JP2979986B2 - Metal continuous casting apparatus and continuous casting method - Google Patents
Metal continuous casting apparatus and continuous casting methodInfo
- Publication number
- JP2979986B2 JP2979986B2 JP6311824A JP31182494A JP2979986B2 JP 2979986 B2 JP2979986 B2 JP 2979986B2 JP 6311824 A JP6311824 A JP 6311824A JP 31182494 A JP31182494 A JP 31182494A JP 2979986 B2 JP2979986 B2 JP 2979986B2
- Authority
- JP
- Japan
- Prior art keywords
- mold
- continuous casting
- frequency
- oscillation
- power supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Continuous Casting (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、溶融金属を連続的に凝
固させて鋳片を製造する際、表層欠陥が存在しない鋳片
の製造および高速鋳造化を可能にし、設備費、電力をそ
れほどかけずに複数ストランドによる連続鋳造を行うこ
とができる鋳造装置および鋳造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention makes it possible to produce slabs free of surface defects and to perform high-speed casting when continuously solidifying molten metal to produce slabs. The present invention relates to a casting apparatus and a casting method capable of performing continuous casting with a plurality of strands without using.
【0002】[0002]
【従来の技術】鋼の最も一般的な連続鋳造法は、浸漬ノ
ズルを介して溶鋼を水冷鋳型内に供給し、その溶鋼表面
(湯面)上に潤滑剤を添加し、鋳型を振動させることで
鋳片と鋳型の間隙に潤滑剤を浸入させやすくして凝固さ
せる方法である。この場合、鋳片の表層には、鋳型振動
(以下、オシレーションという)に起因するオシレーシ
ョンマークと呼ばれる欠陥が不可避的に生ずる。2. Description of the Related Art The most common continuous casting method for steel is to supply molten steel through a submerged nozzle into a water-cooled mold, add a lubricant onto the surface of the molten steel (fluid surface), and vibrate the mold. In this method, the lubricant is easily infiltrated into the gap between the slab and the mold and solidified. In this case, a defect called an oscillation mark inevitably occurs on the surface layer of the slab due to mold vibration (hereinafter referred to as oscillation).
【0003】このマークの生成機構は、鋳型の降下速度
が引き抜き速度よりも速くなる期間(以下、ネガティブ
期間という)での潤滑剤中に生ずる正圧による凝固シェ
ル先端の倒れ込み、および鋳型の上昇期間(以下、ポジ
ティブ期間という)での潤滑剤内の負圧による凝固シェ
ル先端上への溶鋼のオーバーフローまたはシェル先端の
鋳型側への屈曲であることが確認されている。[0003] The mechanism of the formation of the mark is that the tip of the solidified shell falls due to positive pressure generated in the lubricant during a period in which the lowering speed of the mold is higher than the drawing speed (hereinafter referred to as a negative period), and the rising period of the mold. It has been confirmed that the molten steel overflows onto the solidified shell tip due to negative pressure in the lubricant during the positive period (hereinafter referred to as a positive period) or the shell tip is bent toward the mold.
【0004】浸漬ノズルおよびオシレーションを用いな
い連続鋳造方法に、タンディッシュと鋳型とが直結され
たタイプのものがある。この方法では、給湯速度が低下
するため介在物浮上に有利である。しかしこの方法で
も、溶融金属、鋳型およびタンディッシュ耐火物の三者
が接する部分(以下、三重点という)における耐火物側
からのシェル成長により耐火物面での酸化、窒化が生
じ、間欠引き抜きにともなう組織的に不連続な間欠引き
抜きマークが生じる。他に、三重点部での凝固シェルの
固着による凝固シェル拘束が生じやすく、凝固シェル破
断によりブレークアウトを引き起こすなど、操業の安定
性および高速鋳造化の障害となっている。[0004] As a continuous casting method without using an immersion nozzle and an oscillation, there is a type in which a tundish and a mold are directly connected. In this method, the hot water supply speed is reduced, which is advantageous for inclusion floating. However, even in this method, oxidation and nitridation on the refractory surface occur due to shell growth from the refractory side at a portion where the molten metal, the mold and the tundish refractory come into contact (hereinafter referred to as a triple point), and intermittent withdrawal occurs. This results in a systematically discontinuous intermittent withdrawal mark. In addition, solidification shell restraint is likely to occur due to solidification of the solidified shell at the triple point, causing breakout due to solidified shell breakage, which is an obstacle to operational stability and high-speed casting.
【0005】このような理由から、特開平3−1335
42号公報、特開平4−138843号公報、特開平5
−285598号公報および特開平6−39449号公
報には、溶融金属を鋳型内に供給し連続的に凝固させる
連続鋳造法において、溶融金属が凝固を開始する部分、
いわゆる初期凝固部に交流電磁場を印加することで鋳片
のオシレーションマークや間欠引き抜きマークなどの表
層欠陥を抑制し、操業の安定性を向上させる方法が示さ
れている。For such a reason, Japanese Patent Application Laid-Open No. Hei.
42, JP-A-4-138843, JP-A-5-13843
In the continuous casting method in which molten metal is supplied into a mold and continuously solidified, a portion where the molten metal starts to solidify,
There is disclosed a method in which an AC electromagnetic field is applied to a so-called initial solidification portion to suppress surface layer defects such as oscillation marks and intermittently drawn marks of a slab and improve operation stability.
【0006】本出願人は特開平4−138843号公報
または特開平6−39449号公報において、図6に示
すように、湯面レベル近傍の鋳型に鋳造方向に沿ったス
リットを有し、かつスリット範囲内の鋳型外周に高周波
電源に接続された通電コイルを配し、このコイルに高周
波電流を通電する連続鋳造装置および鋳造方法を提案し
た。[0006] The applicant of the present invention has disclosed in Japanese Patent Application Laid-Open No. Hei 4-138844 or Japanese Patent Application Laid-Open No. Hei 6-39449, as shown in FIG. An energizing coil connected to a high-frequency power source is arranged on the outer periphery of the mold within the range, and a continuous casting apparatus and a casting method for applying a high-frequency current to this coil have been proposed.
【0007】図6は上記の連続鋳造装置を示す図であ
る。図6(a) は要部の縦断面図、図6(b) は同じく水平
断面図である。符号1は鋳型、1a は鋳型1のセグメン
ト部分、1b は冷却水入口、1c はスリット、2は通電
コイル、2a は通電コイル2の冷却水入口、3は浸漬ノ
ズル、4は溶融金属、5は凝固シェル、6は潤滑剤、6
−1は凝固潤滑剤、Fは電磁気力を示す。FIG. 6 is a view showing the above-mentioned continuous casting apparatus. FIG. 6A is a longitudinal sectional view of a main part, and FIG. 6B is a horizontal sectional view of the same. Reference numeral 1 denotes a mold, 1a denotes a segment portion of the mold 1, 1b denotes a cooling water inlet, 1c denotes a slit, 2 denotes an energizing coil, 2a denotes a cooling water inlet of the energizing coil 2, 3 denotes an immersion nozzle, 4 denotes molten metal, and 5 denotes a molten metal. Solidified shell, 6 is a lubricant, 6
-1 indicates a solidifying lubricant, and F indicates an electromagnetic force.
【0008】図示するような鋳型1のスリット1c の存
在により鋳型内の溶融金属4内に高周波電磁場を印加す
ることが可能となる。この高周波電磁場により溶融金属
4内に電磁気力Fが働くが、高い周波数の場合電磁浸透
厚みが薄いため鋳片の表層のみに作用する。この電磁気
力(圧力的な力となるため、以下、磁気圧力という)F
の作用のため、安定した湯面形状の盛り上がりを得て図
示する角度θを確保することが可能となり、潤滑剤6の
流入が促進される。さらに、鋳片表層に対する誘導加熱
作用により凝固シェル5の先端の成長を制御してオシレ
ーションマークの生成を抑制することができ、表層にオ
シレーションマーク欠陥のない鋳片の製造が可能とな
る。The presence of the slit 1c of the mold 1 as shown in the figure makes it possible to apply a high-frequency electromagnetic field to the molten metal 4 in the mold. The electromagnetic force F acts in the molten metal 4 by the high-frequency electromagnetic field. However, at a high frequency, the electromagnetic force F acts only on the surface layer of the slab because the electromagnetic penetration thickness is small. This electromagnetic force (because it becomes a pressure force, hereinafter referred to as magnetic pressure) F
, It is possible to obtain a stable swelling of the molten metal surface and to secure the angle θ shown in the figure, and the inflow of the lubricant 6 is promoted. Further, the generation of the oscillation mark can be suppressed by controlling the growth of the tip of the solidified shell 5 by the induction heating effect on the surface layer of the slab, and the slab without the oscillation mark defect on the surface layer can be manufactured.
【0009】しかし、上記の連続鋳造装置において複数
ストランドにより鋳造を行う場合、1台の高周波電源装
置で1ストランドの通電コイルに高周波電流を通電する
ことになり、高周波電源装置はストランド数と同数を備
える必要がある。高周波電源装置は通常、1台でもかな
りの設備スペースを必要とし、実操業の現場で広いスペ
ースを確保することは困難であり、設備スペース的およ
び設備費的に問題がある。さらに、複数の高周波電源装
置を稼働させることは電力的にもかなりの消費増加とな
る。[0009] However, when casting is performed with a plurality of strands in the continuous casting apparatus, a single high-frequency power supply supplies a high-frequency current to a current-carrying coil of one strand, and the number of high-frequency power supplies is equal to the number of strands. We need to prepare. Normally, even a single high-frequency power supply requires a considerable amount of equipment space, and it is difficult to secure a large space at the actual operation site, and there is a problem in terms of equipment space and equipment cost. Furthermore, running a plurality of high-frequency power supplies results in a considerable increase in power consumption.
【0010】本出願人が提案した特開平3−13354
2号公報のタンディッシュと鋳型が直結された連続鋳造
法においても、複数ストランドにより鋳造を行う場合に
は上記のような設備的、電力的な問題が残されている。JP-A-3-13354 proposed by the present applicant
In the continuous casting method in which the tundish and the mold are directly connected to each other, the above-described facility and power problems still remain when casting is performed using a plurality of strands.
【0011】特開平5−285598号公報の方法は、
鋳型とタンディッシュが直結された構造において、鋳型
は導電セグメントからなり、かつその鋳型の外周に高周
波電流の通電コイルを配し、このコイルに高周波電流を
通電する水平連続鋳造法である。この方法では、高周波
電流は常時流れているわけではなく、溶融金属の静圧を
保持し得るだけの磁気圧力をパルス的に生じさせるため
高周波パルス電磁場誘導装置を用いて、間欠的に高周波
電磁場を印加する。これにより引き抜きの摩擦力を低下
させることができるが、この方法も複数ストランドによ
り鋳造を行う場合には、同様に1台の高周波パルス電磁
場誘導装置で1ストランドの通電コイルに高周波パルス
電流を通電するものであり、設備スペース的、エネルギ
ー効率的にも条件が悪くなる。The method disclosed in Japanese Patent Application Laid-Open No. 5-285598 is
In a structure in which the mold and the tundish are directly connected, the mold is a horizontal continuous casting method in which the mold is composed of conductive segments, and an energizing coil for a high-frequency current is arranged on the outer periphery of the mold, and the high-frequency current is applied to the coil. In this method, the high-frequency current does not always flow, but the high-frequency electromagnetic field is intermittently generated using a high-frequency pulse electromagnetic field induction device to generate a magnetic pressure sufficient to hold the static pressure of the molten metal in a pulsed manner. Apply. By this, the frictional force of drawing can be reduced. However, also in this method, when casting is performed with a plurality of strands, similarly, a high-frequency pulse current is applied to a current-carrying coil of one strand by one high-frequency pulse electromagnetic field induction device. Therefore, the conditions become worse in terms of equipment space and energy efficiency.
【0012】[0012]
【発明が解決しようとする課題】本発明は上記の問題に
鑑みてなされたものであり、本発明の目的は、1台の高
周波電源装置で複数ストランドを有する連続鋳造装置の
各通電コイルに高周波電流を適正条件で通電することに
より、鋳片表層のオシレーションマークや間欠引き抜き
マークのない鋳片を製造するとともに、設備スペース、
設備費の低減および省電力を達成することができる連続
鋳造装置および連続鋳造方法を提供することにある。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a high-frequency power supply device with a high-frequency power supply for each energizing coil of a continuous casting apparatus having a plurality of strands. By applying current under appropriate conditions, we can manufacture slabs without oscillation marks or intermittent withdrawal marks on the slab surface layer, as well as equipment space,
It is an object of the present invention to provide a continuous casting apparatus and a continuous casting method that can achieve a reduction in equipment cost and power saving.
【0013】[0013]
【課題を解決するための手段】本発明の要旨は、次の
(1) の金属の連続鋳造装置および(2) のこれを用いる連
続鋳造方法にある。The gist of the present invention is as follows.
(1) A continuous casting apparatus for metal and (2) a continuous casting method using the same.
【0014】(1)金属製水冷鋳型の溶融金属の凝固開始
点近傍に鋳造方向に沿って設けられた複数のスリットで
その近傍の鋳型壁がセグメント状に分割され、かつその
セグメント上下部の両端または下部端のみは接続され電
気的に短絡され、鋳型外周のスリット範囲内には鋳型の
軸と同軸で高周波電流を通電するコイルが巻かれてなる
複数ストランドの連続鋳造装置において、各通電コイル
に高周波電流を通電する電源装置を1台備えることを特
徴とする金属の連続鋳造装置。(1) A plurality of slits provided along the casting direction near the solidification start point of the molten metal of the metal water-cooled mold divide the mold wall in the vicinity thereof into segments, and both ends of the upper and lower portions of the segment Alternatively, only the lower end is connected and electrically short-circuited, and in a continuous casting apparatus of a plurality of strands in which a coil for supplying a high-frequency current is wound coaxially with the axis of the mold within a slit area on the outer periphery of the mold, each of the energized coils is A continuous casting apparatus for metal, comprising one power supply unit for supplying a high-frequency current.
【0015】(2)上記(1) の金属の連続鋳造装置を用い
る鋳造において、1台の高周波電流を通電する電源装置
を用いて、各ストランドの通電コイルに高周波電流を順
次間欠的に位相をずらして通電し、各ストランドの連続
鋳造装置において順次間欠的に高周波電磁場を印加しな
がら鋳造を行うことを特徴とする金属の連続鋳造方法。(2) In the casting using the metal continuous casting apparatus of the above (1), a high-frequency current is sequentially and intermittently applied to a current-carrying coil of each strand by using a single power-supply device for supplying a high-frequency current. A continuous casting method for a metal, characterized in that the metal is cast while applying a high-frequency electromagnetic field intermittently in a continuous casting apparatus for each strand while energizing the metal with a shift.
【0016】上記(2) では、間欠的に高周波電磁場を印
加する期間は、オシレーションを用いる場合においては
オシレーションのネガティブ期間の初期またはポジティ
ブ期間の初期、オシレーションを用いないで間欠引き抜
きを行う場合においては引き抜き開始初期、とするのが
それぞれ望ましい。In the above (2), during the period in which the high-frequency electromagnetic field is intermittently applied, in the case where oscillation is used, the intermittent extraction is performed without using the oscillation at the beginning of the negative period of the oscillation or the beginning of the positive period. In this case, it is desirable to set the initial stage of the drawing start.
【0017】[0017]
【作用】本発明の連続鋳造装置における1ストランドご
との鋳型および通電コイルの構成例は、前述の図6に示
すものと基本的に同じである。ただし、鋳型上端部には
スリットがなく、セグメントの上下両端でセグメント同
士が接続され、電気的に短絡されている鋳型でもよい。
この鋳型では、その上端部も接続されていることで鋳型
の強度不足が補え、熱などによる鋳型の変形さらに溶鋼
のスリット内への浸入を防止することができるなどの効
果を得ることができる。The configuration example of the mold and the energizing coil for each strand in the continuous casting apparatus of the present invention is basically the same as that shown in FIG. However, the upper end of the mold may not have a slit, and the segments may be connected to each other at the upper and lower ends of the segment and electrically short-circuited.
In this mold, since the upper end is also connected, the strength shortage of the mold can be compensated, and effects such as deformation of the mold due to heat or the like and prevention of intrusion of molten steel into the slit can be obtained.
【0018】本発明の連続鋳造装置は、1ストランドが
図6に示す装置構成の複数ストランドの鋳造装置、これ
らに備えられた各通電コイルに高周波電流を通電する1
台の高周波電源装置および各ストランドの通電コイルに
順次間欠的に通電するための電源切り替え装置からなる
ものである。The continuous casting apparatus of the present invention has a plurality of strands, each of which has the structure shown in FIG. 6, and a high-frequency current is applied to each energizing coil provided in the apparatus.
And a power switching device for sequentially and intermittently energizing the energizing coils of each strand.
【0019】このような構成とすることにより、1台の
高周波電源装置のみで複数ストランドの各通電コイルを
稼動させることができ、設備スペースおよび設備費の低
減と省電力をも同時に達成することができる。With such a configuration, it is possible to operate each energizing coil of a plurality of strands with only one high-frequency power supply device, and it is possible to simultaneously reduce the equipment space and equipment cost and save power. it can.
【0020】次に、高周波電流の通電方法および電磁場
印加によるオシレーションマークや間欠引き抜きマーク
などの表層欠陥の改善機構を、図1および図2に基づい
て説明する。Next, a method for supplying a high-frequency current and a mechanism for improving surface defects such as an oscillation mark and an intermittent extraction mark by applying an electromagnetic field will be described with reference to FIGS.
【0021】図1は、1台の高周波電源装置により3ス
トランドの連続鋳造装置の各通電コイルに通電する方法
を説明する概略図である。図示するように、1台の高周
波電源装置7が1台の電源切り替え装置8を介して通電
コイル2−1、2−2および2−3に接続される。さら
に、電源切り替え装置8には、鋳型のオシレーション周
期速度と鋳片の引き抜き速度との速度差を検知する機能
を有する速度検知器9が接続される。FIG. 1 is a schematic diagram for explaining a method of energizing each energizing coil of a three-strand continuous casting apparatus by one high-frequency power supply device. As shown, one high-frequency power supply device 7 is connected to the current-carrying coils 2-1, 2-2 and 2-3 via one power supply switching device 8. Further, a speed detector 9 having a function of detecting a speed difference between the oscillation cycle speed of the mold and the speed of drawing the slab is connected to the power supply switching device 8.
【0022】高周波電源装置7は常時連続的に高周波電
流が通電可能な状態にしておき、初めに1番目の通電コ
イル2−1に接続して通電を行う。ある時間経過後、電
源切り換え装置8により2番目の通電コイル2−2に切
り換えて接続し、2番目のコイルに通電を行う。さらに
ある時間経過後、同様に3番目の通電コイル2−3に通
電する。その後、再び1番目の通電コイル2−1に切り
換えて接続し、1→2→3→1→2→3→1と各通電コ
イルに高周波電流を順次間欠的に通電する。電源切り換
え装置8は、速度検知器9からの信号を受けるシーケン
ス制御により電源切り換えのタイミングを設定する。The high-frequency power supply 7 is always in a state in which a high-frequency current can be continuously supplied, and is first connected to the first power supply coil 2-1 to supply power. After a lapse of a certain time, the power supply switching device 8 switches to and connects to the second energizing coil 2-2 to energize the second coil. After a certain time has elapsed, the third energizing coil 2-3 is similarly energized. Thereafter, the first energizing coil 2-1 is switched and connected again, and a high-frequency current is sequentially and intermittently applied to each energizing coil in the order of 1 → 2 → 3 → 1 → 2 → 3 → 1. The power supply switching device 8 sets the timing of power supply switching by sequence control that receives a signal from the speed detector 9.
【0023】図2は、1台の高周波電源装置により3ス
トランドの連続鋳造装置の各通電コイルに通電する方法
を、浸漬ノズルやオシレーションを用いない直結型連続
鋳造装置での間欠引き抜きに適用する場合を説明する概
略図である。なお、図2では電源装置などは省略されて
おり、図1と同様の構成である。この間欠引き抜きの場
合、高周波電流の通電は、図2に示すように引き抜き速
度の立ち上がりを速度検知器9により検知して行う。FIG. 2 shows that the method of energizing each energizing coil of a three-strand continuous casting apparatus by one high-frequency power supply apparatus is applied to intermittent drawing in a direct connection type continuous casting apparatus that does not use an immersion nozzle or oscillation. It is a schematic diagram explaining a case. Note that the power supply device and the like are omitted in FIG. 2 and have the same configuration as that of FIG. In the case of the intermittent extraction, the high-frequency current is supplied by detecting the rising of the extraction speed by the speed detector 9 as shown in FIG.
【0024】電源切り替えの周期、すなわち高周波電磁
場印加の周期は各ストランドの鋳型オシレーションや間
欠引き抜きの周期に合わせ、また、各ストランドに順次
間欠的に高周波電磁場を印加するために、各ストランド
ごとに位相をずらしてオシレーションや間欠引き抜き
(引き抜き−停止のタイミング)などの駆動系を設定す
る。The cycle of power supply switching, that is, the cycle of applying a high-frequency electromagnetic field, is set in accordance with the cycle of mold oscillation or intermittent drawing of each strand, and in order to apply a high-frequency electromagnetic field to each strand sequentially and intermittently, The drive system such as the oscillation and the intermittent withdrawal (withdrawal-stop timing) is set by shifting the phase.
【0025】次に、鋳片表層の性状を改善するための駆
動系の周期と電磁場印加の望ましいタイミングについ
て、図3〜図5により説明する。Next, the period of the drive system for improving the properties of the surface layer of the slab and the desirable timing of the application of the electromagnetic field will be described with reference to FIGS.
【0026】図3は、浸漬ノズルを用いる、鋳型とタン
ディッシュが非直結でオシレーション方式を用いる場合
のオシレーションネガティブ期間の鋳込み状況を説明す
る鋳型および鋳型内要部の縦断面図である。図示のよう
に、鋳型とタンディッシュが非直結の方式では、オシレ
ーションマークの生成起因となるオシレーションネガテ
ィブ期間の潤滑剤6内の正圧による凝固シェル5の先端
の倒れ込みを抑制するため、図1および図2に示すよう
にオシレーションネガティブ期間の初期に磁気圧力Fを
初期凝固部に作用させることで潤滑剤6の流路を拡大し
て潤滑剤6内の正圧を軽減し、オシレーションマークを
抑制する。FIG. 3 is a longitudinal sectional view of a mold and a main part in the mold for explaining a casting state during an oscillation negative period when an oscillation method is used when the mold and the tundish are not directly connected using an immersion nozzle. As shown in the drawing, in the method in which the mold and the tundish are not directly connected, the tip of the solidified shell 5 is prevented from falling down due to the positive pressure in the lubricant 6 during the oscillation negative period, which causes the generation of an oscillation mark. As shown in FIGS. 1 and 2, the magnetic pressure F is applied to the initially solidified portion at the beginning of the oscillation negative period, thereby expanding the flow path of the lubricant 6 to reduce the positive pressure in the lubricant 6, thereby reducing the oscillation. Suppress marks.
【0027】図4は、同じく鋳型とタンディッシュが非
直結方式の場合のオシレーションポジティブ期間の鋳込
み状況を説明する鋳型および鋳型内要部の縦断面図であ
る。FIG. 4 is a longitudinal sectional view of a mold and a main part of the mold for explaining a casting state during an oscillation positive period when the mold and the tundish are not directly connected.
【0028】図示のように、オシレーションマークの生
成起因となるオシレーションポジティブ期間の潤滑剤6
内の負圧による凝固シェル5上への溶融金属4のオーバ
ーフローを抑制するため、また凝固シェル5の先端が潤
滑剤6内の負圧により鋳型側に引き寄せられるの抑制す
るため、オシレーションポジティブ期間の初期に磁気圧
力Fを印加することで潤滑剤6の流路を拡大して潤滑剤
6内の負圧を軽減し、オシレーションマークを抑制す
る。As shown in the figure, the lubricant 6 during the oscillation positive period causing the generation of the oscillation mark is provided.
In order to suppress the overflow of the molten metal 4 onto the solidified shell 5 due to the negative pressure in the inside, and to prevent the tip of the solidified shell 5 from being drawn to the mold side by the negative pressure in the lubricant 6, the oscillation positive period By applying the magnetic pressure F at the beginning of the process, the flow path of the lubricant 6 is enlarged to reduce the negative pressure in the lubricant 6 and suppress the oscillation mark.
【0029】図5は、鋳型とタンディッシュが直結方式
の場合の鋳込み状況を説明する鋳型および鋳型内要部の
縦断面図である。鋳型とタンディッシュが直結された構
造の連続鋳造装置では、図示のように直結された三重点
部のタンディッシュ耐火物10側からの凝固シェル5の成
長により、鋳片の表層に疵(間欠引き抜きマーク)が発
生する。さらに、三重点部で凝固シェル5が拘束されや
すいため、凝固シェル5の破断によるブレークアウトを
引き起こしやすい。FIG. 5 is a longitudinal sectional view of a mold and a main part in the mold for explaining a casting state when the mold and the tundish are directly connected. In the continuous casting apparatus having a structure in which the mold and the tundish are directly connected, as shown in the figure, the growth of the solidified shell 5 from the side of the tundish refractory 10 at the triple junction directly connected causes flaws (intermittent pulling) on the surface layer of the slab. Mark) occurs. Further, since the solidified shell 5 is easily restrained at the triple point, a breakout due to breakage of the solidified shell 5 is easily caused.
【0030】このため、図2、図5に示すように、間欠
引き抜きの開始時期に合うように高周波電磁場を間欠的
に発生させ、間欠的に磁気圧力Fを印加する。これによ
り瞬間的に三重点で凝固シェル5または溶融金属4と鋳
型の接触圧が軽減されるため、引き抜きの開始時の引き
抜き力(摩擦力)はかなり小さくてすみ、凝固シェル5
の拘束が生じることが少なくなり、高速鋳造化を指向す
ることができる。Therefore, as shown in FIGS. 2 and 5, a high-frequency electromagnetic field is generated intermittently so as to coincide with the start time of the intermittent drawing, and the magnetic pressure F is applied intermittently. As a result, the contact pressure between the solidified shell 5 or the molten metal 4 and the mold is instantaneously reduced at the triple point, so that the drawing force (frictional force) at the start of drawing can be considerably small, and the solidified shell 5
Is less likely to occur, and high-speed casting can be achieved.
【0031】上記のような高周波電磁場の印加により、
上記の磁気圧力による作用だけでなく誘導加熱効果も併
せて得られるため、浸漬ノズル方式では、例えば包晶鋼
のように不均一凝固が起こりやすい鋼種においても緩冷
却鋳造を達成することができる。また、直結式連続鋳造
法では三重点部でのタンディッシュ耐火物側からの凝固
シェル成長を抑制することができることになり、間欠引
き抜きマークの深さを低減させることが可能となる。By applying the high-frequency electromagnetic field as described above,
Since the induction heating effect can be obtained in addition to the action by the magnetic pressure described above, the immersion nozzle method can achieve slow cooling casting even in a steel type in which non-uniform solidification easily occurs, such as peritectic steel. Further, in the direct connection type continuous casting method, the growth of the solidified shell from the tundish refractory at the triple junction can be suppressed, and the depth of the intermittently drawn mark can be reduced.
【0032】コイルに通電する高周波電流の周波数は、
鋳型内湯面の安定化や誘導加熱の効果が得られるように
1 kHz から数百 kHz までの範囲とするのが望まし
い。The frequency of the high-frequency current applied to the coil is
It is desirable to set the range from 1 kHz to several hundred kHz so as to obtain the effect of stabilization of the mold surface and induction heating.
【0033】また、上記の作用効果はいずれも、鋳型の
断面形状や引き抜き方向には影響されず、任意の鋳型形
状および引き抜き方向において達成される。In addition, any of the above-mentioned functions and effects is not affected by the cross-sectional shape and the drawing direction of the mold, but is achieved in an arbitrary mold shape and drawing direction.
【0034】[0034]
(比較例)1台の高周波電源装置と接続された通電コイ
ルとスリットを有する1ストランドのオシレーションと
浸漬ノズルを用いる連続鋳造装置により、鋳造中常時、
連続的に高周波電流を通電コイルに通電して鋳造実験を
行い、オシレーションマークの発生状況を観察した。用
いた連続鋳造装置の諸元および鋳造条件は、次のとりお
りである。(Comparative Example) A continuous casting apparatus using a single-strand oscillation and immersion nozzle having a current-carrying coil and a slit connected to one high-frequency power supply,
A casting experiment was conducted by continuously supplying a high-frequency current to the current-carrying coil, and the occurrence of oscillation marks was observed. The specifications of the continuous casting apparatus used and the casting conditions are as follows.
【0035】ストランド数:1 鋳型寸法:内径 200 mmφ、肉厚 30 mm、長さ 700 mm 鋳型スリット:幅 0.25mm 、長さ 125 mm 、数 45本 オシレーション:ストローク 6mm、140 cpm 浸漬ノズル:内径 30 mmφ 通電コイル 寸法:内径 250 mmφ、外径 265 mmφ 断面:15mm×15mm 巻数:5巻 高周波電流の実効値:14000 AT 高周波電流の周波数:25 kHz 高周波電源 台数:1 電源出力: 300 kW 鋳造溶鋼(包晶鋼)の組成:C=0.12%、 Si =0.2
%、 Mn=0.6 %、P=0.035 %、S=0.015 %、Fe=
残部 鋳造溶鋼の温度:1610℃ 潤滑剤の成分:SiO2=39.4%、 CaO =35.3%、Al2O3
=7.1 %、Fe203 =1.0 %、Na20=5.4 %、 MgO =4.
3 %、F=6.8 %、 F.C=1.0 %、 B2O3=0.9 % 鋳造速度:2.0 m/min 鋳造時間:10分 得られた鋳片を観察した結果、オシレーションマークの
深さは平均 120μm であり、高周波電磁場無印加時の深
さ 500μm に比べてかなり改善されていた。この試験の
対象鋼は、鋳片表面に凝固シェルの不均一成長に起因す
る表層割れ(縦割れ)が生じやすい鋼種であるが、割れ
やデプレッション(へこみ、くぼみ)はみられず、緩冷
却化されていることがわかった。Number of strands: 1 Mold dimensions: inner diameter 200 mmφ, wall thickness 30 mm, length 700 mm Mold slit: width 0.25 mm, length 125 mm, number 45 Oscillation: stroke 6 mm, 140 cpm Immersion nozzle: inner diameter 30 mmφ energizing coil Dimension: inner diameter 250 mmφ, outer diameter 265 mmφ Cross section: 15mm × 15mm Number of turns: 5 High frequency current effective value: 14000 AT High frequency current frequency: 25 kHz High frequency power supply Number of units: 1 Power output: 300 kW Cast molten steel Composition of (peritectic steel): C = 0.12%, Si = 0.2
%, Mn = 0.6%, P = 0.035%, S = 0.015%, Fe =
Remainder Cast molten steel temperature: 1610 ° C Lubricant components: SiO 2 = 39.4%, CaO = 35.3%, Al 2 O 3
= 7.1%, Fe 2 0 3 = 1.0%, Na 2 0 = 5.4%, MgO = 4.
3%, F = 6.8%, F.I. C = 1.0%, B 2 O 3 = 0.9% Casting speed: 2.0 m / min Casting time: 10 minutes As a result of observing the obtained slab, the depth of the oscillation mark was 120 μm on average and no high-frequency electromagnetic field was applied. It was considerably improved compared to the depth of 500 μm. The steel used in this test is a type of steel in which surface cracks (longitudinal cracks) are likely to occur due to uneven growth of the solidified shell on the slab surface. It turned out that it was.
【0036】しかし、3台の高周波電源装置で3ストラ
ンドの連続鋳造を行うことを考えた場合、電源出力は90
0kWもの大きな電力を要するものとなり、さらに電源設
備の設置スペースもかなり広くなってしまう。However, when considering the continuous casting of three strands with three high-frequency power units, the power output is 90
This requires power as large as 0 kW, and the installation space for the power supply equipment is considerably large.
【0037】(本発明例1)高周波電磁場をオシレーシ
ョンのネガティブ期間の初期に順次間欠的に印加する本
発明方法で1台の高周波電源装置を用いて3ストランド
の鋳型の通電コイルに通電して鋳造する実験を行い、オ
シレーションマークの発生状況を観察した。(Example 1 of the present invention) In the method of the present invention in which a high-frequency electromagnetic field is sequentially and intermittently applied at the beginning of a negative period of oscillation, a single high-frequency power supply is used to energize a current-carrying coil of a three-strand mold. An experiment of casting was performed, and the state of generation of oscillation marks was observed.
【0038】その他の鋳造条件および装置諸元は上記比
較例と同一であり、電磁場印加条件は次のとおりとし
た。Other casting conditions and equipment specifications were the same as those of the above comparative example, and the electromagnetic field application conditions were as follows.
【0039】ストランド数:3 高周波電源 台数:1 電源出力: 300 kW 印加時期:オシレーションのネガティブ期間の初期 切り替え周波数:140 cpm(2.33Hz)(オシレーショ
ンと同周期、ただし、切り替え周期のうち1ストランド
に対し1/3印加、2/3停止) 得られた鋳片を観察した結果、3ストランドの連続鋳造
機で得られた鋳片の表層は、常時高周波電磁場を印加し
て得られた鋳片の表面性状と比較しても遜色はなく、オ
シレーションマークが軽減されており、間欠電磁場印加
によりオシレーションマークを抑制できることが確認さ
れた。また、高周波電磁場を初期凝固部に印加すること
で、凝固シェルの不均一成長を抑制でき、割れのない鋳
片が得られた。Number of strands: 3 Number of high-frequency power supplies Number of power supplies: 1 Power supply output: 300 kW Applied time: Initial period of negative period of oscillation Switching frequency: 140 cpm (2.33 Hz) (same cycle as oscillation, but 1 cycle of oscillation cycle As a result of observing the obtained cast slab, the surface layer of the cast slab obtained by the continuous caster with three strands was cast by applying a high-frequency electromagnetic field constantly. Compared with the surface properties of the piece, there was no inferiority, the oscillation mark was reduced, and it was confirmed that the oscillation mark could be suppressed by applying the intermittent electromagnetic field. Further, by applying a high-frequency electromagnetic field to the initially solidified portion, uneven growth of the solidified shell could be suppressed, and a cast without cracks was obtained.
【0040】オシレーションマークの改善は、常時高周
波電磁場を印加した場合と同等な効果が得られたのに対
し、高周波電源の消費電力は、3台の高周波電源装置に
対して3ストランド分の各通電コイルに通電する場合に
比べて1/3に低減され、大きな省電力化が達成され
た。電源設備も1台の装置ですむため、それほど大きな
設置スペースを必要としない。The improvement of the oscillation mark has the same effect as the case where the high-frequency electromagnetic field is always applied. On the other hand, the power consumption of the high-frequency power source is equivalent to three strands for three high-frequency power devices. This is reduced to one third as compared with the case where the current is supplied to the current supply coil, and a great power saving is achieved. Since only one device is required for the power supply equipment, a large installation space is not required.
【0041】(本発明例2)高周波電磁場をオシレーシ
ョンのポジティブ期間の初期に順次間欠的に印加する本
発明方法で、1台の高周波電源装置を用いて、3ストラ
ンドの鋳型の各通電コイルに通電して鋳造する実験を行
い、オシレーションマークの発生状況を観察した。その
他の鋳造条件および装置諸元は上記本発明例1と同一で
あり、電磁場印加条件は次のとおりとした。(Example 2 of the present invention) In the method of the present invention in which a high-frequency electromagnetic field is sequentially and intermittently applied at the beginning of a positive period of oscillation, a single high-frequency power supply is used to apply a current to each energizing coil of a three-strand mold. An experiment of casting by energizing was performed, and the state of generation of oscillation marks was observed. Other casting conditions and device specifications were the same as those of Example 1 of the present invention, and the electromagnetic field application conditions were as follows.
【0042】高周波電源 台数:1 電源出力: 300 kW 印加時期:オシレーションのポジティブ期間の初期 切り替え周波数:140 cpm(2.33Hz)(オシレーショ
ンと同周期、ただし、切り替え周期のうち1ストランド
に対し1/3印加、2/3停止) 得られた鋳片を観察した結果、鋳片のオシレーションマ
ークおよび電力消費のいずれにおいても、上記の本発明
例1と同様の結果が得られた。この結果、高周波電磁場
をオシレーションのポジティブ期間の初期に間欠的に印
加する方法によっても、本発明例1と同じ効果が得られ
ることが確認された。High frequency power supply Number of units: 1 Power supply output: 300 kW Application timing: Initial period of positive period of oscillation Switching frequency: 140 cpm (2.33 Hz) (same cycle as oscillation, but 1 cycle for one strand in switching cycle) As a result of observing the obtained cast slab, the same results as those of Example 1 of the present invention described above were obtained in both the oscillation mark and the power consumption of the cast slab. As a result, it was confirmed that the same effect as that of Example 1 of the present invention can be obtained also by the method of intermittently applying the high-frequency electromagnetic field at the beginning of the oscillation positive period.
【0043】(本発明例3)1台の高周波電源装置と接
続された通電コイルとスリットを有する3ストランドの
タンディッシュ、耐火物および鋳型が直結された縦型連
続鋳造装置を用いて、高周波電磁場を間欠引き抜きの引
き抜き期間の初期に順次間欠的に印加する本発明方法に
より、1台の高周波電源装置で3ストランドの鋳型の各
通電コイルに通電して鋳造する実験を行い、引き抜き力
を測定するとともに間欠引き抜きマークの発生状況を観
察した。鋳造条件、装置諸元および電磁場印加条件は次
のとおりとした。(Example 3 of the present invention) A high-frequency electromagnetic field is produced by using a vertical continuous casting apparatus in which a three-strand tundish having slits, a refractory, and a mold are directly connected to an energizing coil and a slit connected to one high-frequency power supply apparatus. In the method of the present invention, in which a single high-frequency power supply device is used to energize each energizing coil of a three-strand mold and casting is performed, and the pulling force is measured by the method of the present invention in which a single high-frequency power supply device is applied intermittently at the beginning of the intermittent extraction period. At the same time, the occurrence of intermittent withdrawal marks was observed. The casting conditions, equipment specifications and electromagnetic field application conditions were as follows.
【0044】ストランド数:3 鋳型寸法:内径 200 mmφ、肉厚 30 mm、長さ 700 mm 鋳型スリット:幅 0.25mm 、長さ 125 mm 、数 45本 通電コイル 寸法:内径 250 mmφ、外径 265 mmφ 断面:15mm×15mm 巻数:5巻 高周波電流の実効値:14000 AT 高周波電流の周波数:25 kHz 高周波電源 台数:1 電源出力: 300 kW 鋳造溶鋼の組成:C=0.45%、 Si =0.2 %、 Mn=0.
7 %、P=0.025 %、S=0.008 %、Fe=残部 鋳造溶鋼の温度:1600℃ 鋳造速度:2.0 m/min 間欠引き抜き: 90 cpm 鋳造時間:10分 電磁場印加時期:間欠引き抜き期間の引き抜き初期 切り替え周波数: 90 cpm(1.5 Hz)(オシレーショ
ンと同周期、ただし、切り替え周期のうち1ストランド
に対し1/3印加、2/3停止) 引き抜き力は、ダミーバーヘッドに歪ゲージを設置する
方法で測定した。この引き抜き力値の比較では、間欠的
に高周波電磁場を印加した場合の方が、印加しない場合
の鋳片よりも大幅に低減し、さらに常時印加した場合に
比べても遜色のない結果であった。Number of strands: 3 Mold dimensions: Inner diameter 200 mmφ, wall thickness 30 mm, length 700 mm Mold slit: width 0.25 mm, length 125 mm, number of 45 Energized coils Dimensions: inner diameter 250 mmφ, outer diameter 265 mmφ Cross section: 15mm × 15mm Number of turns: 5 Effective frequency of high-frequency current: 14000 AT High-frequency current frequency: 25 kHz High-frequency power supply Number of units: 1 Power output: 300 kW Composition of cast molten steel: C = 0.45%, Si = 0.2%, Mn = 0.
7%, P = 0.025%, S = 0.008%, Fe = balance Cast molten steel temperature: 1600 ° C Casting speed: 2.0 m / min Intermittent drawing: 90 cpm Casting time: 10 minutes Electromagnetic field application timing: Initial drawing in intermittent drawing period Switching frequency: 90 cpm (1.5 Hz) (same cycle as oscillation, but 1/3 applied to one strand during switching cycle, 2/3 stop) Pulling force is measured by installing a strain gauge on dummy bar head. It was measured. In the comparison of the drawing force values, the case where the high-frequency electromagnetic field was intermittently applied was significantly reduced compared to the case where the high-frequency electromagnetic field was not applied, and was comparable to the case where the high-frequency electromagnetic field was not always applied. .
【0045】この結果、間欠的に高周波電磁場を印加し
た場合でも、三重点部でのタンディッシュ耐火物への凝
固シェル固着によるシェルの拘束が抑制され、安定な引
き抜きができることが確認できた。As a result, it was confirmed that even when the high-frequency electromagnetic field was intermittently applied, the restraint of the shell due to the solidification of the shell on the tundish refractory at the triple junction was suppressed, and stable extraction was possible.
【0046】得られた鋳片を観察すると、表層の間欠引
き抜きマーク深さは常時高周波電磁場を印加した場合と
比較しても遜色なく、次工程の表面研削分が少なくな
り、歩留り向上に寄与できた。Observation of the obtained slab shows that the depth of the intermittently drawn mark on the surface layer is comparable to the case where a high-frequency electromagnetic field is always applied, and the surface grinding amount in the next step is reduced, which can contribute to an improvement in yield. Was.
【0047】高周波電源の消費電力は、3台の高周波電
源装置で三つの通電コイルに通電した場合に比べて1/
3に低減され、省電力化が達成された。The power consumption of the high frequency power supply is 1/1/3 of the power consumption of three high frequency power supplies when three current supply coils are energized.
3 to achieve power saving.
【0048】[0048]
【発明の効果】本発明によれば、1台の高周波電源装置
で複数ストランドを有する連続鋳造装置の各通電コイル
に適切に通電することにより、設備費および設置スペー
スの削減、電力消費量の節減とともに、表層性状に優れ
た鋳片を得ることができる。According to the present invention, by appropriately energizing each energizing coil of a continuous casting apparatus having a plurality of strands with one high-frequency power supply apparatus, equipment costs and installation space can be reduced, and power consumption can be reduced. At the same time, a slab excellent in surface layer properties can be obtained.
【図1】1台の高周波電源装置により3ストランド分の
各通電コイルに順次間欠的に通電する方法を説明する概
略図である。FIG. 1 is a schematic view for explaining a method of sequentially and intermittently energizing each energizing coil for three strands by one high-frequency power supply device.
【図2】図1の装置を浸漬ノズルやオシレーションを用
いない間欠引き抜きに適用する場合を説明する概略図で
ある。FIG. 2 is a schematic diagram illustrating a case where the apparatus of FIG. 1 is applied to intermittent drawing without using a dipping nozzle or oscillation.
【図3】オシレーションネガティブ期間の初期における
電磁場の付与効果を説明する要部の縦断面図である。FIG. 3 is a longitudinal sectional view of a main part for explaining an effect of applying an electromagnetic field in an initial stage of an oscillation negative period.
【図4】オシレーションポジティブ期間の初期における
電磁場の付与効果を説明する要部の縦断面図である。FIG. 4 is a longitudinal sectional view of a main part for explaining an effect of applying an electromagnetic field in an initial period of an oscillation positive period.
【図5】直結式連続鋳造法において、間欠引き抜き時の
引き抜き期間の初期における電磁場の付与効果を説明す
る要部の縦断面図である。FIG. 5 is a longitudinal sectional view of a main part for explaining an effect of applying an electromagnetic field at an initial stage of a drawing period at the time of intermittent drawing in a direct connection type continuous casting method.
【図6】特開平4−138843号公報に示される鋳造
装置を示す図である。(a) は要部の縦断面図、(b) は水
平断面図である。FIG. 6 is a view showing a casting apparatus disclosed in Japanese Patent Application Laid-Open No. 4-138843. (a) is a longitudinal sectional view of a main part, and (b) is a horizontal sectional view.
1:鋳型、 1a :鋳型のセグメント部分、1b :
冷却水入口、1c :スリット、 2:通電コイル、
2a :冷却水入口、3:浸漬ノズル 4:溶融
金属、 5:凝固シェル、6:潤滑剤、
6−1:凝固潤滑剤、 7:高周波電源装
置、8:電源切り替え装置、 9:速度検知器、
10:タンディッシ耐火物、F:電磁気力(磁気圧力)、
θ:凝固シェルと凝固潤滑剤とがなす角度1: Template, 1a: Segment part of template, 1b:
Cooling water inlet, 1c: slit, 2: energizing coil,
2a: cooling water inlet, 3: immersion nozzle 4: molten metal, 5: solidified shell, 6: lubricant,
6-1: solidifying lubricant, 7: high frequency power supply, 8: power supply switching device, 9: speed detector,
10: Tundish refractory, F: Electromagnetic force (magnetic pressure),
θ: Angle between solidified shell and solidified lubricant
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−200849(JP,A) 特開 平7−266004(JP,A) 特開 平5−15949(JP,A) 特開 平4−138843(JP,A) 特開 平5−146854(JP,A) 特開 昭62−197253(JP,A) 特開 平7−335381(JP,A) (58)調査した分野(Int.Cl.6,DB名) B22D 11/00 B22D 11/04 311 B22D 11/10 350 B22D 27/02 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-4-200849 (JP, A) JP-A-7-266004 (JP, A) JP-A-5-15949 (JP, A) JP-A-4-199 138843 (JP, A) JP-A-5-146854 (JP, A) JP-A-62-197253 (JP, A) JP-A-7-335381 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) B22D 11/00 B22D 11/04 311 B22D 11/10 350 B22D 27/02
Claims (2)
傍に鋳造方向に沿って設けられた複数のスリットでその
近傍の鋳型壁がセグメント状に分割され、かつそのセグ
メント上下部の両端または下部端のみは接続され電気的
に短絡され、鋳型外周のスリット範囲内には鋳型の軸と
同軸で高周波電流を通電するコイルが巻かれてなる複数
ストランドの連続鋳造装置において、各通電コイルに高
周波電流を通電する電源装置を1台備えることを特徴と
する金属の連続鋳造装置。1. A mold wall in the vicinity thereof is divided into segments by a plurality of slits provided along a casting direction near a solidification start point of a molten metal of a metal water-cooled mold, and both ends of upper and lower portions of the segment or Only the lower end is connected and electrically short-circuited.In a continuous casting apparatus of a multi-strand in which a coil for supplying a high-frequency current is wound coaxially with the axis of the mold within a slit area on the outer periphery of the mold, a high-frequency A continuous casting apparatus for metal, comprising one power supply unit for supplying a current.
る鋳造において、1台の高周波電源装置を用いて、各ス
トランドの通電コイルに高周波電流を順次間欠的に位相
をずらして通電し、各ストランドの連続鋳造装置におい
て順次間欠的に高周波電磁場を印加しながら鋳造を行う
ことを特徴とする金属の連続鋳造方法。2. A casting using a continuous casting apparatus for metal according to claim 1, wherein a single high-frequency power supply device is used to apply high-frequency current to a current-carrying coil of each strand sequentially and intermittently with a phase shift. A continuous casting method for a metal, wherein casting is performed while applying a high-frequency electromagnetic field intermittently in a continuous casting apparatus for each strand.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6311824A JP2979986B2 (en) | 1994-12-15 | 1994-12-15 | Metal continuous casting apparatus and continuous casting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6311824A JP2979986B2 (en) | 1994-12-15 | 1994-12-15 | Metal continuous casting apparatus and continuous casting method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08168851A JPH08168851A (en) | 1996-07-02 |
JP2979986B2 true JP2979986B2 (en) | 1999-11-22 |
Family
ID=18021846
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6311824A Expired - Fee Related JP2979986B2 (en) | 1994-12-15 | 1994-12-15 | Metal continuous casting apparatus and continuous casting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2979986B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2572908C2 (en) | 2011-08-29 | 2016-01-20 | Абб Рисёч Лтд | Method and device reducing vortex generation during metal producing |
-
1994
- 1994-12-15 JP JP6311824A patent/JP2979986B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08168851A (en) | 1996-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2979986B2 (en) | Metal continuous casting apparatus and continuous casting method | |
JPH11514585A (en) | Metal casting method and apparatus | |
ITMI20000096A1 (en) | PROCEDURE AND DEVICE TO IMPROVE THE QUALITY OF METALLIC BODIES CAST CONTINUOUSLY | |
JP3257222B2 (en) | Curved mold for continuous casting of metal | |
JP2555768B2 (en) | Continuous metal casting apparatus and casting method | |
JP3205018B2 (en) | Manufacturing method of continuous cast slab with excellent surface properties | |
JP3216312B2 (en) | Metal continuous casting equipment | |
JP4011929B2 (en) | Continuous casting method of steel | |
JP3191594B2 (en) | Continuous casting method using electromagnetic force | |
JP3412691B2 (en) | Continuous casting of molten metal | |
JP2558187B2 (en) | Heating mold for continuous casting | |
JPH05200513A (en) | Method for continuously casting metal | |
JPH0515949A (en) | Apparatus and method for continuously casting metal | |
JP3033318B2 (en) | Method of supplying lubricant in continuous casting apparatus | |
JPH06182497A (en) | Method for continuously casting metal | |
JPH04162940A (en) | Continuous casting method | |
JP2991073B2 (en) | Wide thin slab casting method | |
JP3139317B2 (en) | Continuous casting mold and continuous casting method using electromagnetic force | |
KR100314847B1 (en) | Flow control device using electromagnetic force during continuous casting | |
JP3042801B2 (en) | Continuous casting method of steel using electromagnetic force | |
JPH1099949A (en) | Method for casting steel under electromagnetic field | |
JP3055413B2 (en) | Method and apparatus for continuous casting of molten metal | |
JPS63108952A (en) | Electromagnetic stirring method for molten metal in continuous casting | |
JPH1034286A (en) | Method and device for continuous casting | |
JP2006281314A (en) | Method for continuously casting steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080917 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |