JP2985413B2 - Method for manufacturing compound semiconductor device - Google Patents

Method for manufacturing compound semiconductor device

Info

Publication number
JP2985413B2
JP2985413B2 JP3227568A JP22756891A JP2985413B2 JP 2985413 B2 JP2985413 B2 JP 2985413B2 JP 3227568 A JP3227568 A JP 3227568A JP 22756891 A JP22756891 A JP 22756891A JP 2985413 B2 JP2985413 B2 JP 2985413B2
Authority
JP
Japan
Prior art keywords
substrate
group
compound semiconductor
temperature
source gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3227568A
Other languages
Japanese (ja)
Other versions
JPH06224120A (en
Inventor
利一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3227568A priority Critical patent/JP2985413B2/en
Publication of JPH06224120A publication Critical patent/JPH06224120A/en
Application granted granted Critical
Publication of JP2985413B2 publication Critical patent/JP2985413B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は化合物半導体装置の製造
方法に係り,特に,Si基板上に化合物半導体膜を成長
する方法に関する。
The present invention relates to a method for manufacturing a compound semiconductor device, and more particularly to a method for growing a compound semiconductor film on a Si substrate.

【0002】近年,Siに比べて高い電子移動度を有す
る化合物半導体を用いる電子デバイスの開発が進められ
ている。ところが,化合物半導体基板はSi基板に比べ
て小口径のものしか開発されていないし,Si基板に比
べて脆くて割れやすい。
In recent years, electronic devices using a compound semiconductor having higher electron mobility than Si have been developed. However, only a compound semiconductor substrate having a smaller diameter than the Si substrate has been developed, and it is fragile and easily broken as compared with the Si substrate.

【0003】そのため,Si基板上に化合物半導体膜を
形成することが試みられている。
For this reason, attempts have been made to form a compound semiconductor film on a Si substrate.

【0004】[0004]

【従来の技術】従来,Si基板上に化合物半導体膜を形
成する際,まずSi基板上の自然酸化膜を除去するため
に水素中熱処理が行われていた。ところが 900℃以下で
は自然酸化膜の除去が行えず,表面に酸化膜が残ってし
まうといった問題があった。
2. Description of the Related Art Conventionally, when forming a compound semiconductor film on a Si substrate, first, a heat treatment in hydrogen has been performed to remove a natural oxide film on the Si substrate. However, when the temperature is lower than 900 ° C., there is a problem that the natural oxide film cannot be removed and the oxide film remains on the surface.

【0005】1000℃以上の高温で水素中熱処理を行え
ば,自然酸化膜は除去されるが,この処理をSi基板に
Siデバイスを作製した後行えば,Siデバイスが劣化
してしまうといった問題がある。
If a heat treatment in hydrogen at a high temperature of 1000 ° C. or more is performed, a natural oxide film is removed. However, if this treatment is performed after fabricating a Si device on a Si substrate, there is a problem that the Si device is deteriorated. is there.

【0006】これに対して,800 ℃以上の温度でSiを
成長するための原料ガスを流しながらSi基板を熱処理
して自然酸化膜は除去し,そのあと,Siを成長するた
めの原料ガスを流しながら化合物半導体膜を形成する温
度まで降温することが知られている(例えば特開平3−
55826 )。
On the other hand, while flowing a source gas for growing Si at a temperature of 800 ° C. or more, the Si substrate is heat-treated to remove the natural oxide film, and then the source gas for growing Si is removed. It is known that the temperature is lowered to a temperature at which a compound semiconductor film is formed while flowing (see, for example,
55826).

【0007】[0007]

【発明が解決しようとする課題】しかし,この方法も欠
陥の少ない化合物半導体膜を形成するためには必ずしも
十分ではなく,反応管の管壁やサセプタに付着した不純
物が降温中にSi基板に取り込まれ,表面欠陥の原因に
なるといった問題がある。
However, this method is not always enough to form a compound semiconductor film having few defects, and impurities adhering to the tube wall of the reaction tube and the susceptor are taken into the Si substrate during the temperature drop. This may cause surface defects.

【0008】それゆえ,さらに改良された方法が必要と
される。本発明は上記の問題に鑑み,Si基板上に欠陥
の少ない化合物半導体膜を形成する方法を提供すること
を目的とする。
[0008] Therefore, a need exists for a further improved method. The present invention has been made in view of the above problems, and has as its object to provide a method for forming a compound semiconductor film with few defects on a Si substrate.

【0009】[0009]

【課題を解決するための手段】図1は本発明を実施する
装置を説明するための図である。上記課題は,Si基板
1を 800℃以上の温度でSiを含む雰囲気に曝す第1の
工程と,その後,該Si基板1をV族元素を含む原料ガ
スを含む雰囲気中で,III−V族化合物半導体を成長す
る温度まで降温する第2の工程と,その後,該Si基板
1を III族元素を含む原料ガスとV族元素を含む原料ガ
スとを含む雰囲気に曝して,該Si基板1上に III−V
族化合物半導体膜を成長する第3の工程とを有する化合
物半導体装置の製造方法によって解決される。
FIG. 1 is a diagram for explaining an apparatus embodying the present invention. The above-mentioned problem is caused by a first step of exposing the Si substrate 1 to an atmosphere containing Si at a temperature of 800 ° C. or higher, and thereafter, subjecting the Si substrate 1 to an atmosphere containing a source gas containing a group V element. A second step of lowering the temperature to a temperature at which the compound semiconductor is grown, and thereafter exposing the Si substrate 1 to an atmosphere containing a source gas containing a group III element and a source gas containing a group V element, III-V
And a third step of growing a group III compound semiconductor film.

【0010】また,Si基板1を 800℃以上の温度でS
iを含む雰囲気に曝す第1の工程と,その後,該Si基
板1をVI族元素又はV族元素を含む原料ガスを含む雰囲
気中で,II−VI族化合物半導体を成長する温度まで降温
する第2の工程と,その後,該Si基板1をII族元素を
含む原料ガスとVI族元素を含む原料ガスとを含む雰囲気
に曝して該Si基板1上にII−VI族化合物半導体膜を成
長する第3の工程とを有する化合物半導体装置の製造方
法によって解決される。
The Si substrate 1 is heated at a temperature of 800 ° C.
a first step of exposing the substrate to an atmosphere containing i, and thereafter, a step of lowering the temperature of the Si substrate 1 to a temperature for growing a II-VI compound semiconductor in an atmosphere containing a source gas containing a group VI element or a group V element. Step 2, and thereafter, the Si substrate 1 is exposed to an atmosphere containing a source gas containing a group II element and a source gas containing a group VI element to grow a II-VI group compound semiconductor film on the Si substrate 1. A third method is a method for manufacturing a compound semiconductor device.

【0011】また,Si基板1を 800℃以上の温度でS
iを含む雰囲気に曝す第1の工程と,その後,該Si基
板1をV族元素を含む原料ガスを含む雰囲気中で, III
−V族化合物半導体を成長する温度まで降温する第2の
工程と,その後,該Si基板1を III族元素を含む原料
ガスとV族元素を含む原料ガスとを含む雰囲気に曝して
該Si基板1上に III−V族化合物半導体膜を成長する
第3の工程と,その後,該Si基板1をII族元素を含む
原料ガスとVI族元素を含む原料ガスとを含む雰囲気に曝
して該 III−V族化合物半導体膜上にII−VI族化合物半
導体膜を成長する第4の工程とを有する化合物半導体装
置の製造方法によって解決される。
The Si substrate 1 is heated at a temperature of 800.degree.
a first step of exposing the Si substrate 1 to an atmosphere containing a source gas containing a group V element.
A second step of lowering the temperature to a temperature at which a group V compound semiconductor is grown, and thereafter exposing the Si substrate 1 to an atmosphere containing a source gas containing a group III element and a source gas containing a group V element. A third step of growing a group III-V compound semiconductor film on the substrate 1, and thereafter exposing the Si substrate 1 to an atmosphere containing a source gas containing a group II element and a source gas containing a group VI element. And a fourth step of growing a II-VI compound semiconductor film on the group V compound semiconductor film.

【0012】[0012]

【作用】本発明では,Si基板1を 800℃以上の温度で
Siを含む雰囲気に曝す第1の工程で自然酸化膜を除去
し,その後,第2の工程では,Si基板1をV族元素を
含む原料ガスを含む雰囲気中で III−V族化合物半導体
を成長する温度まで降温することによりV族元素をSi
基板1表面に付着させて,Si基板1が酸化されたり不
純物に汚染されたりすること防止している。このように
すれば,Si基板1を III族元素を含む原料ガスとV族
元素を含む原料ガスとを含む雰囲気に曝して,Si基板
1上に III−V族化合物半導体膜を成長する第3の工程
で,欠陥の少ない III−V族化合物半導体膜を形成する
ことができる。
According to the present invention, a natural oxide film is removed in a first step of exposing the Si substrate 1 to an atmosphere containing Si at a temperature of 800 ° C. or higher. The temperature is lowered to a temperature at which a group III-V compound semiconductor is grown in an atmosphere containing a source gas containing
The Si substrate 1 is attached to the surface of the substrate 1 to prevent the Si substrate 1 from being oxidized or contaminated by impurities. In this case, the Si substrate 1 is exposed to an atmosphere containing a source gas containing a group III element and a source gas containing a group V element, and a third III-V compound semiconductor film is grown on the Si substrate 1. In this step, a group III-V compound semiconductor film with few defects can be formed.

【0013】また,Si基板1を 800℃以上の温度でS
iを含む雰囲気に曝す第1の工程で自然酸化膜を除去
し,その後,第2の工程では,Si基板1をVI族元素又
はV族元素を含む原料ガスを含む雰囲気中でII−VI族化
合物半導体を成長する温度まで降温することによりVI族
元素又はV族元素をSi基板1表面に付着させて,Si
基板1が酸化されたり不純物に汚染されたりすること防
止している。このようにすれば,Si基板1をII族元素
を含む原料ガスとVI族元素を含む原料ガスとを含む雰囲
気に曝して,Si基板1上にII−VI族化合物半導体膜を
成長する第3の工程で,欠陥の少ないII−VI族化合物半
導体膜を形成することができる。
The Si substrate 1 is heated at 800 ° C. or
In a first step of exposing to an atmosphere containing i, the natural oxide film is removed, and then, in a second step, the Si substrate 1 is placed in an atmosphere containing a source gas containing a group VI element or a group V element in a II-VI group atmosphere. By lowering the temperature to the temperature at which the compound semiconductor is grown, the group VI element or the group V element is attached to the surface of the Si
The substrate 1 is prevented from being oxidized or contaminated by impurities. In this manner, the third step of exposing the Si substrate 1 to an atmosphere containing a source gas containing a group II element and a source gas containing a group VI element to grow a II-VI group compound semiconductor film on the Si substrate 1 is performed. In this step, a II-VI group compound semiconductor film with few defects can be formed.

【0014】さらに,Si基板上の III−V族化合物半
導体膜上にII−VI族化合物半導体膜を成長するようにす
れば,欠陥の少ないII−VI族化合物半導体結晶のエピタ
キシャル膜が形成できる。
Further, if a group II-VI compound semiconductor film is grown on a group III-V compound semiconductor film on a Si substrate, an epitaxial film of a group II-VI compound semiconductor crystal with few defects can be formed.

【0015】[0015]

【実施例】図1は本発明を実施する装置を説明するため
の図で,減圧MOCVD装置を模式的に示すものであ
り,1はSi基板,2は石英トレイ,3はサセプタ,4
はガス供給管,4a〜4dはガス導入口, 5は反応管,6は
RFコイル,7はガス排気口,8は弁を表す。
1 is a view for explaining an apparatus for carrying out the present invention, schematically showing a reduced pressure MOCVD apparatus, wherein 1 is a Si substrate, 2 is a quartz tray, 3 is a susceptor, and 4 is a susceptor.
Represents a gas supply pipe, 4a to 4d represent gas inlets, 5 represents a reaction tube, 6 represents an RF coil, 7 represents a gas exhaust port, and 8 represents a valve.

【0016】サセプタ3はカーボン製で,表面にSiC
コートを施してある。反応管5は石英製である。第1の
実施例について説明する。
The susceptor 3 is made of carbon and has a surface made of SiC.
Coated. The reaction tube 5 is made of quartz. A first embodiment will be described.

【0017】(100)Si基板1を石英トレイ2に導
入し,水素(H2 )とモノシラン(SiH4 )をガス導
入口から反応管5内に流す。水素流量は12 SLM(stand
ardliter per minute), モノシラン流量は1SCCM(stan
dard cubic centimeter perminute)とし,圧力は76T
orrとする。
(100) The Si substrate 1 is introduced into the quartz tray 2, and hydrogen (H 2 ) and monosilane (SiH 4 ) are flowed into the reaction tube 5 from the gas inlet. Hydrogen flow rate is 12 SLM (stand
ardliter per minute, monosilane flow rate is 1 SCCM (stan
dard cubic centimeter per minute), pressure is 76T
orr.

【0018】サセプタ3をRFコイル6により加熱し,
Si基板1を 850℃で10分間保持し,Si基板1の自
然酸化膜を除去した。次いで,アルシン(AsH3 )を
20〜50 SCCM 流し,水素とモノシランを遮断し,そ
の状態でSi基板温度を 450℃まで降温する。Si基板
1表面には,Asの単層が生じてSi基板1を酸化や汚
染から保護する。この処理において,水素とモノシラン
とアルシンを流した状態が 850℃である時間つづくよう
にし,それから水素とモノシランを遮断して降温するよ
うにしてもい。
The susceptor 3 is heated by the RF coil 6,
The Si substrate 1 was kept at 850 ° C. for 10 minutes, and the natural oxide film on the Si substrate 1 was removed. Next, arsine (AsH 3 ) is flown at 20 to 50 SCCM to shut off hydrogen and monosilane, and the temperature of the Si substrate is lowered to 450 ° C. in this state. A single layer of As is formed on the surface of the Si substrate 1 to protect the Si substrate 1 from oxidation and contamination. In this treatment, the flow of hydrogen, monosilane, and arsine may be continued for a period of time at 850 ° C., and then the temperature may be lowered by cutting off hydrogen and monosilane.

【0019】次いで, 450℃で,TMG(トリメチルガ
リウム)とアルシンを,それぞれ,8.9 SCCM,200 SCCM
流し,非晶質GaAsを約 100Åの厚さに成長させ,次
いで,Si基板温度を 700℃に昇温し,トリメチルガリ
ウムとアルシンを,それぞれ,2.5 SCCM,100 SCCM流
し,GaAs結晶を約3μm成長させた。先に形成した
非晶質GaAsも結晶化し,(100)Si基板1にエ
ピタキシャルに接合された(100)GaAs結晶膜が
得られた。
Then, at 450 ° C., TMG (trimethylgallium) and arsine were respectively added to 8.9 SCCM and 200 SCCM.
To grow the amorphous GaAs to a thickness of about 100 °, then raise the temperature of the Si substrate to 700 ° C., and flow trimethylgallium and arsine at 2.5 SCCM and 100 SCCM, respectively, to grow the GaAs crystal to about 3 μm. I let it. The previously formed amorphous GaAs was also crystallized, and a (100) GaAs crystal film epitaxially bonded to the (100) Si substrate 1 was obtained.

【0020】その後,水素雰囲気中で 850℃,10分間
のポストアニールを行った。この処理によりSi基板1
とGaAs結晶膜との界面の転位が減少する。このよう
にして得られたGaAs結晶膜の表面欠陥密度を顕微鏡
観察により測定した結果を表1に示す。表1には水素雰
囲気中で1000℃,10分間の熱処理をした後, 700℃で
成長させたGaAs結晶膜の表面欠陥密度も比較のため
に示している。
Thereafter, post-annealing was performed at 850 ° C. for 10 minutes in a hydrogen atmosphere. By this processing, the Si substrate 1
Dislocation at the interface between the silicon and the GaAs crystal film is reduced. Table 1 shows the results of measuring the surface defect density of the GaAs crystal film thus obtained by microscopic observation. Table 1 also shows the surface defect density of the GaAs crystal film grown at 700 ° C. after heat treatment at 1000 ° C. for 10 minutes in a hydrogen atmosphere for comparison.

【0021】[0021]

【表1】 表面欠陥密度 H2/SiH4 ,AsH3処理 5cm-2以下 H2処理(従来例) 約30cm-2 表1に見るように,本発明の方法によれば,表面欠陥密
度を著しく減少させたGaAs結晶膜を得ることができ
る。
TABLE 1 surface defect density H 2 / SiH 4, AsH 3 processing 5 cm -2 or less H 2 treatment as (conventional example) seen in approximately 30 cm -2 Table 1, according to the method of the present invention, the surface defect density A significantly reduced GaAs crystal film can be obtained.

【0022】上記の実施例ではSi基板1の自然酸化膜
を除去する熱処理のために水素とモノシランの混合ガス
を用いたが,モノシランに替えてジシラン,トリシラン
を使用してもよい。この熱処理の温度は 800℃以上であ
る必要がある。 800℃に達しないと自然酸化膜の除去が
不完全になる。
In the above embodiment, a mixed gas of hydrogen and monosilane was used for the heat treatment for removing the natural oxide film of the Si substrate 1, but disilane and trisilane may be used instead of monosilane. The temperature of this heat treatment must be 800 ° C or higher. If the temperature does not reach 800 ° C., the removal of the native oxide film becomes incomplete.

【0023】また,上記の実施例ではSi基板1上にG
aAs膜の成長について説明したが,AlAs膜,In
As膜の成長にも本発明の方法は適用できる。本発明の
方法によりGaP膜,GaSb膜のような III−V族化
合物半導体膜をSi基板1上に成長することもできる
が,この場合はアルシン(AsH3 )に替えて,フォス
フィン(PH3 ),スチビン(SbH3 )のようなV族
元素を含む原料ガスを降温の際及び III−V族化合物半
導体膜成長の際用いる。
Further, in the above embodiment, G
The growth of the aAs film has been described.
The method of the present invention can be applied to the growth of an As film. GaP film by the method of the present invention, can also be grown a group III-V compound semiconductor layer such as a GaSb film on the Si substrate 1, in this case instead of arsine (AsH 3), phosphine (PH 3) A raw material gas containing a group V element such as stibine (SbH 3 ) is used for lowering the temperature and for growing a III-V compound semiconductor film.

【0024】次に,第2の実施例について説明する。
(100)Si基板1を石英トレイ2に導入し,水素
(H2 )とモノシラン(SiH4 )をガス導入口から反
応管5内に流す。水素流量は12 SLM(standardliter
perminute), モノシラン流量は1SCCM(standard cubic
centimeter perminute)とし,圧力は76Torrとす
る。
Next, a second embodiment will be described.
(100) The Si substrate 1 is introduced into the quartz tray 2, and hydrogen (H 2 ) and monosilane (SiH 4 ) are flowed into the reaction tube 5 from the gas inlet. Hydrogen flow rate is 12 SLM (standardliter)
perminute), Monosilane flow rate is 1 SCCM (standard cubic)
centimeter per minute) and the pressure is 76 Torr.

【0025】サセプタ3をRFコイル6により加熱し,
Si基板1を 850℃で10分間保持し,Si基板1の自
然酸化膜を除去した。次いで,アルシン(AsH3 )を
20〜50SCCM流し,水素とモノシランを遮断し,その
状態でSi基板温度を 450℃まで降温する。Si基板1
表面にはAsの単層が生じて,Si基板1を酸化や汚染
から保護する。この処理において,水素とモノシランと
アルシンを流した状態が 850℃である時間つづくように
し,それから水素とモノシランを遮断して降温するよう
にしてもい。
The susceptor 3 is heated by the RF coil 6,
The Si substrate 1 was kept at 850 ° C. for 10 minutes, and the natural oxide film on the Si substrate 1 was removed. Next, arsine (AsH 3 ) is flown at 20 to 50 SCCM to cut off hydrogen and monosilane, and the temperature of the Si substrate is lowered to 450 ° C. in this state. Si substrate 1
A single layer of As is formed on the surface to protect the Si substrate 1 from oxidation and contamination. In this treatment, the flow of hydrogen, monosilane, and arsine may be continued for 850 ° C for a period of time, and then the temperature may be lowered by cutting off hydrogen and monosilane.

【0026】なお,V族元素を含むアルシン(As
3 )に替えてVI族元素を含むセレン化水素(H2
e)を使用することもできる。次いで, 250℃で,DE
Zn(ジエチルジンク)とセレン化水素を,それぞれ,
9SCCM,18SCCM流し,非晶質ZnSeを約 100Åの厚
さに成長させ,次いで,Si基板温度を 450℃に昇温
し,ジエチルジンクとセレン化水素を,それぞれ,9SC
CM,20SCCM流し,ZnSe結晶を約3μm成長させ
た。先に形成した非晶質ZnSeも結晶化した。
It should be noted that arsine containing a group V element (As
Hydrogen selenide (H 2 S) containing a group VI element instead of H 3 )
e) can also be used. Then, at 250 ° C, DE
Zn (diethyl zinc) and hydrogen selenide
9 SCCM and 18 SCCM are flowed, and amorphous ZnSe is grown to a thickness of about 100 °. Then, the temperature of the Si substrate is raised to 450 ° C.
By flowing CM and 20 SCCM, ZnSe crystal was grown to about 3 μm. The previously formed amorphous ZnSe also crystallized.

【0027】その後,水素雰囲気中で 850℃,10分間
のポストアニールを行った。このようにしてSi基板1
上にZnSe結晶の単結晶膜を成長した。なお,原料ガ
スを替えることにより,ZnS,CdTeのようなII−
VI族化合物半導体膜をSi基板1上に成長することがで
きる。この場合は,セレン化水素(H2 Se)に替え
て,硫化水素(H2 S),テルル化水素(H2 Te)の
ようなVI族元素を含む原料ガスを降温の際及びII−VI族
化合物半導体膜成長の際用いるようにする。降温の際は
VI族元素を含むガスに替えてアルシン(AsH3 )のよ
うなV族元素を含むガスを使用してもよい。
Thereafter, post annealing was performed at 850 ° C. for 10 minutes in a hydrogen atmosphere. Thus, the Si substrate 1
A ZnSe single crystal film was grown thereon. In addition, by changing the source gas, II-
A group VI compound semiconductor film can be grown on the Si substrate 1. In this case, instead of the hydrogen selenide (H 2 Se), hydrogen (H 2 S) sulfide, upon cooling a raw material gas containing a Group VI element such as hydrogen telluride (H 2 Te) and II-VI It is used when growing a group III compound semiconductor film. When the temperature falls
A gas containing a group V element such as arsine (AsH 3 ) may be used instead of the gas containing a group VI element.

【0028】次に,第3の実施例について説明する。
(100)Si基板1を石英トレイ2に導入し,水素
(H2 )とモノシラン(SiH4 )をガス導入口から反
応管5内に流す。水素流量は12 SLM(standardliter p
er minute), モノシラン流量は10 SCCM(standard cu
bic centimeterper minute)とし,圧力は76Torrとす
る。
Next, a third embodiment will be described.
(100) The Si substrate 1 is introduced into the quartz tray 2, and hydrogen (H 2 ) and monosilane (SiH 4 ) are flowed into the reaction tube 5 from the gas inlet. Hydrogen flow rate is 12 SLM (standardliter p
er minute), the flow rate of monosilane is 10 SCCM (standard cu
bic centimeter per minute) and the pressure is 76 Torr.

【0029】サセプタ3をRFコイル6により加熱し,
Si基板1を 850℃で10分間保持し,Si基板1の自
然酸化膜を除去した。次いで,アルシン(AsH3 )を
20〜50 SCCM 流し,水素とモノシランを遮断し,そ
の状態でSi基板温度を 450℃まで降温する。Si基板
1表面には,Asの単層が生じてSi基板1を酸化や汚
染から保護する。この処理において,水素とモノシラン
を遮断してアルシンを流した状態が 850℃である時間つ
づくようにし,それから降温するようにしてもい。
The susceptor 3 is heated by the RF coil 6,
The Si substrate 1 was kept at 850 ° C. for 10 minutes, and the natural oxide film on the Si substrate 1 was removed. Next, arsine (AsH 3 ) is flown at 20 to 50 SCCM to shut off hydrogen and monosilane, and the temperature of the Si substrate is lowered to 450 ° C. in this state. A single layer of As is formed on the surface of the Si substrate 1 to protect the Si substrate 1 from oxidation and contamination. In this process, hydrogen and monosilane may be cut off and arsine flowed at 850 ° C for a certain period of time, and then the temperature may be lowered.

【0030】次いで, 450℃で,TMG(トリメチルガ
リウム)とアルシンを,それぞれ,8.9 SCCM,200 SCCM
流し,非晶質GaAsを約 100Åの厚さに成長させ,次
いで,Si基板温度を 700℃に昇温し,トリメチルガリ
ウムとアルシンを,それぞれ,2.5 SCCM,100 SCCM流
し,GaAs結晶を約0.5 μm成長させた。先に形成し
た非晶質GaAsも結晶化し,(100)Si基板1に
エピタキシャルに接合された(100)GaAs結晶膜
が得られた。
Then, at 450 ° C., TMG (trimethylgallium) and arsine were added at 8.9 SCCM and 200 SCCM, respectively.
Then, the amorphous GaAs is grown to a thickness of about 100 °, then the Si substrate temperature is raised to 700 ° C., trimethylgallium and arsine are flowed at 2.5 SCCM and 100 SCCM, respectively, and the GaAs crystal is grown at about 0.5 μm. Grew. The previously formed amorphous GaAs was also crystallized, and a (100) GaAs crystal film epitaxially bonded to the (100) Si substrate 1 was obtained.

【0031】次いで, 450℃で,DEZn(ジエチルジ
ンク)とセレン化水素を,それぞれ,9SCCM,20SCCM
流し,ZnSe結晶を約2.5 μm成長させた。その後,
水素雰囲気中で 850℃,10分間のポストアニールを行
った。
Then, at 450 ° C., DEZn (diethyl zinc) and hydrogen selenide were added at 9 SCCM and 20 SCCM, respectively.
Then, a ZnSe crystal was grown to about 2.5 μm. afterwards,
Post annealing was performed at 850 ° C. for 10 minutes in a hydrogen atmosphere.

【0032】このようにしてSi基板1上に形成された
GaAs結晶膜の上にZnSe結晶の単結晶膜を成長す
ることができた。
In this manner, a single crystal film of ZnSe crystal could be grown on the GaAs crystal film formed on the Si substrate 1.

【0033】[0033]

【発明の効果】以上説明したように,本発明によれば,
大口径のSi基板の上に欠陥の少ないIII−V族化合物
半導体単結晶膜或いはII−VI族化合物半導体単結晶膜を
形成することができる。
As described above, according to the present invention,
A III-V compound semiconductor single crystal film or a II-VI compound semiconductor single crystal film with few defects can be formed on a large-diameter Si substrate.

【0034】本発明は大口径化合物半導体基板の開発に
寄与するものである。
The present invention contributes to the development of a large-diameter compound semiconductor substrate.

【0035】[0035]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施する装置を説明するための図であ
る。
FIG. 1 is a diagram for explaining an apparatus for implementing the present invention.

【符号の説明】[Explanation of symbols]

1はSi基板 2は石英トレイ 3はサセプタ 4はガス供給管 4a〜4dはガス導入口 5は反応管 6はRFコイル 7はガス排気口 8は弁 1 is a Si substrate 2 is a quartz tray 3 is a susceptor 4 is a gas supply pipe 4a to 4d is a gas inlet 5 is a reaction tube 6 is an RF coil 7 is a gas exhaust port 8 is a valve

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Si基板(1) を 800℃以上の温度でSi
を含む雰囲気に曝す第1の工程と, その後,該Si基板(1) をV族元素を含む原料ガスを含
む雰囲気中で, III−V族化合物半導体を成長する温度
まで降温する第2の工程と, その後,該Si基板(1) を III族元素を含む原料ガスと
V族元素を含む原料ガスとを含む雰囲気に曝して,該S
i基板(1) 上に III−V族化合物半導体膜を成長する第
3の工程とを有することを特徴とする化合物半導体装置
の製造方法。
An Si substrate (1) is heated at a temperature of 800 ° C. or more to a Si substrate (1).
A first step of exposing the Si substrate (1) to a temperature at which a III-V compound semiconductor is grown in an atmosphere containing a source gas containing a group V element. And then exposing the Si substrate (1) to an atmosphere containing a source gas containing a group III element and a source gas containing a group V element.
a third step of growing a group III-V compound semiconductor film on the i-substrate (1).
【請求項2】 Si基板(1) を 800℃以上の温度でSi
を含む雰囲気に曝す第1の工程と, その後,該Si基板(1) をVI族元素又はV族元素を含む
原料ガスを含む雰囲気中で,II−VI族化合物半導体を成
長する温度まで降温する第2の工程と, その後,該Si基板(1) をII族元素を含む原料ガスとVI
族元素を含む原料ガスとを含む雰囲気に曝して該Si基
板(1) 上にII−VI族化合物半導体膜を成長する第3の工
程とを有することを特徴とする化合物半導体装置の製造
方法。
2. The method according to claim 1, wherein the Si substrate is heated at a temperature of 800 ° C. or more.
A first step of exposing the Si substrate (1) to an atmosphere containing a source gas containing a group VI element or a group V element, and then lowering the temperature to a temperature at which a II-VI compound semiconductor is grown. A second step, and thereafter, the Si substrate (1) is mixed with a source gas containing a group II element and VI gas.
A step of growing a group II-VI compound semiconductor film on said Si substrate (1) by exposing to an atmosphere containing a source gas containing a group element.
【請求項3】 Si基板(1) を 800℃以上の温度でSi
を含む雰囲気に曝す第1の工程と, その後,該Si基板(1) をV族元素を含む原料ガスを含
む雰囲気中で, III−V族化合物半導体を成長する温度
まで降温する第2の工程と, その後,該Si基板(1) を III族元素を含む原料ガスと
V族元素を含む原料ガスとを含む雰囲気に曝して該Si
基板(1) 上に III−V族化合物半導体膜を成長する第3
の工程と, その後,該Si基板(1) をII族元素を含む原料ガスとVI
族元素を含む原料ガスとを含む雰囲気に曝して該 III−
V族化合物半導体膜上にII−VI族化合物半導体膜を成長
する第4の工程とを有することを特徴とする化合物半導
体装置の製造方法。
3. The method according to claim 1, wherein the Si substrate is heated at a temperature of 800 ° C. or more.
A first step of exposing the Si substrate (1) to a temperature at which a III-V compound semiconductor is grown in an atmosphere containing a source gas containing a group V element. And then exposing the Si substrate (1) to an atmosphere containing a source gas containing a group III element and a source gas containing a group V element.
Third growth of III-V compound semiconductor film on substrate (1)
And then the Si substrate (1) is mixed with a raw material gas containing a group II element
Exposure to an atmosphere containing a source gas containing a group III element.
A fourth step of growing a group II-VI compound semiconductor film on the group V compound semiconductor film.
JP3227568A 1991-09-09 1991-09-09 Method for manufacturing compound semiconductor device Expired - Fee Related JP2985413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3227568A JP2985413B2 (en) 1991-09-09 1991-09-09 Method for manufacturing compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3227568A JP2985413B2 (en) 1991-09-09 1991-09-09 Method for manufacturing compound semiconductor device

Publications (2)

Publication Number Publication Date
JPH06224120A JPH06224120A (en) 1994-08-12
JP2985413B2 true JP2985413B2 (en) 1999-11-29

Family

ID=16862960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3227568A Expired - Fee Related JP2985413B2 (en) 1991-09-09 1991-09-09 Method for manufacturing compound semiconductor device

Country Status (1)

Country Link
JP (1) JP2985413B2 (en)

Also Published As

Publication number Publication date
JPH06224120A (en) 1994-08-12

Similar Documents

Publication Publication Date Title
JP3721674B2 (en) Method for producing nitride III-V compound semiconductor substrate
EP0297867B1 (en) A process for the growth of iii-v group compound semiconductor crystal on a si substrate
KR101086155B1 (en) Growth of planar, non-polar gallium nitride by hydride vapor phase epitaxy
EP1107296B1 (en) Method of manufacturing a nitride system III-V compound layer and method of manufacturing a substrate
US5019529A (en) Heteroepitaxial growth method
EP1185727A1 (en) Sequential hydride vapor-phase epitaxy
US20070141814A1 (en) Process for producing a free-standing iii-n layer, and free-standing iii-n substrate
JP3007971B1 (en) Method of forming single crystal thin film
JP3369304B2 (en) Method for growing compound semiconductor crystal layer
JP2985413B2 (en) Method for manufacturing compound semiconductor device
JPH0236060B2 (en) KAGOBUTSU HANDOTAINOSEICHOHOHO
JPH08264455A (en) Semiconductor device and manufacture thereof
JP2642096B2 (en) Method of forming compound semiconductor thin film
JPH06104193A (en) System and method for vapor growth of compound semiconductor crystal
JP2704223B2 (en) Semiconductor element
JPH0794409A (en) Formation of iii-v compound semiconductor thin film
JP3157280B2 (en) Method for manufacturing semiconductor device
JP2576135B2 (en) Method of growing GaP crystal on Si substrate
JPH0645249A (en) Growth method of gaas layer
JP2865130B2 (en) Semiconductor substrate etching method and semiconductor thin film manufacturing method
JP2753832B2 (en) III-V Vapor Phase Growth of Group V Compound Semiconductor
JP2668236B2 (en) Semiconductor element manufacturing method
JPH08217599A (en) Production of zinc-selenium homoepitaxial single crystal film
JPH04280898A (en) Process for growing compound semiconductor crystal on si substrate
JPH0786159A (en) Growing method of compound semiconductor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990831

LAPS Cancellation because of no payment of annual fees