JP2986291B2 - Sputtering target for magneto-optical recording medium and method for producing the same - Google Patents

Sputtering target for magneto-optical recording medium and method for producing the same

Info

Publication number
JP2986291B2
JP2986291B2 JP4180447A JP18044792A JP2986291B2 JP 2986291 B2 JP2986291 B2 JP 2986291B2 JP 4180447 A JP4180447 A JP 4180447A JP 18044792 A JP18044792 A JP 18044792A JP 2986291 B2 JP2986291 B2 JP 2986291B2
Authority
JP
Japan
Prior art keywords
rare earth
earth element
intermetallic compound
phase
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4180447A
Other languages
Japanese (ja)
Other versions
JPH062131A (en
Inventor
孝 大上
小林  直樹
俊郎 久慈
克也 古村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP4180447A priority Critical patent/JP2986291B2/en
Publication of JPH062131A publication Critical patent/JPH062131A/en
Application granted granted Critical
Publication of JP2986291B2 publication Critical patent/JP2986291B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光磁気記録媒体の磁気
記録層の作製に使用されるスパッタリングターゲット及
びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sputtering target used for producing a magnetic recording layer of a magneto-optical recording medium and a method for producing the same.

【0002】[0002]

【従来の技術およびその問題点】光磁気記録媒体は記
録、再生、消去が可能な媒体として近時において研究開
発が盛んに行われている。これら光磁気記録媒体材料と
しては、希土類元素と遷移金属との合金からなる非晶質
材料が以下の特長を有することから注目されている。す
なわち、(1)非晶質であるため、MnBi等の結晶性
媒体に見られる粒界ノイズがない。(2)膜作成が比較
的容易であり、大面積にわたって均一な膜が得られる。
(3)記録時の媒体の温度上昇が100℃程度でよく、
そのため半導体レーザが使用でき、装置の小型化が可能
である。これら非晶質合金はスパッタリング法により基
板上に薄膜形成される。
2. Description of the Related Art Magneto-optical recording media have been actively researched and developed recently as media capable of recording, reproducing and erasing. As these magneto-optical recording medium materials, amorphous materials made of an alloy of a rare earth element and a transition metal have attracted attention because they have the following features. That is, (1) since it is amorphous, there is no grain boundary noise seen in a crystalline medium such as MnBi. (2) It is relatively easy to prepare a film, and a uniform film can be obtained over a large area.
(3) The temperature rise of the medium during recording may be about 100 ° C.,
Therefore, a semiconductor laser can be used, and the size of the device can be reduced. These amorphous alloys are formed into a thin film on a substrate by a sputtering method.

【0003】そのため、従来から希土類元素と遷移金属
との合金(Tb−Fe−Co,Gd−Tb−Fe)ター
ゲットが種々提案されている。例えば、特開平2−10
7762号公報では、上記金属間化合物相と希土類元素
との微細混合相及び該金属間化合物相の混合組織を有す
る合金ターゲットが開示されている。
Therefore, various alloy (Tb-Fe-Co, Gd-Tb-Fe) targets of rare earth elements and transition metals have been proposed in the past. For example, Japanese Patent Laid-Open No. 2-10
No. 7762 discloses an alloy target having a fine mixed phase of the intermetallic compound phase and the rare earth element and a mixed structure of the intermetallic compound phase.

【0004】しかしながら、上記公報記載の合金ターゲ
ットは、金属間化合物相と希土類元素の微細混合相、あ
るいは金属間化合物相と希土類元素との微細混合相及び
さらに希土類元素の混合相から構成されるため、多量の
希土類元素が存在し、この希土類元素は酸化され易いた
め、目標とする膜組成が得にくく、また膜中に酸素を比
較的多く含むため、メモリーとしての膜特性が劣化する
おそれがあり記録媒体として情報の長期保存に問題が生
じるものである。また、希土類元素と金属間化合物との
スパッタ率が異なるため、希土類元素相が優先的にスパ
ッタリングされ、膜組成がスパッタリング時間とともに
大きく変化する(以下、経時変化という)。さらには、
上記公報、特にその実施例からも明らかなように、この
合金ターゲットを作成する場合、合金粉末として希土類
元素と遷移金属との状態図において、共晶点より希土類
元素のリッチな組成のものを使用するため、機械的粉砕
が困難であり、高価で酸素含有量の多いPREP法等の
方法によらなければならない。
However, the alloy target described in the above publication is composed of a fine mixed phase of an intermetallic compound phase and a rare earth element, a fine mixed phase of an intermetallic compound phase and a rare earth element, and a mixed phase of a rare earth element. Since a large amount of rare earth elements are present and the rare earth elements are easily oxidized, it is difficult to obtain a target film composition, and since the film contains a relatively large amount of oxygen, film characteristics as a memory may be deteriorated. A problem arises in long-term storage of information as a recording medium. In addition, since the sputtering rates of the rare earth element and the intermetallic compound are different, the rare earth element phase is preferentially sputtered, and the film composition changes greatly with the sputtering time (hereinafter referred to as aging). Furthermore,
As is clear from the above-mentioned publications, and particularly from the examples, when preparing this alloy target, in the phase diagram of the rare earth element and the transition metal, an alloy powder having a composition rich in the rare earth element from the eutectic point is used. Therefore, mechanical pulverization is difficult, and it is necessary to use a method such as the PREP method which is expensive and has a high oxygen content.

【0005】本発明は、上記した従来の問題点を解決
し、膜特性の劣化がなく、経時変化も少ない合金ターゲ
ットを提供し、併せて機械的粉砕が可能で粉末の調製が
容易で製造が簡単な合金ターゲットの製造法を提供する
ことを目的とする。
The present invention solves the above-mentioned conventional problems and provides an alloy target which does not deteriorate in film characteristics and has little change with time. In addition, mechanical pulverization is possible, powder preparation is easy, and production is easy. An object of the present invention is to provide a method for manufacturing a simple alloy target.

【0006】[0006]

【問題点を解決するための手段】本発明の光磁気用ター
ゲットは、その成分組成が、Gd,Tb,Dyから選ば
れる少なくとも1種の希土類元素10〜40at%、残
部が実質的にFe,Coの1種もしくは2種の遷移金属
からなり、その組織が、希土類元素と遷移金属との金属
間化合物a相と、前記金属間化合物aと同組成の金属間
化合物aと希土類元素及び微量の遷移金属元素の固溶体
とからなる微細混合相と、前記金属間化合物aとは組成
の異なる希土類元素と遷移金属との金属間化合物b相と
からなっていることを特徴とする。そして、金属間化合
物a相と、金属間化合物aと希土類元素及び微量の遷移
金属元素の固溶体とからなる前記金属間化合物aの周囲
の微細混合相とで複合組織を構成し、これとは別の固体
中に金属間化合物bが構成された組織で構成される。こ
のターゲットを製造する方法は、粒径1000μm以下
の金属間化合物bの組成を有する希土類元素と遷移金属
との合金粉末aと、粒径1000μm以下の希土類元素
と遷移金属との合金状態図において共晶点より遷移金属
元素リッチの組成を有する希土類元素と遷移金属との合
金粉末bとを混合し、ホットプレスことにより得られ
る。なお、前記合金粉末a及びbのうち少なくとも合金
粉末bは超急冷凝固法によって得られたものを使用する
ことができる。
Means for Solving the Problems The magneto-optical target of the present invention has a component composition of at least one rare earth element selected from Gd, Tb and Dy in an amount of 10 to 40 at%, and the balance substantially consisting of Fe, Co is composed of one or two transition metals of Co, and its structure is an intermetallic compound a phase of a rare earth element and a transition metal, an intermetallic compound a having the same composition as the intermetallic compound a, a rare earth element and a trace It is characterized by comprising a fine mixed phase composed of a solid solution of a transition metal element and an intermetallic compound b phase of a rare earth element and a transition metal having different compositions from each other. Then, a composite structure is constituted by the intermetallic compound a phase and the fine mixed phase around the intermetallic compound a comprising the intermetallic compound a and a solid solution of a rare earth element and a trace amount of a transition metal element. Is composed of a structure in which the intermetallic compound b is formed in the solid. The method of manufacturing this target is based on the alloy powder a of a rare earth element having a composition of an intermetallic compound b having a particle size of 1000 μm or less and a transition metal, and the alloy phase diagram of a rare earth element and a transition metal having a particle size of 1000 μm or less. It is obtained by mixing an alloy powder b of a rare earth element having a transition metal element-rich composition from the crystal point and a transition metal, and hot-pressing the mixture. In addition, at least the alloy powder b among the alloy powders a and b may be obtained by a rapid quenching solidification method.

【0007】以下に本発明における限定理由を説明す
る。 (1)希土類元素10〜40at% 希土類元素が10at%以下のターゲットを使用した場
合も40at%を超えるターゲットを使用した場合もそ
れによって作成したスパッタ膜はいずれも垂直磁気異方
性を示さず、保磁力も低いため、光磁気記録層として必
要な特性が得られない。 (2)組織 Tb+Feの共晶相と金属間化合物からなる固体aとそ
れとは違う金属間化合物からなる固体bが混在しないと
スパッタしたときのTbとFeの飛行方向のバランスが
くずれ、固体aが多いときは膜の中心部ほどTbの飛ぶ
量がFeに比べ多く、外周部ほどTbの飛ぶ量はFeに
比べ少なくなる。その結果、膜の中心部ほどTb濃度が
高く外周部ほど濃度の低い膜組成となる。また、固体b
が多くなるとそれとは逆に中心部ほどTb濃度の低い膜
組成となり、いずれも安定した記録膜は得られない。 (3)粒度 粒径1000μmを超える粉末を使用したターゲットを
作製するとターゲット中の空隙が増加し、密度が低くタ
ーゲット使用効率の低下を招き、ターゲットの強度も低
下する。また粒度が粗過ぎると膜組成の均一性にも悪影
響を及ぼす。 (4)TbとFeの共晶点よりもFeリッチな合金の使
用 共晶点よりもTbリッチな合金は粉砕が困難であり、P
REP法により作製されるが酸化が進み、コストも高く
なる。共晶点よりもFeリッチな合金であれば超急冷凝
固法によりリボンを作製し、機械的に粉砕が可能で酸化
も少なく加工性も良い。
The reasons for limitation in the present invention will be described below. (1) Rare earth element 10 to 40 at% Both when using a target with a rare earth element of 10 at% or less and when using a target exceeding 40 at%, none of the sputtered films formed therefrom exhibit perpendicular magnetic anisotropy, Since the coercive force is low, characteristics required for the magneto-optical recording layer cannot be obtained. (2) Structure If the solid a composed of a eutectic phase of Tb + Fe and an intermetallic compound and the solid b composed of a different intermetallic compound do not coexist, the balance in the flight direction of Tb and Fe when sputtered is lost, and the solid a When the number is large, the amount of Tb flying at the center of the film is larger than that of Fe, and the amount of Tb at the outer periphery is smaller than that of Fe. As a result, the film composition has a higher Tb concentration at the center of the film and a lower concentration at the outer periphery. In addition, solid b
In contrast, the film composition has a lower Tb concentration toward the center as the content increases, and a stable recording film cannot be obtained in any case. (3) Particle Size When a target using a powder having a particle size of more than 1000 μm is produced, voids in the target are increased, the density is low, the use efficiency of the target is reduced, and the strength of the target is also reduced. If the particle size is too coarse, the uniformity of the film composition is adversely affected. (4) Use of an alloy richer in Fe than the eutectic point of Tb and Fe An alloy richer in Tb than the eutectic point is difficult to pulverize.
Although it is manufactured by the REP method, the oxidation proceeds and the cost increases. If the alloy is Fe-rich than the eutectic point, a ribbon is produced by a rapid quenching solidification method, and can be mechanically pulverized, has little oxidation, and has good workability.

【0008】[0008]

【作用】上記のように、本発明では、粒径1000μm
以下の金属間化合物(以下、IMCという)bの組成を
有する希土類元素と遷移金属との合金粉末aと、粒径1
000μm以下の希土類元素と遷移金属との合金状態図
において共晶点より遷移金属元素リッチの組成を有する
希土類元素と遷移金属との合金粉末bとを混合し、これ
をホットプレスするため、得られるターゲットは、IM
Ca相とその周囲のIMCaと希土類元素及び微量の遷
移金属元素の固溶体からなる微細混合相とで複合組織を
構成し、これとは別の固体中にIMCbが構成された組
織となる。これを模式的に表せば、IMCb+{IMC
a+[IMCa+αRE]}となり、前記公報に記載さ
れた従来例のIMC+(IMC+RE)の組織を有する
ターゲットと比較して単体のRE相が少なくなる。従っ
てその分、酸化される度合いが少なくなり、膜特性の劣
化が防止され、膜組成の経時変化が少なくなる。
As described above, in the present invention, the particle size is 1000 μm
An alloy powder a of a rare earth element and a transition metal having a composition of the following intermetallic compound (hereinafter referred to as IMC) b,
In an alloy phase diagram of a rare earth element and a transition metal of 000 μm or less, an alloy powder b of a rare earth element and a transition metal having a composition rich in the transition metal element from the eutectic point is mixed, and this is obtained by hot pressing. Target is IM
A composite structure is composed of the Ca phase, its surrounding IMCa, and a fine mixed phase composed of a solid solution of a rare earth element and a trace amount of a transition metal element. The composite structure is a structure in which IMCb is formed in another solid. If this is represented schematically, IMCb + {IMC
a + [IMCa + αRE]}, and the number of single RE phases is smaller than that of the target having the structure of IMC + (IMC + RE) of the conventional example described in the above publication. Therefore, the degree of oxidation is reduced by that amount, deterioration of the film characteristics is prevented, and the change with time of the film composition is reduced.

【0009】本発明において、合金粉末bとして、希土
類元素と遷移金属との合金状態図において共晶点より遷
移金属元素リッチの組成を有する希土類元素と遷移金属
との合金粉末を用いるとは、例えばFe−Tbの合金状
態図では、Tb72%の組成において共晶点を有し、こ
の共晶点よりFeリッチのFe−Tb合金組成を有する
粉末を原料として使用することである。このような合金
組成の粉末bは例えば超急冷凝固法によってリボンを作
製することにより、簡単に粉砕することができる。
In the present invention, the use of an alloy powder of a rare earth element and a transition metal having a composition richer than the eutectic point in the alloy phase diagram of the rare earth element and the transition metal in the alloy phase diagram of the rare earth element and the transition metal means, for example, In the Fe-Tb alloy phase diagram, a eutectic point is present at a composition of 72% Tb, and a powder having an Fe-Tb alloy composition richer than this eutectic point is used as a raw material. The powder b having such an alloy composition can be easily pulverized by producing a ribbon by, for example, a rapid quenching solidification method.

【0010】超急冷凝固法によって得られたリボンは、
アモルファスあるいはアモルファスを一部含む微細析出
結晶粒から構成されている。従って、それを加圧成形し
て作製されたターゲットは従来のインゴット粉砕粉を加
圧成形したものに比べはるかに微細な結晶粒からなる組
織で構成され、高密度に成形される。また、ターゲット
の最大透磁率は従来法によって得られたターゲットのそ
れに比べかなり低くなる。この低い最大透磁率はこの種
のターゲットが一般にマグネトロンスパッタリングされ
ることを考えると、高密度の効果とともにスパッタリン
グ効率の向上に大きく寄与する。
[0010] The ribbon obtained by the rapid quenching solidification method,
It is composed of amorphous or fine precipitated crystal grains partially containing amorphous. Therefore, the target produced by press-molding the target has a structure composed of much finer crystal grains than that obtained by pressure-forming a conventional ingot pulverized powder, and is formed at a high density. In addition, the maximum magnetic permeability of the target is considerably lower than that of the target obtained by the conventional method. Considering that this type of target is generally subjected to magnetron sputtering, this low maximum magnetic permeability greatly contributes to the improvement in sputtering efficiency as well as the effect of high density.

【0011】本発明で使用する少なくとも合金粉末bは
前述のように超急冷凝固法によって作製されるため、粉
末は微細な結晶粒(相)から構成される。従って粉末は
加工性に富み、成形温度を大幅に低下させることができ
る。そのため、組織を構成する各相の反応を抑制するよ
うな低温で高密度に成形することができる。例えば、T
b−Fe−Co系合金の場合、温度800〜950℃
で、充分に高い密度の成形体を得ることが可能である
(相対密度≧95%)。温度以外の成形条件は常法に従
うことができる。
Since at least the alloy powder b used in the present invention is produced by the rapid quenching solidification method as described above, the powder is composed of fine crystal grains (phase). Therefore, the powder is rich in processability and can greatly reduce the molding temperature. Therefore, high-density molding can be performed at a low temperature so as to suppress the reaction of each phase constituting the structure. For example, T
In the case of a b-Fe-Co alloy, the temperature is 800 to 950 ° C.
Thus, it is possible to obtain a molded article having a sufficiently high density (relative density ≧ 95%). The molding conditions other than the temperature can be in accordance with a conventional method.

【0012】得られる合金ターゲットは、次いでスパッ
タリングされる。スパッタリングの手段、条件等は通常
の方法がそのまま適用できる。本発明のターゲットで
は、その組織が微細であり、固体間の反応が抑制されて
いるため、固体間の組成差が維持されている。従って、
スパッタリングに際し、ターゲットと膜間の組成差が少
なく、基板上に形成される膜組成のばらつきがなく、均
一で磁気記録特性のばらつきがない磁気記録層が得られ
る。
[0012] The resulting alloy target is then sputtered. A usual method can be directly applied to the means and conditions of sputtering. In the target of the present invention, the structure is fine and the reaction between the solids is suppressed, so that the composition difference between the solids is maintained. Therefore,
During sputtering, a magnetic recording layer is obtained in which the composition difference between the target and the film is small, there is no variation in the composition of the film formed on the substrate, and there is no variation in the magnetic recording characteristics.

【0013】以下に実施例に従い本発明をより詳しく説
明する。
Hereinafter, the present invention will be described in more detail with reference to Examples.

【実施例1】純度99.9%のテルビューム、電解鉄、
電解コバルトを原料として、合金b,Tb:Fe=8
6:14(重量%)、合金a,Tb:Fe:Co=2
5:69:6(重量%)をそれぞれアーク溶解法で溶製
し得られた合金をAr雰囲気中、先端に射出穴を有する
石英管中で溶解後、2000RPMで回転している銅ロ
ール上へ射出することにより超急冷リボンを作製した。
その合金をそれぞれ有機溶媒中で粉砕、分級して100
0μm以下の粉末を調製した。b合金粉末112gとa
合金粉末239gをAr雰囲気中ボールミルで混合した
後、内径102mmのカーボンモールドに充填し、Ar
雰囲気中で950℃に昇温後500kg/cm2で1時間
加圧し、室温まで冷却した。
Example 1 Terbume of 99.9% purity, electrolytic iron,
Alloy b, Tb: Fe = 8 using electrolytic cobalt as raw material
6:14 (% by weight), alloy a, Tb: Fe: Co = 2
5: 69: 6 (% by weight) was melted by an arc melting method, and the obtained alloys were melted in a quartz tube having an injection hole at the tip in an Ar atmosphere, and then placed on a copper roll rotating at 2000 RPM. A super-quenched ribbon was produced by injection.
Each alloy is pulverized and classified in an organic solvent to obtain a 100
A powder of 0 μm or less was prepared. b alloy powder 112g and a
After 239 g of the alloy powder was mixed in a ball mill in an Ar atmosphere, the mixture was filled into a carbon mold having an inner diameter of 102 mm,
After the temperature was raised to 950 ° C. in an atmosphere, the pressure was increased at 500 kg / cm 2 for 1 hour, followed by cooling to room temperature.

【0014】このようにして得られた合金ターゲットに
は、ヒビ、割れ等は観察されなかった。このターゲット
の組成は、Tb22,Fe72.4,Co5.6(原子
%)であった。またこのターゲットの組織はTb2(F
eCo)17相の粒子とTb(FeCo)2相の周囲に微
細なTb(FeCo)2相及びTb中に(FeCo)を
固溶した微細なαTb相の混合相を構成した粒子から成
り立っていた。このターゲット(直径102mm、厚さ
5mm)を使用してガラス基板、直上固定、Arガス圧
3×(1/103)Torr、電力5KW/cm2の条件
でスパッタリングした。基板の直上中心位置から半径方
向100mmまでの膜組成をEPMAで定量分析した結
果、そのばらつきはTbで0.1at%以内であった。
また、ターゲット組成と膜組成平均値とのずれは0.2
at%以内、スパッタリング経過1時間及び10時間時
の膜組成平均値のずれは0.2at%以内であった。そ
して、その相対密度は99%で、酸素含有量は400p
pm、最大透磁率は3.2であった。
No cracks, cracks, etc. were observed in the alloy target thus obtained. The composition of this target was Tb22, Fe72.4, Co5.6 (atomic%). The target organization is Tb 2 (F
eCo) 17 phase particles, a fine Tb (FeCo) 2 phase around the Tb (FeCo) 2 phase, and particles comprising a mixed phase of a fine αTb phase in which (FeCo) is dissolved in Tb. . Using this target (diameter: 102 mm, thickness: 5 mm), sputtering was performed under the conditions of a glass substrate, fixed directly above, an Ar gas pressure of 3 × (1/10 3 ) Torr, and a power of 5 KW / cm 2 . As a result of quantitative analysis of the film composition from the center position immediately above the substrate to 100 mm in the radial direction by EPMA, the variation was within 0.1 at% in Tb.
The difference between the target composition and the average value of the film composition is 0.2
The deviation of the average value of the film composition at the time of 1 hour and 10 hours after the sputtering was within 0.2 at%. And the relative density is 99% and the oxygen content is 400p
pm and the maximum magnetic permeability were 3.2.

【0015】[0015]

【実施例2】実施例1と同様の方法で合金b,Tb:F
e:Co=65.5:32:2.5(重量%)、合金
a,Tb:Fe:Co=25:69.5:5.5(重量
%)のそれぞれ590μm以下の粉末を調製し、合金粉
末b225g及び合金粉末a122gを混合して800
℃、500kg/cm2で熱間加圧することによりター
ゲットを作製した。ターゲットには、ヒビ、割れは見ら
れなかった。ターゲット組成はTb27,Fe68,C
o5(原子%)で組織は、Tb(FeCo)相+αTb
相の混合相が多い以外は実施例1と同様の組織であっ
た。また、スパッタリングの結果、膜組成のばらつきは
0.2at%、膜とターゲットの組成ズレは0.2at
%、膜組成の経時変化は1時間と10時間で0.2at
%であった。そして、その相対密度は98.5%で、酸
素含有量は350ppm、最大透磁率は3.0であっ
た。
Embodiment 2 Alloy b, Tb: F in the same manner as in Embodiment 1.
e: Co = 65.5: 32: 2.5 (% by weight), powders of alloy a and Tb: Fe: Co = 25: 69.5: 5.5 (% by weight), each having 590 μm or less, are prepared. Mixing 225 g of alloy powder b and 122 g of alloy powder a
A target was prepared by hot pressing at 500 ° C. and 500 kg / cm 2 . No cracks or cracks were found on the target. The target composition is Tb27, Fe68, C
At o5 (atomic%), the structure is Tb (FeCo) phase + αTb
The structure was the same as that of Example 1 except that there were many mixed phases. As a result of the sputtering, the variation in the film composition was 0.2 at%, and the composition deviation between the film and the target was 0.2 at%.
%, The change with time of the film composition is 0.2 at for 1 hour and 10 hours.
%Met. The relative density was 98.5%, the oxygen content was 350 ppm, and the maximum magnetic permeability was 3.0.

【0016】[0016]

【実施例3】実施例1と同様にアーク溶解法で溶製した
合金b,Tb:Fe=86:14(重量%)を超急冷法
によりリボンを作製し、有機溶媒中で粉砕、分級して2
00μm以下の粉末を調製した。また、合金a,Tb:
Fe:Co=25:69.5:5.5(重量%)をアー
ク溶解法で溶製し、有機溶媒中で粉砕、分級することに
より200μm以下の粉末を調製した。合金粉末b,2
25g及び合金粉末a,122gを混合して850℃、
220kg/cm2で加圧成形することにより、ターゲ
ットを作製した。ターゲットには、ヒビ、割れは見られ
なかった。組成、組織はいずれも実施例2と同様で膜組
成のばらつきは0.2at%、膜とターゲットの組成の
ズレは0.3at%、膜組成の経時変化は0.3at%
と良好な値を示した。そして、その相対密度は98.8
%で、酸素含有量は350ppm、最大透磁率は3.1
であった。
Example 3 In the same manner as in Example 1, a ribbon was prepared from the alloy b, Tb: Fe = 86: 14 (% by weight) produced by the arc melting method by a super-quenching method, and pulverized and classified in an organic solvent. 2
A powder having a size of 00 μm or less was prepared. Also, alloys a, Tb:
Fe: Co = 25: 69.5: 5.5 (% by weight) was melted by an arc melting method, and pulverized and classified in an organic solvent to prepare a powder of 200 μm or less. Alloy powder b, 2
850 ° C. by mixing 25 g and alloy powder a, 122 g,
A target was produced by pressure molding at 220 kg / cm 2 . No cracks or cracks were found on the target. Both the composition and the structure were the same as in Example 2. The variation in the film composition was 0.2 at%, the difference between the composition of the film and the target was 0.3 at%, and the change with time in the film composition was 0.3 at%.
And a good value. And its relative density is 98.8
%, The oxygen content is 350 ppm, and the maximum magnetic permeability is 3.1.
Met.

【0017】[0017]

【比較例1】熱間加工条件を1100℃にした以外は実
施例2と同様にしてターゲットを作製した。ターゲット
にはヒビ、割れは見られなかった。ターゲットの組織
は、Tb(FeCo)2相とTb(FeCo)3相からな
っていた。そのターゲットを実施例1と同様の方法でス
パッタリングしたところ、膜組成のばらつきは直上中心
と半径方向70mm位置ではTb値で約2at%の差が
あった。そして、その相対密度は100%で、酸素含有
量は480ppm、最大透磁率は5.5であった。
Comparative Example 1 A target was prepared in the same manner as in Example 2 except that the hot working conditions were changed to 1100 ° C. No cracks or cracks were found on the target. The structure of the target was composed of a Tb (FeCo) 2 phase and a Tb (FeCo) 3 phase. When the target was sputtered in the same manner as in Example 1, the variation in the film composition showed a difference of about 2 at% in Tb value at a position 70 mm in the radial direction from the center immediately above. The relative density was 100%, the oxygen content was 480 ppm, and the maximum magnetic permeability was 5.5.

【0018】[0018]

【比較例2】合金a,Tb:Fe:Co=25:69:
6(重量%)をアーク溶解法で溶製し、有機溶媒中で粉
砕分級して300μm以下の粉末aを調製した。粉末
0.266gとPREP法で製造した250μm以下の
99.9%Tb粉末をアルゴン雰囲気中ボールミルで混
合後、内径102mmのカーボンモールドに充填し、ア
ルゴン雰囲気中1100℃、220kg/cm2で1時
間加圧成形した。ターゲットにはヒビ、割れは見られな
かった。そのターゲットの相対密度は84%と実施例と
比べて低く、また不純物酸素含有量は1500ppmと
実施例1に比べ高かった。また、このターゲットをスパ
ッタリングして得られた膜の最大透磁率は17.0であ
った。
Comparative Example 2 Alloy a, Tb: Fe: Co = 25: 69:
6 (% by weight) was melted by an arc melting method, and pulverized and classified in an organic solvent to prepare a powder a having a size of 300 μm or less. 0.266 g of the powder and 99.9% Tb powder of 250 μm or less produced by the PREP method were mixed in a ball mill in an argon atmosphere, and then filled in a carbon mold having an inner diameter of 102 mm, and then placed in an argon atmosphere at 1100 ° C. and 220 kg / cm 2 for 1 hour. It was molded under pressure. No cracks or cracks were found on the target. The relative density of the target was 84%, which was lower than that of Example, and the impurity oxygen content was 1500 ppm, which was higher than that of Example 1. The maximum magnetic permeability of the film obtained by sputtering this target was 17.0.

【0019】[0019]

【発明の効果】以上のような本発明によれば、単独のR
E量が少ないため、酸化が少なく、ターゲット組成と膜
組成とのズレは非常に小さく、膜特性の劣化は生じず、
さらには、膜組成の経時変化は極めて僅かである。そし
て、このターゲットを作製する際、合金bを超急冷凝固
法により得ると粉末の粉砕が容易に行えその結晶粒が微
細となり成形に際して低温での成形が可能となり、各相
の反応が抑制され高密度成形が行え、製造工程の簡略
化、コストの低減が図れる。
According to the present invention as described above, a single R
Since the amount of E is small, the oxidation is small, the deviation between the target composition and the film composition is very small, and the film characteristics do not deteriorate,
Further, the change with time of the film composition is extremely small. When producing this target, if the alloy b is obtained by the ultra-quick solidification method, the powder can be easily pulverized, the crystal grains thereof become fine, and molding can be performed at a low temperature at the time of molding. Density molding can be performed, and the manufacturing process can be simplified and cost can be reduced.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古村 克也 福岡県大牟田市大字唐船2081 三井金属 鉱業株式会社薄膜材料事業部内 (56)参考文献 特開 平2−107762(JP,A) 特開 昭64−25977(JP,A) 特開 昭63−274764(JP,A) (58)調査した分野(Int.Cl.6,DB名) C23C 14/00 - 14/58 B22F 9/08 C22C 33/02 G11B 7/24 G11B 11/10 ECLA JOIS────────────────────────────────────────────────── ─── Continued on the front page (72) Katsuya Furumura, inventor 2081 Karafune, Omuta-shi, Fukuoka Mitsui Kinzoku Mining Co., Ltd. Thin Film Materials Division (56) References JP-A-2-107762 (JP, A) JP-A Sho64 -25977 (JP, A) JP-A-63-274764 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C23C 14/00-14/58 B22F 9/08 C22C 33/02 G11B 7/24 G11B 11/10 ECLA JOIS

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 成分組成が、Gd,Tb,Dyから選ば
れる少なくとも1種の希土類元素10〜40at%、残
部が実質的にFe,Coの1種もしくは2種の遷移金属
からなり、その組織が、希土類元素と遷移金属との金属
間化合物a相と、前記金属間化合物aと同組成の金属間
化合物aと希土類元素及び微量の遷移金属元素の固溶体
とからなる微細混合相と、前記金属間化合物aとは組成
の異なる希土類元素と遷移金属との金属間化合物b相と
からなっていることを特徴とする光磁気記録媒体用スパ
ッタリングターゲット。
1. A composition comprising at least one rare earth element selected from Gd, Tb and Dy in an amount of 10 to 40 at%, and the balance substantially consisting of one or two transition metals of Fe and Co. Is an intermetallic compound a phase of a rare earth element and a transition metal, a fine mixed phase comprising a solid solution of an intermetallic compound a having the same composition as the intermetallic compound a and a rare earth element and a trace amount of a transition metal element, A sputtering target for a magneto-optical recording medium, characterized in that the inter-compound a comprises an intermetallic compound b phase of a rare earth element and a transition metal having different compositions.
【請求項2】 金属間化合物a相と、金属間化合物aと
希土類元素及び微量の遷移金属元素の固溶体からなる前
記金属間化合物a相の周囲の微細混合相とで複合組織を
構成し、これとは別の固体中に金属間化合物bが構成さ
れた組織を有する請求項1記載の光磁気記録媒体用スパ
ッタリングターゲット。
2. A composite structure is constituted by an intermetallic compound a phase, and a fine mixed phase around the intermetallic compound a phase comprising a solid solution of an intermetallic compound a, a rare earth element and a trace amount of a transition metal element. 2. The sputtering target for a magneto-optical recording medium according to claim 1, wherein the sputtering target has a structure in which the intermetallic compound b is formed in another solid.
【請求項3】 粒径1000μm以下の金属間化合物b
の組成を有する希土類元素と遷移金属との合金粉末a
と、粒径1000μm以下の希土類元素と遷移金属との
合金状態図において共晶点より遷移金属元素リッチの組
成を有する希土類元素と遷移金属との合金粉末bとを混
合し、これをホットプレスする請求項1記載の光磁気記
録媒体用スパッタリングターゲットを製造する方法。
3. An intermetallic compound b having a particle size of 1000 μm or less.
Powder a of a rare earth element having a composition of
And an alloy powder b of a rare earth element and a transition metal having a composition rich in the transition metal element from the eutectic point in the alloy phase diagram of the rare earth element and the transition metal having a particle diameter of 1000 μm or less, and hot-pressed. A method for producing a sputtering target for a magneto-optical recording medium according to claim 1.
【請求項4】 前記合金粉末a及びbのうち少なくとも
合金粉末bは超急冷凝固法によって得られたものを使用
する請求項3記載の方法。
4. The method according to claim 3, wherein at least the alloy powder b among the alloy powders a and b is obtained by a rapid solidification method.
JP4180447A 1992-06-15 1992-06-15 Sputtering target for magneto-optical recording medium and method for producing the same Expired - Fee Related JP2986291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4180447A JP2986291B2 (en) 1992-06-15 1992-06-15 Sputtering target for magneto-optical recording medium and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4180447A JP2986291B2 (en) 1992-06-15 1992-06-15 Sputtering target for magneto-optical recording medium and method for producing the same

Publications (2)

Publication Number Publication Date
JPH062131A JPH062131A (en) 1994-01-11
JP2986291B2 true JP2986291B2 (en) 1999-12-06

Family

ID=16083394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4180447A Expired - Fee Related JP2986291B2 (en) 1992-06-15 1992-06-15 Sputtering target for magneto-optical recording medium and method for producing the same

Country Status (1)

Country Link
JP (1) JP2986291B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4321851A1 (en) * 1993-07-01 1995-01-12 Philips Patentverwaltung Magneto-optical recording medium
JPH0790567A (en) * 1993-07-30 1995-04-04 Hitachi Metals Ltd Target material for magneto-optical recording medium and its production
US6117282A (en) * 1997-09-23 2000-09-12 Kuo; Po-Cheng Method of producing amorphous Co-Tb magnetic recording thin films
CN107799253A (en) * 2017-10-27 2018-03-13 包头稀土研究院 The manufacture method of rare earth metal rotary target material

Also Published As

Publication number Publication date
JPH062131A (en) 1994-01-11

Similar Documents

Publication Publication Date Title
US4992095A (en) Alloy target used for manufacturing magneto-optical recording medium
US8158276B2 (en) FePtP-alloy magnetic thin film
JPH06184740A (en) Target for optomagnetic recording medium and production thereof
JPS61139637A (en) Target for sputter and its manufacture
JP2986291B2 (en) Sputtering target for magneto-optical recording medium and method for producing the same
JPH04129203A (en) Permanent magnet powder
US4854979A (en) Method for the manufacture of an anisotropic magnet material on the basis of Fe, B and a rare-earth metal
US5607780A (en) Target for magneto-optical recording medium and process for production thereof
JP3076141B2 (en) Magnetic thin film target material and method of manufacturing the same, Fe-MC soft magnetic film and method of manufacturing the same, and magnetic head and magnetic recording / reproducing apparatus using the same
JP2625163B2 (en) Manufacturing method of permanent magnet powder
JPS60230903A (en) Production of alloy target
JPH02107762A (en) Alloy target for magneto-optical recording
JPH0515778B2 (en)
JPS6270550A (en) Material for target
JP4573381B2 (en) Manufacturing method of sputtering target
JP2000150213A (en) Rare earth magnetic powder for bonded magnet and its manufacture
JP2597380B2 (en) Method for producing rare earth metal-transition metal target alloy powder and method for producing rare earth metal-transition metal target
JP2894695B2 (en) Rare earth metal-iron group metal target and method for producing the same
JP3534264B2 (en) Target material for magnetic thin film and method for manufacturing the same
JP2002226970A (en) Co TARGET AND PRODUCTION METHOD THEREFOR
JP2001217108A (en) Magnet composition and bonded magnet using the same
JPH01159373A (en) Target for sputtering
JPS6160803A (en) Production of highly brittle alloy sputtering target for thin soft magnetic film
JPS5921943B2 (en) Rare earth cobalt permanent magnet alloy
JPH0119449B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees