JP2976037B2 - Direct fire high temperature regenerator - Google Patents

Direct fire high temperature regenerator

Info

Publication number
JP2976037B2
JP2976037B2 JP3171821A JP17182191A JP2976037B2 JP 2976037 B2 JP2976037 B2 JP 2976037B2 JP 3171821 A JP3171821 A JP 3171821A JP 17182191 A JP17182191 A JP 17182191A JP 2976037 B2 JP2976037 B2 JP 2976037B2
Authority
JP
Japan
Prior art keywords
heat transfer
temperature regenerator
transfer surface
refrigerant
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3171821A
Other languages
Japanese (ja)
Other versions
JPH04369361A (en
Inventor
言彦 世古口
雅裕 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP3171821A priority Critical patent/JP2976037B2/en
Publication of JPH04369361A publication Critical patent/JPH04369361A/en
Application granted granted Critical
Publication of JP2976037B2 publication Critical patent/JP2976037B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、吸収式冷凍機あるいは
吸収式ヒートポンプに使用される直火式高温再生器(以
下、高温再生器と云う)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a direct-fired high-temperature regenerator (hereinafter, referred to as a high-temperature regenerator) used in an absorption refrigerator or an absorption heat pump.

【0002】[0002]

【従来の技術】臭化リチウム−水系などの吸収式冷凍機
あるいは吸収式ヒートポンプに使用される高温再生器と
しては、被加熱側(接液側)の伝熱表面に伝熱フィンを
形成する技術が特公昭46−43069号公報、特公昭
53−26858号公報などに提案されている。
2. Description of the Related Art As a high-temperature regenerator used in an absorption refrigerator or absorption heat pump of lithium bromide-water system or the like, a technology of forming heat transfer fins on a heat transfer surface on a heated side (liquid contact side) is used. Have been proposed in JP-B-46-43069 and JP-B-53-26858.

【0003】しかし、上記伝熱フィンを接液側に形成す
る高温再生器においては、伝熱面積は増大するが沸騰を
促進させる形状ではないため、接液側の熱伝達率は上昇
しないと云う不都合があった。
However, in the high-temperature regenerator in which the heat transfer fins are formed on the liquid contact side, the heat transfer area is increased, but the shape is not such that boiling is promoted, so that the heat transfer coefficient on the liquid contact side does not increase. There was an inconvenience.

【0004】上記従来技術の欠点を解決する目的で、接
液側伝熱面に微細な人工的キャビティを形成して接液側
の熱伝達率を向上させ、膜沸騰を防止して稀吸収液の過
熱による分解(不凝縮ガスの発生)と伝熱面の過熱によ
る腐食を解決し、同時に熱伝達率の向上によって装置の
小型化を図る高温再生器の提案が特願平3−10352
8号にある。
In order to solve the above-mentioned drawbacks of the prior art, a fine artificial cavity is formed on the heat transfer surface on the liquid contact side to improve the heat transfer coefficient on the liquid contact side, prevent the film from boiling, and remove the rare absorbing liquid. Japanese Patent Application No. Hei 3-10352 proposes a high-temperature regenerator that solves the decomposition due to overheating (generation of non-condensable gas) and the corrosion due to overheating of the heat transfer surface, and at the same time reduces the size of the apparatus by improving the heat transfer coefficient.
No. 8

【0005】しかし、特願平3−103528号の高温
再生器は、微細なキャビティが形成された沸騰促進面が
時間の経過と共に劣化し、伝熱性能が低下することが分
かった。すなわち、運転中に汚れた稀吸収液や異物(錆
など)が沸騰促進面の微細なキャビティに入り込んだ
り、装置を一旦停止したときに稀吸収液がキャビティ内
に入り込み、再起動しても稀吸収液がキャビティ内から
排出されないなどの理由から、運転時間の経過と共に接
液側の伝熱性能が低下する。特に、起動/停止を頻繁に
繰り返すことの多い装置において、伝熱性能が劣化し易
いと云う問題があった。伝熱性能が低下した状態のまま
装置を運転していると、伝熱面の温度が異常に上昇して
腐食が早まったり、鉄板との作用で水素の発生が増加
し、その結果として不凝縮ガスによる能力低下を引き起
こしていた。
However, in the high-temperature regenerator disclosed in Japanese Patent Application No. 3-103528, it has been found that the boiling promoting surface in which the fine cavities are formed deteriorates with time, and the heat transfer performance decreases. That is, during operation, the dilute absorbing liquid or foreign matter (such as rust) may enter the fine cavity on the boiling promoting surface, or the dilute absorbing liquid may enter the cavity when the apparatus is temporarily stopped, and may rarely be restarted. The heat transfer performance on the liquid contact side decreases as the operation time elapses, for example, because the absorbing liquid is not discharged from the cavity. In particular, there is a problem that the heat transfer performance is liable to be deteriorated in a device that frequently starts and stops repeatedly. If the device is operated with reduced heat transfer performance, the temperature of the heat transfer surface rises abnormally, premature corrosion occurs, and the generation of hydrogen increases due to the action with the iron plate, resulting in non-condensation The gas caused a decrease in capacity.

【0006】[0006]

【発明が解決しようとする課題】したがって、接液側伝
熱面に形成した沸騰促進面の性能低下を速やかに回復す
ることのできる高温再生器の開発が強く期待されてい
た。
Therefore, the development of a high-temperature regenerator capable of quickly recovering from the performance deterioration of the boiling promoting surface formed on the heat transfer surface on the liquid contact side has been strongly expected.

【0007】[0007]

【課題を解決するための手段】本発明は上記した従来技
術の課題を解決するためになされたものであって、炉筒
を内蔵し、炉筒と再生器胴内壁との間の稀吸収液を加熱
して稀吸収液から冷媒蒸気を分離する直火式高温再生器
において、炉筒の後部管板の接液側伝熱面を多孔性伝熱
面に形成し、この多孔性伝熱面近傍に稀吸収液あるいは
冷媒の吐出口が設けられたことを特徴とする直火式高温
再生器であり、前記吐出口から稀吸収液あるいは冷媒を
吐出させる際に開放されるバルブと、稀吸収液が前記多
孔性伝熱面で加熱されて沸騰する気泡の個数をカウント
する気泡検出手段と、この気泡検出手段におけるカウン
トが所定の敷居値より減少したときに前記バルブを開放
するバルブ制御装置とが設けられたことを特徴とする直
火式高温再生器である。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art, and has a built-in furnace tube and a rare absorbing liquid between the furnace tube and the inner wall of the regenerator body. In the direct-fired high-temperature regenerator that separates refrigerant vapor from the rare absorbing liquid by heating the heat absorption side, the liquid-contacting heat transfer surface of the rear tube sheet of the furnace tube is formed as a porous heat transfer surface, A direct-fired high-temperature regenerator characterized in that a discharge port for a rare absorbing liquid or refrigerant is provided in the vicinity thereof, and a valve that is opened when discharging the rare absorbing liquid or refrigerant from the discharge port, A bubble detection unit that counts the number of bubbles that are heated and boiled by the liquid on the porous heat transfer surface, and a valve control unit that opens the valve when the count in the bubble detection unit decreases below a predetermined threshold value. A direct-fired high-temperature regenerator characterized by having That.

【0008】[0008]

【作用】吸収器から高温再生器に送り込まれ、炉筒の多
孔性伝熱面近傍に流動してきた稀吸収液は、既に相当加
熱濃縮されて中間液の濃度に近づいている。ここに稀吸
収液あるいは冷媒が吐出供給されると、この部分では吸
収液濃度が急激に低下し、沸点が低下するため激しい沸
騰が起こる。したがって、多孔性伝熱面の熱伝達率が汚
れなどによって低下したとき、稀吸収液あるいは冷媒を
吐出させると、激しく起こる沸騰によって多孔性伝熱面
の汚れなどが取り除かれ、伝熱性能が速やかに回復され
る。稀吸収液あるいは冷媒の吐出は、気泡の発生状況を
気泡検出手段にって観察することにより効率的な再活性
化が行われる。
The rare absorbing liquid sent from the absorber to the high-temperature regenerator and flowing near the porous heat transfer surface of the furnace tube has already been considerably concentrated by heating and is approaching the concentration of the intermediate liquid. When the rare absorbing liquid or the refrigerant is discharged and supplied here, the concentration of the absorbing liquid sharply drops in this portion, and the boiling point is lowered, so that intense boiling occurs. Therefore, when the heat transfer coefficient of the porous heat transfer surface is reduced due to dirt or the like, when the rare absorbing liquid or the refrigerant is discharged, the boiling which occurs vigorously removes the dirt etc. of the porous heat transfer surface, and the heat transfer performance is promptly improved. Will be recovered. The discharge of the rare absorbing liquid or the refrigerant is efficiently reactivated by observing the state of generation of bubbles by the bubble detection means.

【0009】[0009]

【実施例】図1に示した高温再生器1は炉筒11を内蔵
し、この炉筒11の後部管板12の接液側表面に微細な
キャビティを有する人工の多孔性伝熱面Aが形成されて
いる。そして、この多孔性伝熱面Aに稀吸収液あるいは
冷媒を適宜供給することができるように、バルブ13を
有する沸騰促進剤供給管14がその吐出口を多孔性伝熱
面Aの下部に向かって開口するように配管されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The high-temperature regenerator 1 shown in FIG. 1 has a built-in furnace tube 11, and an artificial porous heat transfer surface A having a fine cavity in the surface on the liquid contact side of a rear tube sheet 12 of the furnace tube 11. Is formed. Then, a boiling accelerator supply pipe 14 having a valve 13 has a discharge port directed toward the lower part of the porous heat transfer surface A so that the rare heat absorbing liquid or the refrigerant can be appropriately supplied to the porous heat transfer surface A. It is plumbed to open.

【0010】前記多孔性伝熱面Aは、例えば平均粒子径
35μmのニッケル−クロム合金を鉄の母材部表面に平
均厚さは30μmに溶射してキャビティを形成したもの
であり、その多孔度は大略5%である。
The porous heat transfer surface A is formed by spraying, for example, a nickel-chromium alloy having an average particle diameter of 35 μm on the surface of a base material of iron to an average thickness of 30 μm to form a cavity. Is approximately 5%.

【0011】15は気泡検出手段(例えばボイドセンサ
ー)であり、図2のように多孔性伝熱面Aの上部近傍に
取付けることにより、この多孔性伝熱面Aで加熱されて
沸騰する気泡の個数をカウントすることができる。そし
て、この気泡検出手段15がカウントする気泡の数が所
定の敷居値より減少したとき、バルブ制御装置16の指
示によって前記バルブ13を開き、沸騰促進剤供給管1
4から稀吸収液あるいは冷媒を吐出することができる。
気泡検出手段15による沸騰状態の観察は常時行っても
良いし、定期的(例えば100時間毎)に行っても良
い。なお、この気泡検出手段15は多孔性伝熱面Aの下
部近傍などにも取付けて、多孔性伝熱面Aの劣化をより
詳細に観察することも可能である。
Numeral 15 denotes a bubble detecting means (for example, a void sensor) which is attached near the upper portion of the porous heat transfer surface A as shown in FIG. The number can be counted. When the number of bubbles counted by the bubble detecting means 15 becomes smaller than a predetermined threshold value, the valve 13 is opened according to an instruction from the valve control device 16 and the boiling accelerator supply pipe 1 is opened.
4 can discharge a rare absorbing liquid or a refrigerant.
The observation of the boiling state by the bubble detecting means 15 may be performed at all times, or may be performed periodically (for example, every 100 hours). The bubble detecting means 15 can also be attached to the vicinity of the lower portion of the porous heat transfer surface A to observe the deterioration of the porous heat transfer surface A in more detail.

【0012】ところで、本発明の高温再生器1は従来の
高温再生器と同様、煙管17、バーナ18などを有する
ものであり、他の機器と例えば図3に示したように配管
接続して使用される。ここで、3は低温再生器、4は凝
縮器、5は蒸発器、6は吸収器、7は高温熱交換器、8
は低温熱交換器、P1は稀液ポンプ、P2は冷媒ポンプ
であり、前記沸騰促進剤供給管14はこの場合稀液ポン
プP1によって稀吸収液を吸収器6から高温再生器1に
供給する稀液管61の途中から分岐するように形成され
ている。
The high-temperature regenerator 1 according to the present invention has a smoke tube 17, a burner 18 and the like, similarly to the conventional high-temperature regenerator, and is connected to other equipment by piping, for example, as shown in FIG. Is done. Here, 3 is a low-temperature regenerator, 4 is a condenser, 5 is an evaporator, 6 is an absorber, 7 is a high-temperature heat exchanger, 8
Is a low-temperature heat exchanger, P1 is a diluent pump, and P2 is a refrigerant pump. In this case, the boiling accelerator supply pipe 14 dilutes the dilute absorbent from the absorber 6 to the high-temperature regenerator 1 by the diluent pump P1. It is formed so as to branch off from the middle of the liquid pipe 61.

【0013】多孔性伝熱面Aは、長期間の使用によって
汚れた稀吸収液が微細なキャビティに入り込んだり、装
置の運転を一旦停止したときに稀吸収液がキャビティ内
に入り込み、再起動の際にも稀吸収液がキャビティ内か
ら排出されなかったりして、運転時間の経過と共に伝熱
性能が低下するので、多孔性伝熱面Aでの稀吸収液の沸
騰が減少して冷媒を蒸発分離して濃縮する効率が低下す
る。
On the porous heat transfer surface A, the dilute absorbing liquid contaminated by use for a long period of time enters the fine cavity, or when the operation of the apparatus is temporarily stopped, the dilute absorbing liquid enters the cavity, and the porous heat transfer surface A is restarted. At this time, since the rare absorbing liquid is not discharged from the cavity and the heat transfer performance decreases with the elapse of the operation time, the boiling of the rare absorbing liquid on the porous heat transfer surface A decreases and the refrigerant evaporates. The efficiency of separation and concentration decreases.

【0014】多孔性伝熱面Aの劣化は、発生する気泡の
個数を気泡検出手段15によりカウントすることによっ
て検知することができるので、気泡数が所定の数を下回
ってきたときにバルブ制御装置16の指示によってバル
ブ13を開き、稀吸収液を沸騰促進剤供給管14から吐
出供給する。
The deterioration of the porous heat transfer surface A can be detected by counting the number of generated air bubbles by the air bubble detecting means 15, so that when the number of air bubbles falls below a predetermined number, the valve control device is activated. The valve 13 is opened according to the instruction of 16 and the diluted absorbing liquid is discharged and supplied from the boiling accelerator supply pipe 14.

【0015】通常、多孔性伝熱面Aが形成された炉筒1
1の後部管板12近傍の稀吸収液は、送り込まれたとき
より加熱濃縮されて中間液の濃度に近づいている。した
がって、この濃度の高い所に濃度の薄い稀吸収液を供給
すると吸収液の濃度が急激に低下し、沸点降下によって
沸騰が激しく起こる。このため、多孔性伝熱面Aに汚れ
などがあって熱伝達率が低下していても、稀吸収液が激
しく攪拌される結果、多孔性伝熱面Aのキャビティに入
り込んだ液や汚れが追い出され、失われていた伝熱性能
が速やかに回復される。また、上記を同様の方法によっ
て運転初期の沸騰性能の増進を図ることができる。
Normally, a furnace tube 1 having a porous heat transfer surface A formed thereon
The diluted absorption liquid near the rear tube sheet 12 is heated and concentrated from the time it is sent, and approaches the concentration of the intermediate liquid. Therefore, when a dilute absorbing solution having a low concentration is supplied to a place where the concentration is high, the concentration of the absorbing solution sharply decreases, and the boiling point drops so that boiling occurs violently. For this reason, even if the heat transfer coefficient is lowered due to dirt on the porous heat transfer surface A, the dilute absorbing solution is vigorously stirred, so that the liquid or the dirt that has entered the cavity of the porous heat transfer surface A is not removed. The heat transfer performance that has been expelled and lost is quickly restored. Further, the boiling performance in the initial stage of operation can be enhanced by the same method as described above.

【0016】したがって、本発明の高温再生器1ではガ
スなどの燃料をバーナ18から供給して燃焼させたと
き、火炎によって強熱される炉筒11の後部管板12は
多孔性伝熱面Aを介して常に効率良く稀吸収液に放熱す
るため過熱状態になることがない。また、燃焼ガスの熱
は稀吸収液に多孔性伝熱面Aを介して稀吸収液側に効率
良く放熱され、煙管17に流入するガスの温度は充分低
くなっているので、煙管17の腐食環境も緩和される。
このため、装置の寿命が従来装置に比較して大幅に伸び
る。
Accordingly, in the high-temperature regenerator 1 of the present invention, when fuel such as gas is supplied from the burner 18 and burned, the rear tube sheet 12 of the furnace tube 11 ignited by the flame has a porous heat transfer surface A. Since the heat is always efficiently radiated to the rare absorbing solution via the circulating fluid, it does not become overheated. In addition, the heat of the combustion gas is efficiently radiated to the rare absorbing solution through the porous heat transfer surface A to the rare absorbing solution, and the temperature of the gas flowing into the smoke tube 17 is sufficiently low. The environment is also eased.
For this reason, the life of the device is greatly extended as compared with the conventional device.

【0017】図4に例示した吸収式冷凍機の高温再生器
1は、沸騰促進剤供給管14が冷媒液管51の冷媒ポン
プP2の吐出側から分岐して設けられたものである。こ
の場合も、バルブ13の開閉は気泡検出手段15によっ
て観察する多孔性伝熱面Aの劣化の程度に応じて冷媒を
多孔性伝熱面Aの底部に供給するものである。
In the high temperature regenerator 1 of the absorption refrigerator illustrated in FIG. 4, a boiling accelerator supply pipe 14 is provided to branch off from a discharge side of a refrigerant pump P2 of a refrigerant liquid pipe 51. Also in this case, the opening and closing of the valve 13 supplies the refrigerant to the bottom of the porous heat transfer surface A in accordance with the degree of deterioration of the porous heat transfer surface A observed by the bubble detecting means 15.

【0018】図5に例示した吸収式冷凍機の高温再生器
1は、図4に示した高温再生器1の気泡検出手段15が
CCDカメラであり、このCCDカメラの撮影した画像
をVTR19に記録すると共に、コンピュータ20によ
って画像処理し、気泡の発生状態を初期状態(ボイド
率、気泡発生数)と比較し、例えば初期の沸騰状態より
85%まで能力が低下したときに、コンピュータ20の
指示によりバルブ13を開いて沸騰促進剤供給管14か
ら冷媒を吐出供給するものである。
In the high-temperature regenerator 1 of the absorption refrigerator shown in FIG. 5, the bubble detecting means 15 of the high-temperature regenerator 1 shown in FIG. 4 is a CCD camera, and an image taken by the CCD camera is recorded in the VTR 19. At the same time, image processing is performed by the computer 20, and the generation state of bubbles is compared with the initial state (void rate, number of generated bubbles). For example, when the capacity is reduced to 85% from the initial boiling state, the computer 20 issues an instruction. The valve 13 is opened to discharge and supply the refrigerant from the boiling accelerator supply pipe 14.

【0019】なお、CCDカメラによって気泡の発生状
況を観察する方法は、図6に例示したフローチャートに
基づいて気泡の流動解析を行うことも可能である。
In the method of observing the state of generation of bubbles by using a CCD camera, the flow of bubbles can be analyzed based on the flowchart illustrated in FIG.

【0020】このCCDカメラによる観察窓からの非接
触の観察方法は、ボイドセンサーなどを内部に設置する
方法に比べ、真空保持あるいはセンサーの劣化がないと
云う点で優れている。
The non-contact observation method using the CCD camera from the observation window is superior to a method in which a void sensor or the like is installed inside in that there is no vacuum holding or deterioration of the sensor.

【0021】なお、沸騰促進剤供給管14からは冷媒の
蒸気を吐出しても良いので、沸騰促進剤供給管14を冷
媒蒸気管31から分岐して取付けることも可能である。
Since the vapor of the refrigerant may be discharged from the boiling accelerator supply pipe 14, the boiling accelerator supply pipe 14 may be branched from the refrigerant vapor pipe 31 and attached.

【0022】また、バルブ13の開閉は単にタイマーに
よって定期的に行っても良い。開閉するタイミングは、
高温再生器1の設計時に行う実験に基づいて決定すれば
構成が簡略化されるため装置が廉価になると云うメリッ
トがある。
The opening and closing of the valve 13 may be simply performed periodically by a timer. The timing of opening and closing is
If it is determined on the basis of an experiment performed at the time of designing the high-temperature regenerator 1, there is an advantage that the configuration is simplified and the apparatus is inexpensive.

【0023】[0023]

【発明の効果】以上説明したように本発明になる高温再
生器は、金属溶射などによって形成した人工的沸騰核を
有する多孔性の沸騰促進面に稀吸収液あるいは冷媒を吐
出供給することにより、この多孔性伝熱面近傍で激しい
沸騰を起こすことができる。したがって、多孔性伝熱面
に付着した汚れなどを取り除いて接液側の沸騰熱伝達率
を容易に回復することができる。このため、常に良好な
伝熱性能を有して運転できるので装置の小型化が可能で
あり、炉筒、煙管などは表面温度が低下するので部材の
腐食が軽減される。また、強制対流による循環力の低下
がないので稀吸収液の停滞部がなくなり、局部過熱が回
避されるなどの理由から装置の寿命が大幅に伸びる。特
に、沸騰状況を気泡検出手段によって監視し、発生する
気泡の数が所定の個数まで減少した時に稀吸収液あるい
は冷媒を供給すれば、劣化した多孔性伝熱面を効率良く
再活性化することが可能であり、熱効率が高い。
As described above, the high-temperature regenerator according to the present invention discharges and supplies a rare absorbing liquid or a refrigerant to a porous boiling promoting surface having an artificial boiling nucleus formed by metal spraying or the like. Intense boiling can occur near the porous heat transfer surface. Therefore, it is possible to easily recover the boiling heat transfer coefficient on the liquid contact side by removing dirt attached to the porous heat transfer surface. Therefore, the apparatus can always be operated with good heat transfer performance, so that the size of the apparatus can be reduced, and the surface temperature of a furnace tube, a smoke tube, and the like is reduced, so that corrosion of members is reduced. In addition, since there is no decrease in the circulation force due to forced convection, there is no stagnation portion of the diluted absorbing liquid, and the life of the device is greatly extended because local overheating is avoided. In particular, if the boiling state is monitored by the bubble detecting means and the number of generated bubbles is reduced to a predetermined number and a rare absorbing liquid or a refrigerant is supplied, the deteriorated porous heat transfer surface can be efficiently reactivated. Is possible and high thermal efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一実施例の一部破断説明図である。FIG. 1 is a partially cutaway explanatory view of one embodiment.

【図2】気泡検出手段を有する高温再生器の説明図であ
る。
FIG. 2 is an explanatory diagram of a high-temperature regenerator having bubble detecting means.

【図3】稀吸収液を吐出する高温再生器の説明図であ
る。
FIG. 3 is an explanatory diagram of a high-temperature regenerator for discharging a rare absorbing liquid.

【図4】冷媒液を吐出する高温再生器の説明図である。FIG. 4 is an explanatory diagram of a high-temperature regenerator that discharges a refrigerant liquid.

【図5】気泡検出手段がCCDカメラである高温再生器
の説明図である。
FIG. 5 is an explanatory diagram of a high-temperature regenerator in which a bubble detection unit is a CCD camera.

【図6】気泡の流動解析を行う時のフローチャートであ
る。
FIG. 6 is a flowchart when performing flow analysis of bubbles.

【符号の説明】[Explanation of symbols]

1 高温再生器 11 炉筒 12 炉筒後部管板 13 バルブ 14 沸騰促進剤供給管 15 気泡検出手段 16 バルブ制御装置 17 煙管 18 バーナ 19 VTR 20 コンピュータ 3 低温再生器 4 凝縮器 5 蒸発器 6 吸収器 7 高温熱交換器 8 低温熱交換器 P1 稀液ポンプ P2 冷媒ポンプ A 多孔性伝熱面 REFERENCE SIGNS LIST 1 high temperature regenerator 11 furnace tube 12 furnace tube rear tube sheet 13 valve 14 boiling promoter supply pipe 15 bubble detection means 16 valve control device 17 smoke tube 18 burner 19 VTR 20 computer 3 low temperature regenerator 4 condenser 5 evaporator 6 absorber 7 High-temperature heat exchanger 8 Low-temperature heat exchanger P1 Rare liquid pump P2 Refrigerant pump A Porous heat transfer surface

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F25B 33/00 F25B 15/00 303 Continuation of front page (58) Field surveyed (Int.Cl. 6 , DB name) F25B 33/00 F25B 15/00 303

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炉筒を内蔵し、炉筒と再生器胴内壁との
間の稀吸収液を加熱して稀吸収液から冷媒蒸気を分離す
る直火式高温再生器において、炉筒の後部管板の接液側
伝熱面を多孔性伝熱面に形成し、この多孔性伝熱面近傍
に稀吸収液あるいは冷媒の吐出口が設けられたことを特
徴とする直火式高温再生器。
1. A direct-fired high-temperature regenerator having a built-in furnace tube for heating a rare absorbing solution between the furnace tube and the inner wall of a regenerator body to separate refrigerant vapor from the rare absorbing solution. A direct-fired high-temperature regenerator characterized in that the heat transfer surface on the liquid contact side of the tube sheet is formed as a porous heat transfer surface, and a discharge port for a rare absorbing liquid or a refrigerant is provided near the porous heat transfer surface. .
【請求項2】 前記吐出口から稀吸収液あるいは冷媒を
吐出させる際に開放されるバルブと、稀吸収液が前記多
孔性伝熱面で加熱されて沸騰する気泡の個数をカウント
する気泡検出手段と、この気泡検出手段におけるカウン
トが所定の敷居値より減少したときに前記バルブを開放
するバルブ制御装置とが設けられたことを特徴とする請
求項1記載の直火式高温再生器。
2. A valve which is opened when the rare absorbing liquid or the refrigerant is discharged from the discharge port, and a bubble detecting means for counting the number of bubbles which are heated by the rare absorbing liquid on the porous heat transfer surface and boil. 2. A direct-fired high-temperature regenerator according to claim 1, further comprising a valve control device for opening said valve when the count in said bubble detecting means decreases below a predetermined threshold value.
JP3171821A 1991-06-18 1991-06-18 Direct fire high temperature regenerator Expired - Fee Related JP2976037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3171821A JP2976037B2 (en) 1991-06-18 1991-06-18 Direct fire high temperature regenerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3171821A JP2976037B2 (en) 1991-06-18 1991-06-18 Direct fire high temperature regenerator

Publications (2)

Publication Number Publication Date
JPH04369361A JPH04369361A (en) 1992-12-22
JP2976037B2 true JP2976037B2 (en) 1999-11-10

Family

ID=15930367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3171821A Expired - Fee Related JP2976037B2 (en) 1991-06-18 1991-06-18 Direct fire high temperature regenerator

Country Status (1)

Country Link
JP (1) JP2976037B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7169777B2 (en) * 2017-09-11 2022-11-11 東京エレクトロン株式会社 SUBSTRATE LIQUID PROCESSING APPARATUS, SUBSTRATE LIQUID PROCESSING METHOD, AND STORAGE MEDIUM
US11594430B2 (en) 2017-09-11 2023-02-28 Tokyo Electron Limited Substrate liquid processing apparatus, substrate liquid processing method and recording medium

Also Published As

Publication number Publication date
JPH04369361A (en) 1992-12-22

Similar Documents

Publication Publication Date Title
EP1762799B1 (en) Air conditioner
US20030192332A1 (en) Purge
JP2976037B2 (en) Direct fire high temperature regenerator
JP2002071279A (en) Steam condenser vacuum pump system
JPH0325096A (en) Cooling device utilizing airframe outer surface cooler for aviation electronic equipment
CN114152007A (en) Separation and purification device, refrigeration assembly, system, purification method and storage medium
JP2019190709A (en) Absorptive refrigerator
CN216790594U (en) Separation and purification device, refrigeration assembly and refrigeration system
JPH0646125B2 (en) Control method for double-effect absorption refrigerator
JP3081472B2 (en) Control method of absorption refrigerator
CN210463649U (en) Aluminum smelting process waste heat flue gas type lithium bromide unit
JP2639969B2 (en) Absorption refrigerator
JP2589235B2 (en) Operation control device for ice machine
JP3086552B2 (en) Automatic non-condensable gas discharge device for absorption refrigerator
JP2001012831A (en) Absorption refrigerating machine/hot and chilled water generator with safety device
KR930004387B1 (en) Drain control device in refrigerator
JPH0451320Y2 (en)
KR200154868Y1 (en) Self parting device of absorption type cooler
JP3188111B2 (en) Absorption chiller / heater and control method thereof
JP2563514B2 (en) Air conditioner
JP3632445B2 (en) Heat pump bath water heater
JP3133441B2 (en) Bleeding device for absorption refrigerator
JPH07332801A (en) Vapor condensing device
JP2827655B2 (en) Heat transfer device
JP2002277092A (en) Absorption air conditioning system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070910

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees