JP3257222B2 - Curved mold for continuous casting of metal - Google Patents

Curved mold for continuous casting of metal

Info

Publication number
JP3257222B2
JP3257222B2 JP00166394A JP166394A JP3257222B2 JP 3257222 B2 JP3257222 B2 JP 3257222B2 JP 00166394 A JP00166394 A JP 00166394A JP 166394 A JP166394 A JP 166394A JP 3257222 B2 JP3257222 B2 JP 3257222B2
Authority
JP
Japan
Prior art keywords
mold
curved
casting
cooling water
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00166394A
Other languages
Japanese (ja)
Other versions
JPH07204789A (en
Inventor
勝 吉田
誠治 古橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP00166394A priority Critical patent/JP3257222B2/en
Publication of JPH07204789A publication Critical patent/JPH07204789A/en
Application granted granted Critical
Publication of JP3257222B2 publication Critical patent/JP3257222B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、電磁力を利用して金
属を連続鋳造する際に使用する内部水冷式のスリット付
き鋳型であって、湾曲型連続鋳造機に適用できる鋳型に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internal water-cooled slit mold used for continuous casting of metal utilizing electromagnetic force, and more particularly to a mold applicable to a curved continuous caster.

【0002】[0002]

【従来の技術】金属、例えば鋼の連続鋳造においては、
パウダーと呼ばれる粉末または顆粒状の潤滑剤を鋳型内
のメニスカスを含む溶融金属上に投入して操業するのが
通常である。パウダーの一部は溶融して鋳型と鋳片との
間に流入し、両者間の焼き付きの防止と潤滑、および鋳
片の急冷を緩和する等の役割を果している。
2. Description of the Related Art In continuous casting of metal, for example, steel,
Usually, a powder or granular lubricant called a powder is put on a molten metal containing a meniscus in a mold and operated. Part of the powder is melted and flows into the space between the mold and the slab, and plays a role of preventing seizure and lubrication between the two and mitigating rapid cooling of the slab.

【0003】鋳造条件に見合う適正なパウダー流入量を
確保するには、操業時の鋳造条件に適した物性の潤滑剤
を用いる必要があり、例えば、鋳込み初期と定常期とで
潤滑剤を使い分けたり、高速鋳造時には特殊な潤滑剤を
用いる等の工夫がなされている。さらに、オシレーショ
ンといわれる上下方向の微小振動を鋳型に与えて潤滑剤
の流入を促進している。しかし、この微小振動によって
鋳片表面にはオシレーションマークという周期的な横ひ
だが発生して表面欠陥となる場合がある。
[0003] In order to ensure an appropriate powder inflow amount corresponding to the casting conditions, it is necessary to use a lubricant having physical properties suitable for the casting conditions at the time of operation. At the time of high-speed casting, a special lubricant is used. Further, a minute vertical vibration called oscillation is applied to the mold to promote the flow of the lubricant. However, the minute vibrations may cause periodic lateral folds called oscillation marks on the slab surface to cause surface defects.

【0004】そこで、電磁力を利用して、パウダー流入
量を制御する方法がいくつか提示されている。これらの
方法では、鋳型に接する溶融金属のメニスカス部に電磁
力を作用させてメニスカスを湾曲させ鋳片表面と鋳型内
面との間隙へのパウダー流入を促進している。また、こ
れら初期凝固部近傍に電磁力を付与する連続鋳造法で
は、メニスカスの形状制御によるパウダー流入量制御効
果に加えて、高周波誘導加熱による初期凝固部近傍の緩
冷却の効果、およびオシレーションマークの軽減効果が
得られる。
Therefore, several methods have been proposed for controlling the amount of powder inflow using electromagnetic force. In these methods, an electromagnetic force is applied to the meniscus portion of the molten metal in contact with the mold to bend the meniscus and promote powder inflow into the gap between the surface of the slab and the inner surface of the mold. In addition, in the continuous casting method in which an electromagnetic force is applied to the vicinity of the initial solidified portion, in addition to the powder inflow control effect by controlling the shape of the meniscus, the effect of slow cooling near the initial solidified portion by high-frequency induction heating, and the oscillation mark Is obtained.

【0005】特開昭52−32824 号公報には、通電コイル
が鋳型の内部に鋳型内壁を包囲するように耐火物で絶縁
されて埋め込まれた鋳型が提案されており、この通電コ
イルに交流電流を供給することによりメニスカスを湾曲
させてパウダーの流入を促進する方法が開示されてい
る。しかし、この方法では低周波の交流電流が鋳型内を
通過するため、パウダーが溶湯に巻き込まれるという問
題が発生する。また、薄スラブの長辺側では磁場が減衰
するため、電磁効果が期待できないという問題も生じ
る。
Japanese Patent Application Laid-Open No. 52-32824 proposes a mold in which an energizing coil is embedded inside a mold insulated with a refractory so as to surround the inner wall of the mold. A method is disclosed in which the meniscus is curved by supplying the powder to promote the inflow of powder. However, in this method, since a low-frequency alternating current passes through the inside of the mold, there is a problem that the powder is caught in the molten metal. Further, since the magnetic field is attenuated on the long side of the thin slab, there is a problem that the electromagnetic effect cannot be expected.

【0006】特開昭64−83348 号公報に示される鋳造方
法では、上記特開昭52−32824 号公報のものと同様な装
置を用い、パルス状の電流を通電コイルに供給すること
によりメニスカスが振動して鋳型内面との間隙が周期的
に変化することによって、オシレーションを用いずにパ
ウダーを凝固シェル−鋳型間に流入させることができ
る。しかし、この方法では、上記特開昭52−32824 号公
報の方法についても言えることであるが、鋳型による磁
場の減衰が大きく、充分な電磁力を得ることは難しい。
In the casting method disclosed in JP-A-64-83348, a meniscus is formed by supplying a pulse-like current to a current-carrying coil using an apparatus similar to that of JP-A-52-32824. By vibrating and periodically changing the gap with the inner surface of the mold, the powder can flow between the solidified shell and the mold without using oscillation. However, this method can be applied to the method disclosed in Japanese Patent Application Laid-Open No. 52-32824, but the magnetic field is greatly attenuated by the mold, and it is difficult to obtain a sufficient electromagnetic force.

【0007】更に、特開平2−274351号公報には、上記
と同様な装置にパルス電流に代えて低周波電流を流す方
法が提示されているが、これにも上記のような問題が残
る。
Further, Japanese Patent Application Laid-Open No. 2-274351 discloses a method of supplying a low-frequency current instead of a pulse current to a device similar to the above, but this still has the above-described problem.

【0008】そこで、本出願人は、通電コイルが周回し
ている鋳型上部にスリットを設け、鋳型内の溶融金属に
二次的な誘導電流を発生させて有効に電磁力を作用させ
る方法を特開平4−138843号公報に提案した。この公報
に示すように、鋳型にスリットを設ける場合は、隣り合
うスリットで区切られた各セグメント(以下、「鋳型セ
グメント」という)に冷却水孔を穿孔した鋳型構造が必
要となる。さらに鋳型上部がスリットによって多数のセ
グメントに分割されている場合、各鋳型セグメントに1
本の冷却水孔を設けて下方から冷却水を供給し、上方か
ら排出する構造では、鋳型上部に取付けられる冷却水出
口の構造物によって、通電コイルの設置が困難になるだ
けでなく、磁場の減衰が大きくなるので、冷却水の往路
と復路の2本の孔を設けて排水も下方で行うことが必要
となる。
Accordingly, the present applicant has specially described a method in which a slit is provided in the upper portion of a mold around which an energizing coil is circulated, and a secondary induction current is generated in a molten metal in the mold to effectively apply an electromagnetic force. It was proposed in Japanese Unexamined Patent Publication No. Hei 4-138883. As shown in this publication, when a slit is provided in a mold, a mold structure in which a cooling water hole is formed in each segment (hereinafter, referred to as a “mold segment”) divided by adjacent slits is required. In addition, if the top of the mold is divided into a number of segments by slits,
In a structure in which cooling water holes are provided to supply cooling water from below and discharge it from above, the structure of the cooling water outlet attached to the upper part of the mold not only makes it difficult to install an energizing coil, but also Since the attenuation becomes large, it is necessary to provide two holes for the cooling water in the forward path and the return path, and to drain the water downward.

【0009】冷却水孔の加工は、加工の難易度および精
度、ひいては加工費用から考えてもドリルを用いて穿孔
するのが妥当である。そして、ドリル穿孔では冷却水孔
は真っ直ぐな丸孔とならざるを得ない。一方、鋳型内に
誘起される一次誘導電流の損失を抑えて溶融金属内に有
効な電磁力を作用させるには、鋳型の肉厚を薄くする必
要がある。
It is appropriate to drill a cooling water hole using a drill, considering the difficulty and accuracy of the processing and the processing cost. And, in drilling, the cooling water hole must be a straight round hole. On the other hand, in order to suppress the loss of the primary induction current induced in the mold and apply an effective electromagnetic force to the molten metal, it is necessary to reduce the thickness of the mold.

【0010】上記のようなスリット付き鋳型を湾曲型連
続鋳造機に適用するには、湾曲した薄肉の鋳型セグメン
ト内に上述のような真っ直ぐな冷却水孔を穿孔しなくて
はならない。ところが、薄い肉厚の鋳型に2本の冷却水
孔を穿孔すると、互いの孔が干渉して正常な冷却構造が
得られなくなる。また、鋳型内壁と孔との肉厚が薄くな
って孔が破損しやすくなり、鋳型寿命が短くなる。この
ような冷却構造の施工上の問題からスリット付き湾曲型
鋳型は未だ実用化に至っていない。
In order to apply the above-mentioned slit mold to a curved continuous casting machine, the above-mentioned straight cooling water hole must be formed in a curved thin-walled mold segment. However, when two cooling water holes are formed in a thin mold, the holes interfere with each other and a normal cooling structure cannot be obtained. Further, the thickness between the inner wall of the mold and the hole is reduced, so that the hole is easily damaged, and the life of the mold is shortened. Due to the problem of construction of such a cooling structure, a curved mold with a slit has not yet been put to practical use.

【0011】[0011]

【発明が解決しようとする課題】本発明の目的は、湾曲
型連続鋳造機に使用するスリット付き湾曲鋳型であっ
て、正常な鋳型冷却能を持ち、鋳型寿命が長く、しかも
鋳型内の溶融金属に有効に電磁力が印加され、良好な表
面性状の鋳片を安定して高速に製造できる鋳型を提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a curved mold having a slit for use in a curved continuous casting machine, which has a normal mold cooling ability, a long mold life, and a molten metal in the mold. An object of the present invention is to provide a mold to which an electromagnetic force can be effectively applied to produce a slab having good surface properties stably at a high speed.

【0012】[0012]

【課題を解決するための手段】本発明の要旨は、下記
およびの鋳型にある。
The gist of the present invention resides in the following molds.

【0013】 図2に示すように、鋳型内の溶融金属
9の自由表面近傍に鋳造方向に平行に延びる複数のスリ
ット2を有する内部水冷構造の湾曲鋳型であって、上記
湾曲鋳型の隣り合うスリットで区切られた鋳型セグメン
ト3の内部には、冷却水復路孔5と、その冷却水復路孔
内に挿入された小径の冷却水往路管4とが設けられてい
ることを特徴とする金属の連続鋳造用湾曲鋳型。
As shown in FIG. 2, a curved mold having an internal water cooling structure having a plurality of slits 2 extending parallel to the casting direction near a free surface of a molten metal 9 in the mold, wherein adjacent slits of the curved mold are provided. A cooling water return hole 5 and a small-diameter cooling water outward pipe 4 inserted in the cooling water return hole are provided inside the mold segment 3 divided by Curved mold for casting.

【0014】 図3に示すように、鋳型が複数の短尺
湾曲鋳型(例えば1Aと1B) を組み合わせて一つの湾曲鋳
型として構成されているものであって、その少なくとも
最上部の短尺湾曲鋳型(1A)が上記に記載の構造を持つ
ものである金属の連続鋳造用湾曲鋳型。
As shown in FIG. 3, the mold is configured as one curved mold by combining a plurality of short curved molds (for example, 1A and 1B), and at least the uppermost short curved mold (1A ) Is a curved mold for continuous casting of metal having the structure described above.

【0015】[0015]

【作用】本発明の連続鋳造用湾曲鋳型(以下、「湾曲鋳
型」または単に「鋳型」と記す)の最も大きな特徴は、
湾曲した鋳型セグメント内の冷却構造を簡便な施工で精
度よく加工できる2重式としたことにある。以下、本発
明の鋳型の構造とその作用効果を図面を用いて説明す
る。
The most significant feature of the curved casting mold for continuous casting of the present invention (hereinafter referred to as "curved casting mold" or simply "mold") is as follows.
The cooling structure in the curved mold segment is of a double type that can be accurately machined by simple construction. Hereinafter, the structure of the mold of the present invention and its effects will be described with reference to the drawings.

【0016】図1に本発明の鋳型の一部破断斜視図を示
す。なお、この鋳型は、図2に示すようにわずかに湾曲
しているのであるが、図1では冷却構造を明示するた
め、鋳型の湾曲を省略して示した。
FIG. 1 is a partially cutaway perspective view of the mold of the present invention. Although this mold is slightly curved as shown in FIG. 2, the mold is not shown in FIG. 1 in order to clearly show the cooling structure.

【0017】図示のように、本発明の湾曲鋳型1には、
鋳型セグメント3内に冷却水復路孔5があり、その内側
に冷却水往路管4が挿入されている。即ち、冷却構造は
往路と復路の2重構造となっていて、冷却水は矢印で示
すように往路管4の下方から供給されて上向きに流れ、
反転して復路孔4を下降してその下方から排出される
(図2参照)。
As shown, the curved mold 1 of the present invention includes:
A cooling water return hole 5 is provided in the mold segment 3, and a cooling water outward pipe 4 is inserted inside the cooling water return hole 5. That is, the cooling structure has a double structure of the forward path and the return path, and the cooling water is supplied from below the forward path pipe 4 and flows upward as indicated by the arrow.
It reverses and descends the return hole 4 and is discharged from below (see FIG. 2).

【0018】各鋳型セグメント3には、まず、1本の冷
却水復路孔5を穿孔すればよい。この孔は、図2に示す
ように鋳型の長手方向に真っ直ぐに延びるものでよいか
ら、簡便なドリル穿孔で精度よく加工することができ
る。そして、この復路孔5の内部に、その内壁と十分な
間隔を保ち得るような小径の往路管(例えば、銅管)4
を挿入するのである。なお、冷却の供給口および排出口
の構造は、従来周知のものでよい。
First, one cooling water return hole 5 may be formed in each mold segment 3. Since this hole may extend straight in the longitudinal direction of the mold as shown in FIG. 2, it can be accurately machined by simple drilling. A small-diameter outward pipe (for example, a copper pipe) 4 capable of keeping a sufficient distance from the inner wall thereof is provided inside the return hole 5.
Is inserted. In addition, the structure of the cooling supply port and the discharge port may be a conventionally well-known one.

【0019】上記のような構造を持つ本発明の鋳型で
は、冷却水の往路孔と復路孔の2本の孔を設ける場合の
ように、2本の孔が近接し過ぎて水路の途中で短絡した
り、鋳型内壁と孔との間の肉厚が極端に薄くなるような
事態を回避することができる。
In the mold of the present invention having the above-described structure, the two holes are too close to each other and short-circuited in the middle of the water channel, as in the case of providing two holes for the outward and return holes of the cooling water. It is possible to avoid such a situation that the thickness between the inner wall of the mold and the hole becomes extremely thin.

【0020】従って、この鋳型は正常な冷却能を有し、
長い鋳型寿命を持つことになる。
Accordingly, this mold has a normal cooling capacity,
It will have a long mold life.

【0021】なお、冷却水往路管4が孔の内部で振動し
て給水の高い水圧下で変形することがないように、復路
孔5との間に、高さ方向の数か所にスペーサー6を挿入
して固定するのが望ましい。また、湾曲鋳型に真っ直ぐ
な冷却水復路孔5を穿孔するため、鋳型内壁と冷却水復
路孔との間の肉厚は高さ方向にみて若干の偏りが生じる
が、これは抜熱抵抗に余り影響しないので実用上問題に
ならない。
In order to prevent the cooling water outgoing pipe 4 from vibrating inside the hole and deforming under the high water pressure of the supply water, spacers 6 are provided at several places in the height direction between the returning water hole 5 and the hole. It is desirable to insert and fix. In addition, since the straight cooling water return hole 5 is formed in the curved mold, the wall thickness between the inner wall of the mold and the cooling water return hole is slightly deviated in the height direction. There is no practical problem because it has no effect.

【0022】つぎに、湾曲型連続鋳造機に本発明の湾曲
鋳型を適用する態様のいくつかを説明する。
Next, some embodiments in which the curved mold of the present invention is applied to a curved continuous casting machine will be described.

【0023】図2に本発明の鋳型を適用した湾曲型連続
鋳造機の一例を示す。(a)は(b)図のA−A′横断
面図であり、(b)の左半分は(a)図のB−O縦断面
図、右半分は同じくB′−O′縦断面図である。
FIG. 2 shows an example of a curved continuous casting machine to which the mold of the present invention is applied. (A) is a cross-sectional view taken along the line AA 'in FIG. (B), the left half of (b) is a vertical cross-sectional view of BO in FIG. It is.

【0024】図示のように、鋳造方向に複数のスリット
2を有する内部2重式水冷構造の鋳型1の溶融金属メニ
スカス10近傍に対応する部位を周回させて高周波通電コ
イル7が数ターン巻かれている。鋳型1内には浸漬ノズ
ル8から溶融金属9が供給され、この溶融金属9上には
粉末状または顆粒状のパウダー13が投入され、この一部
が溶融金属9によって加熱されて溶融し、溶融パウダー
14の一部は鋳型1と凝固シェル11との間隙に流入する。
As shown in the figure, a high frequency energizing coil 7 is wound several turns around a portion corresponding to a vicinity of a molten metal meniscus 10 of a mold 1 having an internal double water cooling structure having a plurality of slits 2 in a casting direction. I have. A molten metal 9 is supplied into the mold 1 from an immersion nozzle 8, and a powdery or granular powder 13 is put on the molten metal 9, and a part of the powder 13 is heated by the molten metal 9 and melted. powder
A part of 14 flows into the gap between the mold 1 and the solidified shell 11.

【0025】従来操業におけるパウダーの流入は、鋳型
オシレーションによる微小振動だけに依存している。し
かし、本発明の鋳型を使用する連続鋳造機では、通電コ
イル7に高周波電流を通電すると、鋳型内の溶融金属9
の初期凝固部(凝固シェル11の上端部)近傍に電磁場が
有効に印加され、電磁力の作用により溶融金属メニスカ
ス10が湾曲する。その際、溶融金属表面と鋳型との隙間
が大きく、かつ深くなるので、溶融パウダー14の流入を
促進することができる。さらに、溶融金属に生じる誘導
電流によって発生するジュール熱が冷却の緩和、即ち、
緩冷却効果をもたらし、鋳片表面の割れ防止、オシレー
ションマークの軽減などの表面性状改善の効果が得られ
る。
In the conventional operation, the inflow of powder depends only on micro-vibration caused by mold oscillation. However, in the continuous casting machine using the mold of the present invention, when a high-frequency current is applied to the energizing coil 7, the molten metal 9
An electromagnetic field is effectively applied in the vicinity of the initial solidified portion (the upper end of the solidified shell 11), and the molten metal meniscus 10 is bent by the action of the electromagnetic force. At that time, the gap between the surface of the molten metal and the mold is large and deep, so that the inflow of the molten powder 14 can be promoted. Furthermore, Joule heat generated by the induced current generated in the molten metal relaxes the cooling, that is,
A slow cooling effect is obtained, and effects of improving surface properties such as preventing cracks on the slab surface and reducing oscillation marks are obtained.

【0026】浸漬ノズル給湯方式の場合は、初期凝固部
における溶融金属静圧が低いことに加えて電磁力の作用
により、スリット2の前面に存在する溶融金属9が排除
されるので、溶融金属がスリット内に湯差しして凝固
し、拘束性ブレークアウトを生ずるような事態を回避す
ることができる。ただし、湯差しが問題となる場合は、
スリットに窒化珪素などの絶縁耐火物を充填してもよ
い。さらに、溶融金属メニスカス形状の制御により、溶
融パウダーの流入量が制御できるので、鋳込み初期と定
常期でのパウダーの使い分けあるいは高速鋳造時の特殊
パウダーの使用などが不要になる。また、高速鋳造時に
は、パウダーの切れが生じやすく、その結果鋳型への鋳
片の焼付、さらにはこの焼付に起因するブレークアウト
が発生することがあるが、本発明の鋳型を使用すれば溶
融パウダー流入量の制御さらには促進が可能になるの
で、高速鋳造時のブレークアウトをも防止することがで
きる。
In the case of the immersion nozzle hot water supply system, the molten metal 9 existing on the front surface of the slit 2 is removed by the action of the electromagnetic force in addition to the low static pressure of the molten metal in the initial solidification part. It is possible to avoid a situation in which the resin is melted and solidified in the slit to cause a restrictive breakout. However, if the jug becomes a problem,
The slit may be filled with an insulating refractory such as silicon nitride. Further, since the inflow of the molten powder can be controlled by controlling the shape of the molten metal meniscus, it is not necessary to selectively use the powder in the initial casting period and the stationary casting period or to use a special powder at the time of high-speed casting. Further, at the time of high-speed casting, the powder is liable to be cut, and as a result, the slab of the slab may be baked into the mold, and further, a breakout due to the baking may occur. Since the flow rate can be controlled and further promoted, breakout during high-speed casting can also be prevented.

【0027】図3に本発明の鋳型の一つである短尺鋳型
を組み合わせた鋳型を適用した湾曲型連続鋳造機の一例
を示す。(a)は(b)図のA−A′横断面図であり、
(b)の左半分は(a)図のB−O縦断面図、右半分は
同じくB′−O′縦断面図である。
FIG. 3 shows an example of a curved continuous casting machine to which a mold combining a short mold, which is one of the molds of the present invention, is applied. (A) is a cross-sectional view taken along the line AA 'of (b),
The left half of (b) is a B-O longitudinal sectional view of FIG. (A), and the right half is a B'-O 'longitudinal sectional view of the same.

【0028】図示のように、鋳造機の湾曲の曲率半径が
小さい場合は、鋳型全長にわたって冷却水孔を穿孔する
ことが困難になるので、短尺の鋳型の複数個、例えば上
鋳型1Aと下鋳型1Bとを組み合わせて、ボルト締めなどで
接合して一つの湾曲鋳型を構成する。そして、上鋳型1A
にだけ、前述の2重式冷却構造を採用すればよい。この
場合、下鋳型1Bは製作が容易な従来のチューブラ構造な
どとしてもよい。なお、図3の鋳型は短尺鋳型2個の組
合せであるが、3個以上の組合せとしてもよい。その場
合、少なくとも一番上の鋳型を二重式冷却構造とする。
As shown in the figure, when the radius of curvature of the curvature of the casting machine is small, it is difficult to form cooling water holes over the entire length of the casting mold. Therefore, a plurality of short casting molds, for example, the upper casting mold 1A and the lower casting mold Combine with 1B and join by bolting etc. to form one curved mold. And the upper mold 1A
Only the double cooling structure described above may be adopted. In this case, the lower mold 1B may have a conventional tubular structure that is easy to manufacture. Although the mold in FIG. 3 is a combination of two short molds, it may be a combination of three or more molds. In that case, at least the uppermost mold has a double cooling structure.

【0029】図3に示す構造の組合せ湾曲鋳型を用いれ
ば、上鋳型1Aの冷却水復路孔5の穿孔距離が短くてす
み、加工が容易で精度上の信頼性が向上する。さらに、
鋳型が損耗して使用不能になった場合でも、上鋳型1Aだ
けを交換すればよいので、操業のメンテナンス上からも
有利である。この鋳型の作用効果は、前記図2で説明し
たのと同様であるので、説明を省略する。
If the combination curved mold having the structure shown in FIG. 3 is used, the perforation distance of the cooling water return hole 5 of the upper mold 1A may be short, and the machining is easy and the reliability in accuracy is improved. further,
Even when the mold becomes worn out and becomes unusable, only the upper mold 1A needs to be replaced, which is advantageous from the viewpoint of operation maintenance. The operation and effect of this mold are the same as those described in FIG.

【0030】以上、鋳型の横断面形状が円形のものにつ
いて示したが、これは長方形、正方形などであってもよ
い。
Although the cross-sectional shape of the mold has been described above, it may be rectangular, square, or the like.

【0031】[0031]

【実施例1】図2に示した湾曲型連続鋳造機を用いて丸
断面鋳片の製造を行った。装置諸元および操業条件は下
記のとおりである。
Example 1 A round-section slab was manufactured using the curved continuous casting machine shown in FIG. The equipment specifications and operating conditions are as follows.

【0032】鋳 型 :内直径 150mm、肉厚30mm、長
さ 750mm、曲率半径10mの銅製 スリット :長さ 150mm×32本、幅 0.2mm、窒化珪素を
充填 冷却構造 :冷却水復路孔 12 mmφ、冷却水往路管 (銅
製) 8 mmφ×1 mm t 鋳型内面と冷却水復路孔との距離は約10mm 冷却条件 :水量 800リットル/min 通電コイル:外径 30mm 、肉厚 2mm、巻き数 2、周波数
35 KHz 電流実効値 9000 AT 鋼 種 :JIS S45C(化学組成は表1のとおり) 鋳造速度 :3.5 m/min パウダー :化学組成は表2のとおり
Casting mold: copper diameter 150mm, wall thickness 30mm, length 750mm, radius of curvature 10m Slit: 150mm x 32, width 0.2mm, filled with silicon nitride Cooling structure: cooling water return hole 12mmφ, Cooling water outgoing pipe (copper) 8 mmφ × 1 mm t The distance between the inner surface of the mold and the cooling water return hole is about 10 mm Cooling condition: Water volume 800 liter / min Electricity coil: Outer diameter 30 mm, wall thickness 2 mm, number of windings 2, frequency
35 KHz current effective value 9000 AT Steel type: JIS S45C (Chemical composition is as shown in Table 1) Casting speed: 3.5 m / min Powder: Chemical composition is as shown in Table 2

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】表1に示す組成の溶鋼を浸漬ノズルから鋳
型内に給湯しながら、溶鋼表面に表2に示す組成の連続
鋳造用パウダーを投入し、4.0 Hz程度の鋳型振動を与え
ながら 3.5m/min の速度で10分間引き抜きを行い鋳造し
た。高速鋳造であるにもかかわらず鋳片引き抜きは順調
に行われ、ブレークアウト等のトラブル発生はなかっ
た。鋳片表面には数か所の微小な湯差しが認められるも
のの、鋳造上の問題はなかった。また割れ、疵等の表面
欠陥や、中心偏析等は認められず、きわめて良好な鋳片
が得られた。
While supplying molten steel having the composition shown in Table 1 from the immersion nozzle into the mold, a powder for continuous casting having the composition shown in Table 2 was poured into the surface of the molten steel. It was drawn at a speed of min for 10 minutes and cast. Despite the high speed casting, the slab drawing was performed smoothly and there was no trouble such as breakout. Although there were several small jugs on the slab surface, there were no casting problems. In addition, no surface defects such as cracks and flaws, and no center segregation were observed, and extremely good cast pieces were obtained.

【0036】さらに、緩冷却効果を確認するため鋳造中
に溶鋼内にFeSを添加して、鋳片のサルファープリント
を行い、凝固シェルの成長度合いから凝固係数kを算出
したところ、およそ19mm/min0.5 であった。なお、スリ
ット鋳型を使用せず、電磁力の印加も行わない従来操業
ではkは22 mm/min0.5程度である。
Further, in order to confirm the slow cooling effect, FeS was added to the molten steel during casting, the slab was subjected to sulfur printing, and the solidification coefficient k was calculated from the growth degree of the solidified shell. 0.5 . In the conventional operation in which no slit mold is used and no electromagnetic force is applied, k is about 22 mm / min 0.5 .

【0037】また、パウダー流入促進効果を確認するた
め、鋳造後に鋳片表面から回収した潤滑剤の厚さを測定
したところ平均1.37mm (上記の従来操業では 0.96 mm程
度)となっていた。オシレーションマークは非常に軽減
されて、マーク深さを測定したところ平均で0.07mm (上
記の従来操業では 0.12 mm) であった。
Further, in order to confirm the effect of promoting powder inflow, the thickness of the lubricant recovered from the slab surface after casting was measured and found to be 1.37 mm on average (about 0.96 mm in the conventional operation described above). The oscillation mark was greatly reduced, and the mark depth was measured to be 0.07 mm on average (0.12 mm in the conventional operation described above).

【0038】[0038]

【実施例2】図3に示した湾曲型連続鋳造機を用いて丸
断面鋳片の製造を行った。装置諸元は下記のとおりであ
る。その他の条件は実施例1と同じとした。
Example 2 A round section cast piece was manufactured using a curved continuous caster shown in FIG. The equipment specifications are as follows. Other conditions were the same as in Example 1.

【0039】鋳 型:内直径 150mm、曲率半径 8.2m 上鋳型…長さ 450mm、スリット部肉厚30mm 下鋳型…長さ 300mm、 いずれも銅製 冷却構造:上鋳型…実施例1と同じ。Casting mold: Inner diameter 150 mm, radius of curvature 8.2 m Upper mold: 450 mm in length, slit part thickness 30 mm Lower mold: 300 mm in length Cooling structure: Upper mold: Same as in Example 1.

【0040】下鋳型…従来のチューブラ構造(銅板の厚
さ 10 mm、鋳型内面と冷却水路との間隔 5mm ) 冷却条件:上鋳型の水量… 800リットル/min 下鋳型の水量…1000リットル/min この例では湾曲の曲率半径が実施例1に比べて小さいた
め、短尺鋳型2個の組合せ式鋳型を用いた。鋳造後に得
られた鋳片は実施例1で得られたものとほとんど変わり
なく、非常に良好な鋳片の製造が安定かつ高速で行われ
た。
Lower mold: Conventional tubular structure (copper plate thickness: 10 mm, gap between inner surface of mold and cooling water channel: 5 mm) Cooling condition: Water volume of upper mold: 800 L / min Water volume of lower mold: 1000 L / min In the example, since the radius of curvature of the curvature is smaller than that of the first embodiment, a combination mold of two short molds was used. The cast slab obtained after casting was almost the same as that obtained in Example 1, and very good cast slabs were produced stably and at high speed.

【0041】[0041]

【発明の効果】本発明によれば、スリット付きの湾曲鋳
型セグメントの冷却構造が簡便な施工で精度よく形成で
きる。従って、正常な鋳型冷却ができ鋳型寿命が延び
る。この鋳型を用いれば、従来は困難であったスリット
付き湾曲鋳型による電磁鋳造の実用化ができる。そし
て、鋳型内溶融金属に有効に電磁場を作用させることが
できるので、パウダー流入量の制御および加熱による緩
冷却鋳造が湾曲型連続鋳造機においても可能となり、鋳
造の安定化と高速化および鋳片表面性状の改善を図るこ
とができる。
According to the present invention, a cooling structure for a curved mold segment having a slit can be formed accurately with a simple construction. Therefore, normal mold cooling can be performed and the life of the mold can be extended. By using this mold, electromagnetic casting using a curved mold with a slit, which has been difficult in the past, can be put to practical use. In addition, since an electromagnetic field can be effectively applied to the molten metal in the mold, it is possible to control the powder inflow and perform slow cooling casting by heating even in a curved continuous casting machine, thereby stabilizing and speeding up casting and reducing slabs. The surface properties can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のスリット付き湾曲鋳型の一部破断斜視
図である。
FIG. 1 is a partially cutaway perspective view of a curved mold with a slit of the present invention.

【図2】本発明のスリット付き湾曲鋳型を適用した湾曲
型連続鋳造機の一例を示し、(a)は(b)図のA−
A′横断面図、(b)の左半分は(a)図のB−O縦断
面図、右半分はB′−O′縦断面図である。
FIGS. 2A and 2B show an example of a curved continuous casting machine to which the curved mold with a slit of the present invention is applied, wherein FIG.
The left half of A 'is a cross-sectional view of B', and the left half of (b) is a vertical cross-sectional view of BO in FIG.

【図3】本発明の組合せ式湾曲鋳型を適用した湾曲型連
続鋳造機の一例を示し、(a)は(b)図のA−A′横
断面図、(b)の左半分は(a)図のB−O縦断面図、
右半分はB′−O′縦断面図である。
3A and 3B show an example of a curved continuous casting machine to which the combined curved mold of the present invention is applied, wherein FIG. 3A is a cross-sectional view taken along the line AA ′ in FIG. 3B, and FIG. ) FIG.
The right half is a B'-O 'longitudinal sectional view.

フロントページの続き (56)参考文献 特開 昭54−35127(JP,A) 特開 昭56−141945(JP,A) 特開 平4−220141(JP,A) 特開 昭55−68157(JP,A) 特開 平4−162939(JP,A) 特開 平4−333351(JP,A) 特開 平4−138843(JP,A) 特開 平5−38555(JP,A) 特開 平5−15949(JP,A) 特開 昭52−32824(JP,A) 特開 昭64−83348(JP,A) 特開 平2−274351(JP,A) 特開 平4−162940(JP,A) 特開 平3−133542(JP,A) 実開 昭61−152367(JP,U) 実開 昭54−82021(JP,U) 実開 平5−76653(JP,U) 実開 昭62−20746(JP,U) 特公 昭57−21408(JP,B2) (58)調査した分野(Int.Cl.7,DB名) B22D 11/055 B22D 11/043 B22D 11/11 Continuation of the front page (56) References JP-A-54-35127 (JP, A) JP-A-56-141945 (JP, A) JP-A-4-220141 (JP, A) JP-A-55-68157 (JP, A) JP-A-4-162939 (JP, A) JP-A-4-333351 (JP, A) JP-A-4-138843 (JP, A) JP-A-5-38555 (JP, A) 5-15949 (JP, A) JP-A-52-32824 (JP, A) JP-A-64-83348 (JP, A) JP-A-2-274351 (JP, A) JP-A-4-162940 (JP, A A) Japanese Unexamined Patent Publication No. 3-133542 (JP, A) Japanese Utility Model Application No. Sho 61-153267 (JP, U) Japanese Utility Model Application No. 54-82021 (JP, U) Japanese Utility Model Application No. 5-76653 (JP, U) Japanese Utility Model Application Sho 62 -20746 (JP, U) JP-B-57-21408 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) B22D 11/055 B22D 11/043 B22D 11/11

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】鋳型内の溶融金属の自由表面近傍に鋳造方
向に平行に延びる複数のスリットを有する内部水冷構造
の湾曲鋳型であって、上記湾曲鋳型の隣り合うスリット
で区切られた鋳型セグメント内には、冷却水復路孔と、
その冷却水復路孔内に挿入された小径の冷却水往路管と
が設けられていることを特徴とする金属の連続鋳造用湾
曲鋳型。
1. A curved mold having an internal water-cooling structure having a plurality of slits extending parallel to a casting direction near a free surface of a molten metal in a mold, wherein the mold segment is divided by adjacent slits of the curved mold. Has a cooling water return hole,
A curved casting mold for continuous casting of metal, comprising: a cooling water outgoing pipe having a small diameter inserted in the cooling water return hole.
【請求項2】鋳型が複数の短尺湾曲鋳型を組み合わせて
一つの湾曲鋳型として構成されているものであって、そ
の少なくとも最上部の短尺湾曲鋳型が請求項1に記載の
構造を持つものである金属の連続鋳造用湾曲鋳型。
2. A mold wherein a plurality of short curved molds are combined to constitute one curved mold, wherein at least the uppermost short curved mold has the structure according to claim 1. Curved mold for continuous casting of metal.
JP00166394A 1994-01-12 1994-01-12 Curved mold for continuous casting of metal Expired - Fee Related JP3257222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00166394A JP3257222B2 (en) 1994-01-12 1994-01-12 Curved mold for continuous casting of metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00166394A JP3257222B2 (en) 1994-01-12 1994-01-12 Curved mold for continuous casting of metal

Publications (2)

Publication Number Publication Date
JPH07204789A JPH07204789A (en) 1995-08-08
JP3257222B2 true JP3257222B2 (en) 2002-02-18

Family

ID=11507768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00166394A Expired - Fee Related JP3257222B2 (en) 1994-01-12 1994-01-12 Curved mold for continuous casting of metal

Country Status (1)

Country Link
JP (1) JP3257222B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103084551A (en) * 2013-01-25 2013-05-08 中冶京诚工程技术有限公司 Non-vibration type demoulding method of crystallizer for continuous casting and crystallizer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE512774C2 (en) * 1998-03-06 2000-05-08 Abb Ab Device for casting metal
JP2008525197A (en) * 2004-12-23 2008-07-17 リサーチ インスティチュート オブ インダストリアル サイエンス アンド テクノロジー Magnesium billet or slab continuous casting apparatus using electromagnetic field and manufacturing method
JP2008051376A (en) * 2006-08-23 2008-03-06 Shinko Electric Co Ltd Induction fusing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103084551A (en) * 2013-01-25 2013-05-08 中冶京诚工程技术有限公司 Non-vibration type demoulding method of crystallizer for continuous casting and crystallizer

Also Published As

Publication number Publication date
JPH07204789A (en) 1995-08-08

Similar Documents

Publication Publication Date Title
KR101695232B1 (en) Continuous casting mold and method for continuous casting of steel
JP6003851B2 (en) Continuous casting mold and steel continuous casting method
JP6003850B2 (en) Manufacturing method of continuous casting mold and continuous casting method of steel
JP3257222B2 (en) Curved mold for continuous casting of metal
WO1998041342A1 (en) Improved continuous casting mold and method
JP4337565B2 (en) Steel slab continuous casting method
JP6947192B2 (en) Mold for continuous casting of steel and continuous casting method of steel
JP2555768B2 (en) Continuous metal casting apparatus and casting method
JP2611559B2 (en) Metal continuous casting apparatus and casting method
JP2006110598A (en) Electromagnetic stirring coil
JPS5931415B2 (en) Hollow tube manufacturing method and device
JPH04178247A (en) Continuous casting method of steel by casting mold having electromagnetic field
JP3216312B2 (en) Metal continuous casting equipment
JP2757736B2 (en) Metal continuous casting equipment
KR20120001112A (en) Apparatus for mounting shroud nozzle
JP2558187B2 (en) Heating mold for continuous casting
KR101377484B1 (en) Method for estimating carbon-increasing of molten steel
JPH10286659A (en) Continuous casting method for steel
JPH0890165A (en) Continuous casting mold
KR101114419B1 (en) Continuos casting mold with a function of improving the quality of short side of slab
JPH08187563A (en) Continuous casting method applying electromagnetic force
JPH07266004A (en) Apparatus and method for continuously casting metal
JPH08281402A (en) Continuous casting method and apparatus therefor
KR20190077697A (en) Casting device
JPH04224058A (en) Induction heating tundish

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees