JP2982035B2 - Turbine control device - Google Patents

Turbine control device

Info

Publication number
JP2982035B2
JP2982035B2 JP5164259A JP16425993A JP2982035B2 JP 2982035 B2 JP2982035 B2 JP 2982035B2 JP 5164259 A JP5164259 A JP 5164259A JP 16425993 A JP16425993 A JP 16425993A JP 2982035 B2 JP2982035 B2 JP 2982035B2
Authority
JP
Japan
Prior art keywords
control
value
target value
systems
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5164259A
Other languages
Japanese (ja)
Other versions
JPH06346704A (en
Inventor
一之 寺門
伸一 田島
巧 河合
博之 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5164259A priority Critical patent/JP2982035B2/en
Publication of JPH06346704A publication Critical patent/JPH06346704A/en
Application granted granted Critical
Publication of JP2982035B2 publication Critical patent/JP2982035B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)
  • Feedback Control In General (AREA)
  • Safety Devices In Control Systems (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、タービン制御装置に係
り、特に、制御対称である3コイルサーボ弁の制御に3
重化コントローラを用いた火力、原子力発電所等のター
ビン制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbine control device, and more particularly to the control of a three-coil servo valve having control symmetry.
The present invention relates to a turbine control device for a thermal power plant, a nuclear power plant, or the like using a weighting controller.

【0002】[0002]

【従来の技術】従来の3重系構成のタービン制御装置を
図2に示す。3重系構成のコントローラ53にはそれぞ
れ増減操作器50が接続され、増減操作器50からの指
令信号によって設定器51の設定器出力値は増減され、
演算回路52においてこの設定器出力値により演算した
制御指令信号を出力する。この制御指令信号と3コイル
サーボ弁40の後段にある弁開度検出器55からのフィ
ードバック値との偏差をサーボアンプ57に入力し、3
コイルサーボ弁40のコイル電流を制御する。従って、
通常、サーボアンプ入力信号である偏差は前記制御指令
信号とフィードバック値が等しくなるように制御され、
3コイルサーボ弁40のコイル電流が零となる。この3
重系構成のタービン制御装置において、タービン制御の
設定は、運転員による増減操作器50からの指令信号で
各系の設定器51の出力を増減する。このため、増減操
作器50からの各系の設定器51への指令信号の遅れ、
また、3系の非同期コントローラの演算回路52による
演算の遅れ等が生じ、この遅れにより、各系の設定器出
力間に差異が生じ、この間3系のコントローラ53の出
力である制御指令信号にも差異を生じる問題があった。
また、逆に設定器出力値を3系共同一にするような構成
とすることは、3重系システムとして各系の独立性を保
てない問題があった。また、3重系システムでは、1系
コントローラ停止後の復旧立上げ時、既に制御中の2系
は互いに独立してプラントを制御しており、このためコ
ントローラの出力である制御指令信号が異なっている
が、3コイルサーボ弁を用いた3重系タービン制御装置
では、このような状態において復旧立上げと同時に、そ
の系の制御指令信号が出力され、制御状態になるため、
プラントに直接に影響を与える。このため、このような
3コイルサーボ弁を用いたシステムでは復旧立上げ時に
適切な制御指令信号が出力されるように設定値を設定す
る必要があり、この設定値を設定するための煩雑さがあ
った。また、公知例として、特開昭60ー221802
号公報に3コイルサーボ弁を用いたタービン制御装置が
記載されているが、3コイルサーボ弁を用いたシステム
の復旧立上げ時に、適切な制御指令信号を出力するよう
に設定値を設定することについての配慮がなされていな
い。
2. Description of the Related Art FIG. 2 shows a conventional turbine control device having a triple system configuration. An increase / decrease operating device 50 is connected to each of the controllers 53 in the triple system configuration, and the set device output value of the setting device 51 is increased / decreased by a command signal from the increase / decrease operating device 50.
The arithmetic circuit 52 outputs a control command signal calculated based on the setter output value. The deviation between the control command signal and the feedback value from the valve opening detector 55 located downstream of the three-coil servo valve 40 is input to the servo amplifier 57,
The coil current of the coil servo valve 40 is controlled. Therefore,
Usually, the deviation that is a servo amplifier input signal is controlled so that the control command signal and the feedback value are equal,
The coil current of the three-coil servo valve 40 becomes zero. This 3
In the turbine control device having a multi-system configuration, the turbine control is set by increasing / decreasing the output of the setting unit 51 of each system by a command signal from the increase / decrease operating unit 50 by the operator. Therefore, the delay of the command signal from the increase / decrease operating device 50 to the setting device 51 of each system,
In addition, there is a delay in the calculation by the arithmetic circuit 52 of the three-system asynchronous controller, and this delay causes a difference between the setter outputs of the respective systems. During this time, the control command signal, which is the output of the three-system controller 53, is also generated. There was a problem that caused a difference.
Conversely, the configuration in which the output values of the setting devices are made uniform among the three systems has a problem that the independence of each system cannot be maintained as a triple system. Also, in a triple system, at the time of recovery and start-up after the system 1 controller is stopped, the systems already under control control the plant independently of each other, so that the control command signal output from the controller differs. However, in a triple turbine control device using a three-coil servo valve, a control command signal for that system is output at the same time as recovery and startup in such a state, and the system enters a control state.
Affects the plant directly. For this reason, in a system using such a three-coil servo valve, it is necessary to set a set value so that an appropriate control command signal is output at the time of start-up of recovery, and the complexity for setting the set value is reduced. there were. Further, as a known example, Japanese Patent Application Laid-Open No. Sho.
Discloses a turbine control device using a three-coil servo valve, but it is necessary to set a set value so that an appropriate control command signal is output when a system using the three-coil servo valve is started for recovery. No consideration has been given to

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、上記
事情に鑑み、3コイルサーボ弁を用いた3重系のタービ
ン制御装置において、3重系システムとして各系の独立
性を保ちつつ、ある系の設定器出力値に他の2系と差異
が生じた時はこれをあわせ込むと共に、1系停止後の復
旧立上げ後、プラントへの変動を与えないように設定器
の設定をあわせ込むタービン制御装置を提供することに
ある。
SUMMARY OF THE INVENTION In view of the above circumstances, an object of the present invention is to provide a triple system turbine control device using a three-coil servo valve while maintaining the independence of each system as a triple system. If there is a difference between the output value of the setter of a certain system and that of the other two systems, adjust the value and adjust the setting of the setter so that there is no fluctuation in the plant after the start-up of the recovery after the stoppage of the first system. To provide a turbine control device.

【0004】[0004]

【課題を解決するための手段】3コイルサーボ弁を用い
た3重系システムにおける各系設定値は、増減操作器か
らの設定目標値に対し、設定目標値が他の2系との設定
目標値と偏差が生じ、その値が所定の値以上の時は、こ
の設定目標値は異常としてこの系の設定器の出力を他の
2系の平均値に強制的に修正させ、また、前述の偏差が
所定の値以内の時は、各系の設定器出力を設定目標値と
同一とするタイバック(信号追従)回路を設ける。ま
た、3系中2系のみが制御に寄与し、残りの1系が待機
系であって、待機系を制御系に投入する復旧立上げ時
に、所定時間待機系の設定を制御中2系の設定目標値
の平均値に強制的に修正すると共に、所定時間後には
機系を自系の設定目標値と同一とし、また、3系中1系
のみが制御に寄与し、残りの2系が待機系であって、待
機系2系中1系を制御系に投入する復旧立上げ時に、待
機系の設定を所定時間制御中の系の設定目標値に強制的
に修正すると共に、所定時間後には待機系を自系の設定
目標値と同一とするタイバック回路を設ける。
In a triple system using a three-coil servo valve, each system set value is different from a set target value set by an increase / decrease operating device in that a set target value of another set of two systems is set. If a deviation occurs from the value, and the value is equal to or more than a predetermined value, the set target value is regarded as abnormal and the output of the setter of this system is forcibly corrected to the average value of the other two systems. When the deviation is within a predetermined value, a tieback (signal follow-up) circuit is provided to make the output of the setter of each system equal to the set target value. Also, only two system 3 system contributes to the control, a remaining one system standby, when recovering startup to inject standby to the control system, 2 system in the control settings of the predetermined time standby together forcibly corrected to the mean value of the set target value, wait after a predetermined time
Make the system the same as the set target value of its own system, and only one of the three systems contributes to the control, and the remaining two systems are standby systems, and one of the two standby systems is put into the control system. When the recovery is started, the setting of the standby system is forcibly set to the set target value of the system under control for a predetermined time.
And set the standby system to its own system after a predetermined time.
Provide a tie-back circuit that is the same as the target value .

【0005】[0005]

【作用】3系制御中に自系設定目標値と他の2系の設定
目標値の平均値との偏差が所定の値以上となった時の
み、強制的にタイバックするようにしているので、3重
系システムとして各系の独立性を保ちながら、各系の設
定器出力値間の差異をなくすることができる。また、1
系停止後の復旧立上げ時、待機系の設定は、所定時間制
御中2系の設定目標値の平均または制御中の系の設
定目標値に強制的に修正するので、プラントに変動を与
えないように設定器の設定をあわせることができる。
The tie-back is forcibly performed only when the deviation between the set target value of the own system and the average of the set target values of the other two systems becomes equal to or larger than a predetermined value during the control of the third system . Therefore , it is possible to eliminate the difference between the setter output values of each system while maintaining the independence of each system as a triple system. Also, 1
At the time of recovery start-up after system stop, the setting of the standby system is forcibly corrected to the average value of the set target values of the two systems under control for a predetermined time or to the set target value of the system under control, so fluctuations in the plant may occur . The setting of the setting device can be adjusted so as not to give.

【0006】[0006]

【実施例】以下、本発明の実施例を説明する。まず、本
発明の実施対象例として、図7に原子力タービン発電プ
ラントの概要を示す。原子力発電プラントは、タービン
動作蒸気発生源である原子炉21から発生した蒸気を主
蒸気配管22を通過し、主蒸気止め弁23、蒸気加減弁
(CV)24を経てタービン本体に導く。高圧タービン
25内にて仕事をした蒸気は、中間蒸気止め弁(IV)
26を経て、中、低圧タービン27へ導かれ、中、低圧
タービンで仕事を終えた蒸気は復水器28へ導かれ、い
わゆる、ランキンサイクルを構成する。また、発生蒸気
を直接、復水器28へ導くタービンバイパス弁(TB
V)29によるバイパスラインを有する。タービン制御
装置30は、速度制御ー負荷制御部、圧力制御部、低値
優先部、バイパス弁制御部、CV,IV制御部およびT
BV制御部から構成される。速度制御ー負荷制御部は、
タービン速度31および発電機出力(図示せず)を入力
し、弁開度指令を出力する。圧力制御部は、蒸気圧力3
2を入力し、弁開度指令を出力する。低値優先部はター
ビン系統の安全を図るために両弁開度指令の低い値を出
力する。バイパス弁制御部は圧力制御部の弁開度指令と
低値優先部の弁開度指令の差を出力する。CV,IV制
御部は、弁開度指令を受けてタービン速度、発電機出力
或いは蒸気圧力を調整するため、CVおよびIVのそれ
ぞれのサーボ弁40に制御信号を出力し、CV24およ
びIV26の弁開度を制御する。また、TBV制御部
は、弁開度指令を受けて発生蒸気をバイパスするため、
TBVのサーボ弁40に制御信号を出力し、TBV29
の弁開度を制御する。
Embodiments of the present invention will be described below. First, as an embodiment of the present invention, an outline of a nuclear turbine power plant is shown in FIG. In a nuclear power plant, steam generated from a reactor 21 as a turbine operating steam generation source passes through a main steam pipe 22, and is guided to a turbine body via a main steam stop valve 23 and a steam control valve (CV) 24. The steam worked in the high-pressure turbine 25 is supplied to an intermediate steam stop valve (IV).
After passing through 26, the steam that has been guided to the medium- and low-pressure turbine 27 and that has completed work in the medium- and low-pressure turbine is guided to the condenser 28, forming a so-called Rankine cycle. Further, a turbine bypass valve (TB) for directly guiding the generated steam to the condenser 28
V) having a bypass line according to 29; The turbine control device 30 includes a speed control-load control unit, a pressure control unit, a low value priority unit, a bypass valve control unit, a CV / IV control unit, and a T control unit.
It is composed of a BV control unit. Speed control-load control unit,
A turbine speed 31 and a generator output (not shown) are input, and a valve opening command is output. The pressure control unit has a steam pressure of 3
Input 2 and output the valve opening command. The low value priority section outputs a low value of both valve opening commands in order to ensure the safety of the turbine system. The bypass valve control section outputs a difference between the valve opening command of the pressure control section and the valve opening command of the low value priority section. The CV / IV control unit outputs a control signal to each of the CV and IV servo valves 40 in order to adjust the turbine speed, the generator output or the steam pressure in response to the valve opening degree command, and to open the valves CV24 and IV26. Control the degree. Further, the TBV control unit bypasses the generated steam in response to the valve opening degree command,
A control signal is output to the TBV servo valve 40, and the TBV 29
Of the valve is controlled.

【0007】図8に、タービン制御装置の速度ー負荷制
御系(速度制御ー負荷制御部)を示す。この速度ー負荷
制御系は、タービンの速度設定値と実速度の偏差値に調
定率を積算し、一方、増減操作器50の指令信号によっ
て負荷設定器51の設定器出力値を増減し、この設定器
出力値と乗算値を演算回路52において演算し、弁開度
の制御指令信号を出力する。ここで、コントローラ53
は負荷設定器51と演算回路52からなる。
FIG. 8 shows a speed-load control system (speed control-load control unit) of the turbine control device. This speed-load control system integrates the setting rate to the deviation value between the turbine speed set value and the actual speed, and increases or decreases the setter output value of the load setter 51 by the command signal of the increase / decrease operating device 50. The setter output value and the multiplied value are calculated in a calculation circuit 52 to output a control command signal for the valve opening. Here, the controller 53
Is composed of a load setting unit 51 and an arithmetic circuit 52.

【0008】図1に、本発明の3重系構成のタービン制
御装置の実施例を示す。本発明の特徴は、図2の構成に
増減操作器50により増減する設定目標値及び設定器5
1に対し、タイバックを行うタイバック回路61を付加
したところにある。図3に、タイバック回路61の詳細
を示す。タイバック回路61は、図示のように、偏差検
出器70、平均値回路71、接点a,b、AND回路8
0、OR回路81、3系制御中を表す手段90および立
上げ後所定時間以内を表す手段91を有する。
FIG. 1 shows an embodiment of a turbine control device having a triple system configuration according to the present invention. The feature of the present invention is that the set target value and the setting device 5 which are increased or decreased by the increase or decrease operation device 50 in the configuration of FIG.
The tie-back circuit 61 for performing tie-back is added to FIG. FIG. 3 shows details of the tieback circuit 61. As shown, the tieback circuit 61 includes a deviation detector 70, an average value circuit 71, contacts a and b, and an AND circuit 8
0, an OR circuit 81, means 90 indicating that the system 3 is under control, and means 91 indicating within a predetermined time after the start-up.

【0009】以下、タイバック回路61の動作を説明す
る。まず、図4を用いて、3系制御中のタイバック回路
61の動作を説明する。増減操作器50により自系の設
定目標値をαとしたとき、設定目標値αと他の2系の設
定目標値β、γを平均値回路71によって平均した値と
の偏差をとり、この偏差が所定の値以上の時(図3のA
ND回路80を参照)は、自系の設定目標値αは異常と
して、偏差検出器70により接点aをonし、bをof
fして、自系の設定器出力値を他の2系の設定目標値の
平均値に強制的に修正する。一方、前述の偏差が所定値
以内の時は、偏差検出器70により接点aはoffし、
bはonするので、自系の設定器出力は自系の設定目標
値と同一になる。このようにして、異常時は他系の設定
目標値の平均による修正動作を、通常時は3重系として
の独立性をもたせることができる。
Hereinafter, the operation of the tie-back circuit 61 will be described. First, the operation of the tie-back circuit 61 during the control of the third system will be described with reference to FIG. When the set target value of the own system is set to α by the increase / decrease operating device 50, the deviation between the set target value α and the value obtained by averaging the set target values β and γ of the other two systems by the averaging circuit 71 is calculated. Is greater than or equal to a predetermined value (A in FIG. 3).
The ND circuit 80) determines that the set target value α of the own system is abnormal, turns on the contact point a by the deviation detector 70, and turns off the contact point b.
Then, the output value of the setter of the own system is forcibly corrected to the average value of the set target values of the other two systems. On the other hand, when the aforementioned deviation is within a predetermined value, the contact point a is turned off by the deviation detector 70,
Since b is turned on, the output of the setting device of the own system becomes the same as the set target value of the own system. In this manner, the correction operation based on the average of the set target values of the other system can be provided in an abnormal state, and the independence of the triple system can be provided in the normal state.

【0010】次に、図5を用いて、2系制御中に残りの
1系を停止後に3台目として復旧立上げする時のタイバ
ック回路61の動作を説明する。ここで、2系制御中で
残りの1系を復旧立上げする時、プラントに変動を与え
ないようにする必要がある。通常、3コイルサーボ弁を
用いた3重系システムでは、図2において説明したよう
に、サーボ弁コイルを励磁する電流は3つのコイルの電
流値の総和が零になるよう作用する。しかし、1系が停
止中の時、制御中の2系のコイル電流は、互いに絶対値
が等しく、符号が異なる値となっている。これは、フィ
ードバック値として2系のコントローラの出力値である
制御指令信号(この時2系に差異がある)との偏差によ
り生じる。また、この時、2系制御指令信号の平均値
(中間値)はフィードバック値と一致している。そこ
で、停止中の1系を復旧立上げする時は、コイル電流値
を零にして制御系として投入し、停止中の1系にはフィ
ードバック値と同一の出力信号を出力する(この時コイ
ル電流は零)ようにして復旧立上げする。即ち、復旧立
上げの系の制御指令値は既に制御中の2系の平均値とす
る。そこで、図5において、復旧立上げの系の設定器出
力値をαとし、この1系を停止後に復旧立上げする時、
立上げ後の所定時間(図3のOR回路81を参照)接点
aをonにし、bをoffにする。この間に、復旧立上
げの系の設定器出力値αは、既に制御中の2系の設定目
標値β、γを平均値回路71によって平均した値に強制
的に修正される。所定時間経過後は接点aをoffに
し、bをonにして、自系の設定器出力値は自系の設定
目標値と同一とする。また、制御中の2系の設定器出力
は自系の設定目標値と同一となる。これにより復旧立上
げの系の3コイルサーボ弁のコイル電流は零となり、プ
ラントへの影響を防止することができる。
Next, the operation of the tie-back circuit 61 at the time of restoring and starting up the third system after stopping the other system during the control of the second system will be described with reference to FIG. Here, when restoring and starting up the remaining one system during the two-system control, it is necessary to prevent fluctuations in the plant. Usually, in a triple system using a three-coil servo valve, as described in FIG. 2, the current for exciting the servo valve coil acts so that the sum of the current values of the three coils becomes zero. However, when the first system is stopped, the coil currents of the two systems under control have the same absolute value and different signs. This is caused by a deviation from a control command signal (there is a difference between the two systems) which is an output value of the two systems as a feedback value. At this time, the average value (intermediate value) of the second-system control command signal matches the feedback value. Therefore, when the stopped system 1 is restored and started, the coil current value is set to zero and the control system is turned on, and the stopped system 1 outputs the same output signal as the feedback value (at this time, the coil current value is output). Is reset to zero). That is, the control command value of the system for starting up the recovery is an average value of the two systems that are already under control. Therefore, in FIG. 5, when the setter output value of the system for restoration start-up is α, and when this system 1 is stopped and restored and started,
A predetermined time after startup (see the OR circuit 81 in FIG. 3), the contact a is turned on, and the contact b is turned off. During this time, the setter output value α of the system for starting up the recovery is forcibly corrected to a value obtained by averaging the set target values β and γ of the two systems that are already being controlled by the averaging circuit 71. After a lapse of a predetermined time, the contact a is turned off and the contact b is turned on, so that the output value of the setter of the own system is the same as the set target value of the own system. Also, the output of the setter of the second system under control becomes the same as the set target value of the own system. As a result, the coil current of the three-coil servo valve in the recovery start-up system becomes zero, and the effect on the plant can be prevented.

【0011】次に、図6を用いて、3系中1系のみ制御
中であり、残り2系の内の1系を2台目として復旧立上
げする時のタイバック回路61の動作を説明する。この
場合も、前述と同様に、プラントに変動を与えないよう
にする必要があり、前述と同様の考え方に基づく。た
だ、残り2系の内の1系を2台目として復旧立上げする
時、3系中1系のみが制御中であり、この1系のフィー
ドバック値と制御指令信号が一致し、コイル電流が零で
あることより、残り2系の内の1系の設定器の出力は制
御系の設定器の出力(その系の目標設定値と同一)に一
致させるようにする。そこで、図6において、残り2系
の内の1系を停止後に復旧立上げする時、立上げ後の所
定時間(図3のOR回路81を参照)接点aをonに
し、bをoffする。この間に、復旧立上げの系の設定
器出力値αは制御中の系の設定目標値βに強制的に修正
される。所定時間後aはoff、bはonになり、自系
の設定器出力値は自系の設定目標値と同一となる。ま
た、制御中の系は自系設定目標値に同一となる。これに
よって、復旧立上げの系の3コイルサーボ弁のコイル電
流は零となり、プラントへの影響を防止できる。なお、
これまでの平均値回路71の入力は他系の設定目標値
β、γのみだったが、これを自系も含めたα、β、γと
しても良い。また、回路上図示しなかったが、各系の設
定目標値は当然ながら自系の設定器出力値に一致させる
ようになっている。
Next, the operation of the tie-back circuit 61 when only one of the three systems is under control and one of the remaining two systems is restored as the second system will be described with reference to FIG. I do. Also in this case, similarly to the above, it is necessary to keep the plant from fluctuating, and is based on the same concept as described above. However, when recovering and starting up one of the remaining two systems as the second unit, only one of the three systems is under control, and the feedback value of this one system matches the control command signal, and the coil current is reduced. Since it is zero, the output of the setter of one of the remaining two systems is made to match the output of the setter of the control system (the same as the target set value of that system). Therefore, in FIG. 6, when one of the remaining two systems is restarted after the stop, the contact a is turned on for a predetermined time after the start (see the OR circuit 81 in FIG. 3), and b is turned off. In the meantime, the setter output value α of the system at the start-up of the recovery is forcibly corrected to the set target value β of the system under control. After a predetermined time, a is turned off and b is turned on, and the output value of the setter of the own system becomes the same as the set target value of the own system. Also, the system under control becomes the same as the own system set target value. As a result, the coil current of the three-coil servo valve in the recovery start-up system becomes zero, and the effect on the plant can be prevented. In addition,
The input of the average value circuit 71 up to now has been only the set target values β and γ of the other system, but may be α, β and γ including the own system. Although not shown on the circuit, the set target value of each system is naturally made to coincide with the output value of the setter of the own system.

【0012】[0012]

【発明の効果】以上説明したように、本発明によれば、
3系制御中に自系設定目標値と他の2系の設定目標値の
平均値との偏差が所定の値以上となった時のみ、強制的
タイバックするようにしているので、3重系システム
として各系の独立性を保ちながら、各系の設定器出力値
間の差異をなくすことができる。また、1系停止後の復
旧立上げ時、待機系の設定は、所定時間制御中2系の
設定目標値の平均または制御中の系の設定目標値に強
制的に修正するので、プラントに変動を与えないように
設定器の設定をあわせることができる。また、3重系の
どの系においても、全く同一のタイバック回路によって
3重系システムが必要とするタイバック動作を全て行う
ことが可能となり、システムとしての構成が簡単化でき
As described above, according to the present invention,
During the control of the third system, the target value of the own system and the target value of the other two systems are set.
Mandatory only when the deviation from the average exceeds a specified value
Since so as to tie back to, while maintaining the independence of each system as a triple systems, it can be eliminated the difference between set output values for each system. At the time of recovery start-up after the suspension of the first system, the setting of the standby system is strongly influenced by the average value of the set target values of the second system during control for a predetermined time or the set target value of the system under control.
Since the correction is carried out regularly, the setting of the setting device can be adjusted so as not to cause a change in the plant. Also, in any system of the triple system, all the tie-back operations required by the triple system can be performed by the exactly same tie-back circuit, and the configuration as the system can be simplified.
You .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例である3重系構成のタービン制
御装置
FIG. 1 is a diagram illustrating a turbine control device having a triple system configuration according to an embodiment of the present invention.

【図2】従来の3重系構成のタービン制御装置FIG. 2 shows a conventional triple system turbine control device.

【図3】本発明の実施例のタイバック回路の詳細FIG. 3 shows details of a tie-back circuit according to an embodiment of the present invention.

【図4】本発明の実施例の3系制御中のタイバックFIG. 4 shows a tie-back during control of the third system according to the embodiment of the present invention.

【図5】本発明の実施例の2系制御中1系復旧立上げ時
のタイバック
FIG. 5 is a tieback at the time of starting up the 1st-system restoration during the 2nd-system control according to the embodiment of the present invention.

【図6】本発明の実施例の1系制御中残り2系中1系復
旧立上げ時のタイバック
FIG. 6 shows a tie-back at the time of start-up of system 1 recovery from system 2 remaining during system 1 control according to the embodiment of the present invention.

【図7】原子力用タービン制御装置の概要FIG. 7 is an outline of a turbine control device for nuclear power.

【図8】タービン制御装置の速度ー負荷制御系FIG. 8 shows a speed-load control system of the turbine control device.

【符号の説明】[Explanation of symbols]

21 原子炉 24 蒸気加減弁 25 高圧タービン 26 中間蒸気止め弁 27 中、低圧タービン 28 復水器 30 タービン制御装置 40 (3コイル)サーボ弁 50 増減操作器 51 設定器 52 演算回路 53 コントローラ 55 弁位置検出器 56 サーボ弁コイル 57 サーボアンプ 60 設定器目標値 61 タイバック回路 70 偏差検出器 71 平均値回路 Reference Signs List 21 Nuclear reactor 24 Steam control valve 25 High pressure turbine 26 Intermediate steam stop valve 27 Medium / low pressure turbine 28 Condenser 30 Turbine control device 40 (3 coil) servo valve 50 Increase / decrease operating device 51 Setting device 52 Operation circuit 53 Controller 55 Valve position Detector 56 Servo valve coil 57 Servo amplifier 60 Setter target value 61 Tieback circuit 70 Deviation detector 71 Average value circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高島 博之 茨城県日立市大みか町五丁目2番1号 株式会社日立製作所 大みか工場内 (56)参考文献 特開 昭60−221802(JP,A) 特開 昭49−95308(JP,A) (58)調査した分野(Int.Cl.6,DB名) F01D 17/00 - 21/00 G05B 7/02 G05B 9/03 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Hiroyuki Takashima 5-2-1 Omikacho, Hitachi City, Ibaraki Prefecture Inside the Hitachi, Ltd. Omika Plant (56) References JP-A-60-221802 (JP, A) Kaisho 49-95308 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) F01D 17/00-21/00 G05B 7/02 G05B 9/03

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 設定値に基づいてプラントを制御する制
御指令信号を出力するコントローラと、上記制御指令信
号を増幅するサーボアンプと、3コイルサーボ弁を駆動
するコイルを有する制御系を3重化してなるタービン制
御装置において、自系の設定目標値と他の2系の設定目
標値を平均した値との偏差をとり、この偏差が所定の値
以上の時、自系の設定目標値を異常として他の2系の設
定目標値の平均値に強制的に修正し、一方、上記偏差が
所定値以内の時は、各系の設定値はその系の設定目標値
と同一とするタイバック回路を設けたことを特徴とする
タービン制御装置。
1. A controller for outputting a control command signal for controlling a plant based on a set value, a servo amplifier for amplifying the control command signal, and a control system having a coil for driving a three-coil servo valve are tripled. The set target value of the own system and the set target value of the other two systems
The deviation from the average of the standard values is calculated, and this deviation is
In the above case, the set target value of the own system is regarded as abnormal and the
It is forcibly corrected to the average value of the fixed target value, while the deviation is
A turbine control device provided with a tie-back circuit that sets a set value of each system to be equal to a set target value of the system when the set value is within a predetermined value .
【請求項2】 設定値に基づいてプラントを制御する制
御指令信号を出力するコントローラと、上記制御指令信
号を増幅するサーボアンプと、3コイルサーボ弁を駆動
するコイルを有する制御系を3重化してなるタービン制
御装置において、3系中2系のみが制御に寄与し、残り
の1系が待機系であって、上記待機系を制御系に投入す
る復旧立上げ時に、所定時間上記待機系の設定目標値
制御中の2系の設定目標値の平均値に強制的に修正する
と共に、所定時間後には上記待機系を自系の設定目標値
と同一とするタイバック回路を設けたことを特徴とする
タービン制御装置。
2. A control system having a controller for outputting a control command signal for controlling a plant based on a set value, a servo amplifier for amplifying the control command signal, and a control system having a coil for driving a three-coil servo valve is tripled. In the turbine control device, only two of the three systems contribute to the control, and the remaining one system is a standby system. At the time of restoration start-up in which the standby system is put into the control system, the standby system is used for a predetermined time. thereby forcibly correcting the set target value to the average value of two systems of setting target values in control, after a predetermined time setting target value of the own system to the standby system
A turbine control device comprising a tie-back circuit identical to that described above .
【請求項3】 設定値に基づいてプラントを制御する制
御指令信号を出力するコントローラと、上記制御指令信
号を増幅するサーボアンプと、3コイルサーボ弁を駆動
するコイルを有する制御系を3重化してなるタービン制
御装置において、3系中1系のみが制御に寄与し、残り
の2系が待機系であって、待機系2系中1系を制御系に
投入する復旧立上げ時に、所定時間上記待機系の設定
標値を制御中の系の設定目標値に強制的に修正すると共
に、所定時間後には上記待機系を自系の設定目標値と同
一とするタイバック回路を設けたことを特徴とするター
ビン制御装置。
3. A control system having a controller for outputting a control command signal for controlling a plant based on a set value, a servo amplifier for amplifying the control command signal, and a control system having a coil for driving a three-coil servo valve is tripled. In the turbine control device, only one of the three systems contributes to the control, and the remaining two systems are standby systems. setting eyes of the standby system
The target value is forcibly corrected to the set target value of the system under control, and after a predetermined time, the standby system is set to the same as the set target value of the own system.
Turbine control device characterized by providing the tie-back circuit to scratch.
JP5164259A 1993-06-08 1993-06-08 Turbine control device Expired - Lifetime JP2982035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5164259A JP2982035B2 (en) 1993-06-08 1993-06-08 Turbine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5164259A JP2982035B2 (en) 1993-06-08 1993-06-08 Turbine control device

Publications (2)

Publication Number Publication Date
JPH06346704A JPH06346704A (en) 1994-12-20
JP2982035B2 true JP2982035B2 (en) 1999-11-22

Family

ID=15789697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5164259A Expired - Lifetime JP2982035B2 (en) 1993-06-08 1993-06-08 Turbine control device

Country Status (1)

Country Link
JP (1) JP2982035B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4802834B2 (en) * 2006-04-13 2011-10-26 株式会社日立製作所 Servo valve control circuit
CN112855289B (en) * 2021-01-13 2022-10-28 中山嘉明电力有限公司 Automatic control method for steam turbine bypass

Also Published As

Publication number Publication date
JPH06346704A (en) 1994-12-20

Similar Documents

Publication Publication Date Title
US5533337A (en) Feed water supply system of power plant
JP2982035B2 (en) Turbine control device
JPS6253797B2 (en)
JP4734184B2 (en) Steam turbine control device and steam turbine control method
JP3843498B2 (en) Power plant control system
JP2000297608A (en) Control device for feed water pump of power station
JPH0988507A (en) Control method of turbine for water supply pump and controller thereof
JP3026049B2 (en) Turbine control device
JPH08200608A (en) Feed water flow rate controlling method for thermal power plant
JP3315783B2 (en) Generator stop device
JPS6239655B2 (en)
JP4624255B2 (en) Turbine controller
JP2730372B2 (en) Turbine control device
JPH10103020A (en) Controller and control method for turbine bypass valve in combined plant
JP4127911B2 (en) Steam turbine ground steam pressure controller
JP3324899B2 (en) Turbine gland steam pressure controller
JPH0122521B2 (en)
JPS6212361B2 (en)
JP2005105912A (en) Multiple-coil servo valve control device
JP2902779B2 (en) Boiling water nuclear power plant
JPH0641804B2 (en) Auxiliary steam pressure controller
JPS62267503A (en) Pressure control device of feed water pump driving turbine
JPH0219605A (en) Auxiliary steam pressure control device
JPH0783404A (en) Controlling method for feed water flow rate regulating valve of boiler
JPH0539901A (en) Method and device for automatically controlling boiler

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 13