, polytrifluoroethylene resin, polyhexafluoro Propylene resin, copolymer of vinylidene fluoride and acrylic monomer, copolymer of vinylidene fluoride and vinyl fluoride, terpolymer of tetrafluoroethylene, vinylidene fluoride and non-fluorinated monomer Fluoro terpolymers such Rimmer, a silicone resin or an acrylic resin, polyester resin, epoxy resin, alkyd resin, urethane resin, modified silicone resin modified with fluorine resin or the like, and mixtures of these resins.

前記樹脂被膜層には、ニグロシン系染料、トリフェニルメタン系染料、4級アンモニウム塩、4級アンモニウム基及び/又はアミノ基を含有する樹脂、トリメチルエタン系染料、サリチル酸の金属錯塩、ベンジル酸の金属錯塩、銅フタロシアニン、ペリレン、キナクリドン、アゾ系顔料、金属錯塩アゾ系染料、アゾクロムコンプレックス等の重金属含有酸性染料、カリックスアレン型のフェノール系縮合物、環状ポリサッカライド、カルボキシル基及び/又はスルホニル基を含有する樹脂等の帯電制御材料が含有されているものが包含される。   The resin coating layer includes a nigrosine dye, a triphenylmethane dye, a quaternary ammonium salt, a resin containing a quaternary ammonium group and / or an amino group, a trimethylethane dye, a metal complex of salicylic acid, and a metal of benzyl acid. Complex salts, copper phthalocyanine, perylene, quinacridone, azo pigments, metal complex salt azo dyes, heavy metal-containing acid dyes such as azochrome complexes, calixarene type phenolic condensates, cyclic polysaccharides, carboxyl groups and / or sulfonyl groups The thing containing charge control materials, such as resin to contain, is included.

前記樹脂被膜層には、金属粉、カーボンブラック、酸化チタン、酸化錫、酸化亜鉛等の導電性材料が含有されているものが包含される。   The resin coating layer includes those containing a conductive material such as metal powder, carbon black, titanium oxide, tin oxide, and zinc oxide.

本発明に係るキャリアの再生方法に適用できる使用済み現像剤を構成するトナーは、粉砕法によって製造される粉砕トナー粒子と、重合法により製造される重合トナー粒子とがある。本発明ではいずれの方法により得られたトナー粒子を使用したものも対象とされる。   The toner constituting the used developer applicable to the carrier recycling method according to the present invention includes pulverized toner particles produced by a pulverization method and polymerized toner particles produced by a polymerization method. In the present invention, the toner particles obtained by any method are also used.

トナー粒子を構成する結着樹脂、荷電制御剤、着色剤(色材)、流動性向上等のための外添剤としては、特に限定されるものではなく、トナー粒子の平均粒径も特に制限されるものではない。   The binder resin constituting the toner particles, the charge control agent, the colorant (coloring material), and the external additive for improving fluidity are not particularly limited, and the average particle size of the toner particles is also particularly limited. Is not to be done.

本発明によって再生されたキャリアは、そのまま使用しても良く、また、芯材として用いて、前記したような被覆樹脂、帯電制御材料及び導電性材料を再度、芯材表面に被覆し、使用しても良い。   The carrier regenerated by the present invention may be used as it is, and it is used as a core material, and the core resin surface is again coated with the coating resin, the charge control material and the conductive material as described above. May be.

本発明によって再生されたキャリアは、前記樹脂被覆処理を施し、再生前と全く別の特性を有するキャリアとすることもできる。   The carrier regenerated according to the present invention can be made into a carrier having the completely different characteristics from those before the regeneration by performing the resin coating treatment.

以下に、実施例等に基づき、本発明を具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。   EXAMPLES The present invention will be specifically described below based on examples and the like, but the present invention is not limited to these examples.

[参考例1]
原材料から新たにつくられた未再生の平均粒径35μmのMn−Mg−Srフェライト芯材(芯材A)100重量部の表面に、トルエンを溶媒とし、熱可塑性アクリル樹脂(商品名:ダイヤナ−ルBR−52、三菱レイヨン社製)1.5重量部を、一軸式間接加熱型の乾燥機を用いて被覆し、樹脂被覆キャリアAを得た。
[Reference Example 1]
A thermoplastic acrylic resin (trade name: Dyana) is prepared by using toluene as a solvent on the surface of 100 parts by weight of an unreproduced Mn-Mg-Sr ferrite core material (core material A) having an average particle diameter of 35 μm and made from raw materials. 1.5 parts by weight of Le BR-52 (manufactured by Mitsubishi Rayon Co., Ltd.) was coated using a uniaxial indirect heating dryer to obtain a resin-coated carrier A.

芯材Aの飽和磁化は、理研電子社製直流磁化特性記録装置BHU−60にて測定したところ、70emu/g(A・m/kg)であった。また、芯材の炭素含有量(残存量)をLECO社製炭素分析装置C−200にて測定したところ、0.01重量%未満であった。更に、市販の複写機の現像器を用い、これに1000gの芯材Aを充填し、芯材Aを保持させたマグロ−ルを周速300mm/sで5分間回転させ、飛散した芯材粒子の量(飛散量)を測定したところ、1.50mgであった。飛散量は、芯材中に含まれる低磁化粒子の量を表しており、繰り返し複写におけるキャリア飛散に影響する。飛散量は3.00mg以下が望ましい。これらの測定結果を表1に示した。 The saturation magnetization of the core material A was 70 emu / g (A · m 2 / kg) as measured by a direct current magnetization characteristic recording device BHU-60 manufactured by Riken Denshi. Moreover, it was less than 0.01 weight% when the carbon content (residual amount) of the core material was measured with the carbon analyzer C-200 made from LECO. Further, using a developing device of a commercially available copying machine, the core material A filled with 1000 g of the core material A, the core material holding the core material A was rotated at a peripheral speed of 300 mm / s for 5 minutes, and scattered core material particles. It was 1.50 mg when the quantity (scattering quantity) of was measured. The amount of scattering represents the amount of low-magnetization particles contained in the core material and affects carrier scattering in repeated copying. The amount of scattering is desirably 3.00 mg or less. These measurement results are shown in Table 1.

市販の東芝テック社製複写機FANTASIA200を用いて、樹脂被覆キャリアA93部とトナー7部を混合して作製した現像剤Aの3万枚の繰り返し複写テストを行い、現像剤評価としての帯電量測定、画像濃度、キャリア飛散及びトナー飛散等の画像評価を行い、初期と3万枚後を比較した。現像剤Aは初期及び3万枚後ともに帯電量は適正であり、画像評価においても問題は見られなかった。その結果を表2に示す。   Using a commercially available TOSHIBA TEC copier FANTASIA 200, 30,000 copies of the developer A produced by mixing 93 parts of the resin-coated carrier and 7 parts of the toner were repeatedly tested to measure the amount of charge as a developer evaluation. Image evaluation such as image density, carrier scattering, and toner scattering was performed, and the initial value was compared with that after 30,000 sheets. Developer A had an appropriate charge amount both at the initial stage and after 30,000 sheets, and no problem was found in image evaluation. The results are shown in Table 2.

また、樹脂被覆キャリアAに被覆された樹脂の剥離率を得るために、繰り返し複写テストを経て劣化した現像剤Aから気流分級によりトナーを除去し、劣化したキャリアAのみとし、メタノ−ルにて洗浄後、前記と同様にして炭素含有量を測定したところ、0.92重量%であり、剥離率(繰り返し複写テスト前との比較)は、表2に示されるように25%であった。   Further, in order to obtain the peeling rate of the resin coated on the resin-coated carrier A, the toner is removed by airflow classification from the developer A that has been deteriorated through repeated copying tests, and only the deteriorated carrier A is used. After washing, the carbon content was measured in the same manner as described above. As a result, it was 0.92% by weight, and the peel rate (comparison with that before the repeated copy test) was 25% as shown in Table 2.

参考例1の使用済み現像剤Aから気流分級機により脱トナー処理を行い、トナー成分を分離し、使用済み樹脂被覆キャリアAを得た。   The toner was removed from the used developer A of Reference Example 1 with an air classifier to separate the toner components, and a used resin-coated carrier A was obtained.

この使用済み樹脂被覆キャリアAに、スクリュ−型加熱炉を用い、無酸素雰囲気下、600℃で炭化処理と燃焼雰囲気下、700℃で脱炭処理を連続的に施した。更に、トンネル−トロッコ型の電気炉を用い、酸素濃度3体積%、1200℃で特性調整処理を施し、芯材Bを得た。その後、参考例1と同様に樹脂を被覆し、樹脂被覆キャリアBを得た。また、参考例1と同様にして現像剤Bを得て、3万枚の繰り返し複写テストを行った。   The used resin-coated carrier A was continuously subjected to carbonization treatment at 600 ° C. in an oxygen-free atmosphere and decarburization treatment at 700 ° C. in a combustion atmosphere using a screw-type heating furnace. Furthermore, using a tunnel-trolley type electric furnace, a characteristic adjustment treatment was performed at an oxygen concentration of 3 vol% and 1200 ° C. to obtain a core material B. Thereafter, the resin was coated in the same manner as in Reference Example 1 to obtain a resin-coated carrier B. Further, a developer B was obtained in the same manner as in Reference Example 1, and 30,000 copies were repeatedly tested.

使用済み樹脂被覆キャリアAの代わりに、参考例1のトナー成分を分離する前の使用済み現像剤Aを用いる以外は実施例1と同様に処理をし、芯材Cを得た。その後、参考例1と同様に樹脂を被覆し、樹脂被覆キャリアCを得た。また、参考例1と同様にして現像剤Cを得て、3万枚の繰り返し複写テストを行った。   A core material C was obtained in the same manner as in Example 1 except that the used developer A before separating the toner component of Reference Example 1 was used instead of the used resin-coated carrier A. Thereafter, the resin was coated in the same manner as in Reference Example 1 to obtain a resin-coated carrier C. Further, developer C was obtained in the same manner as in Reference Example 1, and 30,000 copies were repeatedly tested.

炭化処理の温度を500℃、脱炭処理を600℃、特性調整処理の処理条件を酸素濃度0体積%、1100℃とした以外は実施例2と同様に処理をし、芯材Dを得た。その後、参考例1と同様に樹脂を被覆し、樹脂被覆キャリアDを得た。また、参考例1と同様にして現像剤Dを得て、3万枚の繰り返し複写テストを行った。   A core material D was obtained in the same manner as in Example 2 except that the carbonization temperature was 500 ° C., the decarburization treatment was 600 ° C., and the treatment conditions for the characteristic adjustment treatment were oxygen concentration 0 volume% and 1100 ° C. . Thereafter, the resin was coated in the same manner as in Reference Example 1 to obtain a resin-coated carrier D. Further, developer D was obtained in the same manner as in Reference Example 1, and 30,000 copies were repeatedly tested.

炭化処理の温度を800℃、脱炭処理を900℃、特性調整処理の処理条件を酸素濃度5%、1300℃とした以外は実施例1と同様に処理をし、芯材Eを得た。その後、参考例1と同様に樹脂を被覆し、樹脂被覆キャリアEを得た。また、参考例1と同様にして現像剤Eを得て、3万枚の繰り返し複写テストを行った。   A core material E was obtained in the same manner as in Example 1 except that the carbonization temperature was 800 ° C., the decarburization treatment was 900 ° C., and the characteristic adjustment treatment conditions were oxygen concentration 5% and 1300 ° C. Thereafter, the resin was coated in the same manner as in Reference Example 1 to obtain a resin-coated carrier E. Further, developer E was obtained in the same manner as in Reference Example 1, and 30,000 copies were repeatedly tested.

比較例Comparative example

〔比較例1〕
参考例1のトナー成分を分離する前の使用済み現像剤Aを用い、これをロータリーキルン炉によって、燃焼雰囲気、700℃で加熱処理を行い、芯材Fを得た。その後、参考例1と同様に樹脂を被覆し、樹脂被覆キャリアFを得た。また、参考例1と同様にして現像剤Fを得て、3万枚の繰り返し複写テストを行った。
[Comparative Example 1]
The used developer A before separating the toner component of Reference Example 1 was used, and this was subjected to a heat treatment in a combustion atmosphere at 700 ° C. in a rotary kiln furnace, whereby a core material F was obtained. Thereafter, the resin was coated in the same manner as in Reference Example 1 to obtain a resin-coated carrier F. Further, the developer F was obtained in the same manner as in Reference Example 1, and 30,000 copies were repeatedly tested.

〔比較例2〕
参考例1の使用済み現像剤Aから気流分級機により脱トナー処理を行い、トナー成分を分離し、使用済み樹脂被覆キャリアAを得た。
[Comparative Example 2]
The toner was removed from the used developer A of Reference Example 1 with an air classifier to separate the toner components, and a used resin-coated carrier A was obtained.

この使用済みキャリアAに、スクリュ−型加熱炉を用い、燃焼雰囲気下、550℃で加熱処理を施した後、更に、トンネル−トロッコ型電気炉を用い、酸素濃度3体積%、1200℃の条件で加熱処理を施し、芯材Gを得た。その後、参考例1と同様に樹脂を被覆し、樹脂被覆キャリアGを得た。また、参考例1と同様にして現像剤Gを得て、3万枚の繰り返し複写テストを行った。   This used carrier A was subjected to heat treatment at 550 ° C. in a combustion atmosphere using a screw-type heating furnace, and further using a tunnel-trolley type electric furnace, with an oxygen concentration of 3% by volume and 1200 ° C. The core material G was obtained by heat treatment. Thereafter, the resin was coated in the same manner as in Reference Example 1 to obtain a resin-coated carrier G. Further, a developer G was obtained in the same manner as in Reference Example 1, and 30,000 copies were repeatedly copied.

実施例1〜実施例4及び比較例1〜比較例2の芯材の特性(炭素含有量、飽和磁化、飛散量)を再生処理工程の条件と共に表1に示す。また、現像剤の特性(3万枚の繰り返し複写テスト結果及び剥離率)を再生処理工程の条件と共に表2に示す。これら芯材及び現像剤の特性評価は、前述した参考例1に記載の方法に準拠して行った。   Table 1 shows the properties (carbon content, saturation magnetization, and scattering amount) of the core materials of Examples 1 to 4 and Comparative Examples 1 to 2 together with the conditions of the regeneration process. Table 2 shows the characteristics of the developer (results of repeated copying test and peeling rate of 30,000 sheets) together with the conditions of the regeneration processing step. The properties of the core material and the developer were evaluated in accordance with the method described in Reference Example 1 described above.

Figure 2007047341
Figure 2007047341

Figure 2007047341
Figure 2007047341

この結果、実施例1〜実施例4の炭化処理及び脱炭処理を行ったスクリュ−型加熱炉は何ら問題なく操業できたが、比較例1の際のロータリーキルン炉及び比較例2の際のスクリュ−型加熱炉に関しては、被覆樹脂成分の燃焼が発生し、熱暴走により加熱温度制御が不安定であると共に、装置内壁に付着が発生し、処理物の供給を安定して行うことができなかった。   As a result, although the screw type heating furnace which performed the carbonization process and the decarburization process of Examples 1 to 4 could be operated without any problems, the rotary kiln furnace in Comparative Example 1 and the screw in Comparative Example 2 were operated. -For type heating furnaces, combustion of the coating resin component occurs, heating temperature control is unstable due to thermal runaway, adhesion occurs on the inner wall of the apparatus, and the supply of processed material cannot be performed stably. It was.

また、実施例1〜実施例4の特性調整処理を行ったトンネル−トロッコ型電気炉の操業は問題なかったが、比較例2を行った際には、スクリュー型加熱炉での被覆樹脂の除去が不十分であったことから、被覆樹脂からの発生ガスにより、酸素濃度設定値に対する実際の酸素濃度測定値のばらつきが大きく、酸素濃度制御が安定しなかった。   Moreover, although operation of the tunnel-trolley type electric furnace which performed the characteristic adjustment process of Example 1-Example 4 did not have a problem, when Comparative Example 2 was performed, removal of coating resin in a screw type heating furnace Therefore, due to the gas generated from the coating resin, the variation of the actual oxygen concentration measurement value with respect to the oxygen concentration set value was large, and the oxygen concentration control was not stable.

さらに、表1から明らかなように、実施例1〜実施例4の芯材B〜芯材Eは未再生品である参考例1の芯材Aと同等の芯材特性を示している。   Further, as is apparent from Table 1, the core materials B to E of Examples 1 to 4 have the same core material characteristics as the core material A of Reference Example 1 which is an unreproduced product.

一方、比較例1の芯材Fは、特性調整処理(第3加熱処理)前の残存炭素量が多く、最終的に再生された芯材においても多くの被覆樹脂成分が残存していた。また、飽和磁化に関しても、未再生の比較例1の芯材Aに対し、著しく劣っており、芯材の飛散量も多い結果となっている。比較例2の芯材Gも比較例1と同様に、特性調整処理(第3加熱処理)前及び最終的に再生された芯材において、残存炭素量が多く検出されている。   On the other hand, the core material F of Comparative Example 1 had a large amount of residual carbon before the characteristic adjustment treatment (third heat treatment), and many coating resin components remained in the finally regenerated core material. Further, the saturation magnetization is remarkably inferior to the core A of the comparative example 1 that has not been reproduced, and the amount of scattering of the core is large. In the core material G of Comparative Example 2, as in Comparative Example 1, a large amount of residual carbon is detected in the core material before the characteristic adjustment process (third heat treatment) and finally regenerated.

表2から明らかなように、実施例1〜実施例4の現像剤B〜現像剤Eは、帯電量の推移(初期と3万枚後の比較)及び3万枚後の被覆樹脂剥離率に関して、未再生品であるキャリア芯材Aを用いた参考例1の現像剤Aと同等の特性を示している。また、初期及び3万枚後ともに画像評価に問題は見られていない。   As is clear from Table 2, the developer B to the developer E of Examples 1 to 4 relate to the transition of the charge amount (comparison between the initial and 30,000 sheets) and the coating resin peeling rate after 30,000 sheets. The same characteristics as those of the developer A of Reference Example 1 using the carrier core material A which is an unreproduced product are shown. In addition, there is no problem in image evaluation in the initial stage and after 30,000 sheets.

一方、比較例1の現像剤Fは、最終的に再生された芯材に被覆樹脂成分が多く残存していたことで再度樹脂被覆した後の帯電量が高くなり過ぎたことにより、画像濃度が極端に低い結果となった。また、芯材の飽和磁化が回復せず著しく低い値となっていること及び飛散量が多いことからも判るように、低磁化粒子を多く含有していることにより、多量のキャリア飛散が発生した。結果的には繰り返し複写テストを断念せざるを得なかった。   On the other hand, the developer F of Comparative Example 1 has an image density that is too high after the resin coating again because a large amount of the coating resin component remains in the finally regenerated core material. The result was extremely low. In addition, as can be seen from the fact that the saturation magnetization of the core material does not recover and has a remarkably low value and the amount of scattering is large, a large amount of carrier scattering occurs due to the inclusion of many low magnetization particles. . As a result, repeated copying tests had to be abandoned.

また、比較例2の現像剤Gは、初期帯電量が若干高いものの、初期画像評価において許容レベルであった。しかしながら、3万枚の繰り返し複写テスト後の画像評価において、帯電量の低下が著しく、トナー飛散が発生しており、また、キャリア飛散の発生も見られている。これは、3万枚後の被覆樹脂剥離率が多いことからも判るように、再生処理により充分に被覆樹脂が除去されておらず、未再生芯材である参考例1の芯材Aまで復元できていないことにより、新たに被覆した樹脂の密着性が阻害され、剥離し易い状態にあったためと考えられる。   Further, although the developer G of Comparative Example 2 had a slightly high initial charge amount, it was an acceptable level in the initial image evaluation. However, in the image evaluation after the repeated copying test of 30,000 sheets, the charge amount is remarkably reduced, toner scattering occurs, and carrier scattering is also observed. As can be seen from the fact that the coating resin peeling rate after 30,000 sheets is large, the coating resin has not been sufficiently removed by the regeneration treatment, and the core material A of Reference Example 1 which is an unregenerated core material is restored. This is probably because the adhesiveness of the newly coated resin was hindered by the failure, and it was easily peeled off.

本発明に係る二成分系静電荷像乾式現像剤用キャリアの再生方法によって得られたキャリアは、スペント化したトナーや被覆した樹脂を完全に除去することができ、しかもキャリア特性を初期の特性に回復させることができるのみならず、所望の特性を付与することができる。従って、本発明により得られたキャリアは、必要により樹脂を被覆して二成分系静電荷像乾式現像剤用キャリアとして好適に用いられる。   The carrier obtained by the method for regenerating a carrier for a two-component electrostatic charge image dry developer according to the present invention can completely remove spent toner and coated resin, and makes the carrier characteristics the initial characteristics. In addition to being able to recover, it can impart desired properties. Accordingly, the carrier obtained by the present invention is suitably used as a carrier for a two-component electrostatic charge image dry developer by coating a resin if necessary.

Claims (7)

芯材の表面を樹脂被覆したキャリアの再生処理方法であって、使用済み二成分系現像剤を炭化処理した後、脱炭処理を行い、次いで特性処理を施すことを特徴とする二成分系静電荷像乾式現像剤用キャリアの再生方法。 A method for reclaiming a carrier whose surface is coated with a resin, wherein the used two-component developer is carbonized, decarburized, and then subjected to characteristic treatment. A method for regenerating a carrier for a charge image dry developer. 芯材の表面を樹脂被覆したキャリアの再生処理方法であって、使用済み二成分系現像剤を脱トナー処理によりトナー成分を分離して得られた樹脂被覆キャリアを炭化処理した後、脱炭処理を行い、次いで特性処理を施すことを特徴とする二成分系静電荷像乾式現像剤用キャリアの再生方法。 A method for reclaiming a carrier whose surface is coated with a resin, comprising: carbonizing a resin-coated carrier obtained by separating toner components from a used two-component developer by detoning, and then decarburizing. And then subjecting it to a characteristic treatment. A method for regenerating a carrier for a two-component electrostatic charge image dry developer. 前記炭化処理を500〜800℃の無酸素雰囲気下で行う請求項1又は2記載の二成分系静電荷像乾式現像剤用キャリアの再生方法。 The method for regenerating a carrier for a two-component electrostatic charge image dry developer according to claim 1 or 2, wherein the carbonization is performed in an oxygen-free atmosphere at 500 to 800 ° C. 前記脱炭処理を600〜900℃の燃焼雰囲気下で行う請求項1、2又は3記載の二成分系静電荷像乾式現像剤用キャリアの再生方法。 The method for regenerating a carrier for a two-component electrostatic charge image dry developer according to claim 1, 2 or 3, wherein the decarburization treatment is performed in a combustion atmosphere of 600 to 900 ° C. 前記特性調整処理を1100℃〜1300℃、0〜5体積%の酸素濃度で行う請求項1〜4いずれかに記載の二成分系静電荷像乾式現像剤用キャリアの再生方法。 The method for regenerating a carrier for a two-component electrostatic charge image dry developer according to any one of claims 1 to 4, wherein the characteristic adjustment treatment is performed at 1100C to 1300C and an oxygen concentration of 0 to 5% by volume. 前記特性調整処理前の残存炭素量が0.1重量%以下である請求項1〜5いずれかに記載の二成分系静電荷像乾式現像剤用キャリアの再生方法。 The method for regenerating a carrier for a two-component electrostatic charge image dry developer according to any one of claims 1 to 5, wherein a residual carbon amount before the property adjustment treatment is 0.1 wt% or less. 内部にスクリュ−を具備した加熱可能な円筒体を上下2段に重ねて配置し、更に冷却部を有する装置を用い、上段円筒体部で前記炭化処理、下段円筒体部で前記脱炭処理を連続的に行う請求項1〜6いずれかに記載の二成分系静電荷像乾式現像剤用キャリアの再生方法。 Heatable cylinders with screws inside are arranged in two upper and lower stages, and further using a device having a cooling part, the carbonization process is performed on the upper cylinder part and the decarburization process is performed on the lower cylinder part. The method for regenerating a carrier for a two-component electrostatic charge image dry developer according to any one of claims 1 to 6, which is carried out continuously.
JP2005230266A 2005-08-09 2005-08-09 Method for regenerating carrier for two-component electrostatic charge image dry developer Pending JP2007047341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005230266A JP2007047341A (en) 2005-08-09 2005-08-09 Method for regenerating carrier for two-component electrostatic charge image dry developer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005230266A JP2007047341A (en) 2005-08-09 2005-08-09 Method for regenerating carrier for two-component electrostatic charge image dry developer

Publications (1)

Publication Number Publication Date
JP2007047341A true JP2007047341A (en) 2007-02-22

Family

ID=37850225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005230266A Pending JP2007047341A (en) 2005-08-09 2005-08-09 Method for regenerating carrier for two-component electrostatic charge image dry developer

Country Status (1)

Country Link
JP (1) JP2007047341A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010282168A (en) * 2009-05-01 2010-12-16 Ricoh Co Ltd Two-component developer, image forming apparatus using the same, and process cartridge
WO2021149794A1 (en) * 2020-01-24 2021-07-29 パウダーテック株式会社 Ferrite powder and method for producing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010282168A (en) * 2009-05-01 2010-12-16 Ricoh Co Ltd Two-component developer, image forming apparatus using the same, and process cartridge
WO2021149794A1 (en) * 2020-01-24 2021-07-29 パウダーテック株式会社 Ferrite powder and method for producing same

Similar Documents

Publication Publication Date Title
JP2016194692A (en) Magnetic carrier
JPH0810357B2 (en) Improved toner composition
JP5998991B2 (en) Electrostatic image developing carrier, electrostatic image developing developer, developer cartridge, process cartridge, and image forming apparatus
JP5471680B2 (en) Electrostatic image developing carrier, electrostatic image developer, process cartridge, image forming apparatus, and image forming method
US8431311B2 (en) Resin-filled carrier for electrophotographic developer, and electrophotographic developer using the resin-filled carrier
JP2007047341A (en) Method for regenerating carrier for two-component electrostatic charge image dry developer
US7144670B2 (en) Carrier for electrophotographic developer and process of producing the same
JP3610540B2 (en) Electrostatic charge image developing carrier, method for producing the same, developer and image forming method using the carrier
JP2004004648A (en) Carrier for electrophotographic developer, and its manufacturing method
JP5371584B2 (en) Magnetic carrier, two-component developer and replenishment developer
JP2649344B2 (en) Carrier regeneration method
JP5659847B2 (en) Method for producing electrophotographic carrier
JP2001042576A (en) Method for regenerating carrier
JP3643997B2 (en) Ferrite core for coating carrier, coating carrier for developer, two-component developer and image forming method
JP5597487B2 (en) Manufacturing method of recycled carrier
JP6228330B1 (en) Resin-coated carrier and method for producing the same
JP2014056158A (en) Carrier for electrostatic charge image development, developer for electrostatic charge image development, developer cartridge, process cartridge, and image forming apparatus
JP2011232558A (en) Reproduction method of elastic developing roller
US5965317A (en) Regeneration of carrier and electrophotographic developer containing regenerated carrier
JPH11258856A (en) Method for regenerating carrier and electrophotographic developer using regenerated carrier
JP4457253B2 (en) Toner, toner production method and toner colorant
JP2000122348A (en) Method for regenerating carrier
JP6497141B2 (en) Method for producing carrier for two-component development
JP6659145B2 (en) Magnetic carrier, two-component developer, replenishing developer, and image forming method
JPH09244292A (en) Toner