JP3188111B2 - Absorption chiller / heater and control method thereof - Google Patents

Absorption chiller / heater and control method thereof

Info

Publication number
JP3188111B2
JP3188111B2 JP24157094A JP24157094A JP3188111B2 JP 3188111 B2 JP3188111 B2 JP 3188111B2 JP 24157094 A JP24157094 A JP 24157094A JP 24157094 A JP24157094 A JP 24157094A JP 3188111 B2 JP3188111 B2 JP 3188111B2
Authority
JP
Japan
Prior art keywords
evaporator
condenser
heater
absorption
chiller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24157094A
Other languages
Japanese (ja)
Other versions
JPH08105662A (en
Inventor
浩伸 川村
富久 大内
健司 町沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24157094A priority Critical patent/JP3188111B2/en
Publication of JPH08105662A publication Critical patent/JPH08105662A/en
Application granted granted Critical
Publication of JP3188111B2 publication Critical patent/JP3188111B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、空気調和装置等に用い
られる吸収式冷温水機及びその制御方法に係り、特に冷
水と温水を蒸発器から共通配管で取り出すようにした吸
収式冷温水機及びその制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption chiller / heater used in an air conditioner and the like, and more particularly to an absorption chiller / heater in which cold water and hot water are taken out of an evaporator through a common pipe. And its control method.

【0002】[0002]

【従来の技術】従来、例えば、特公昭45−22072
号公報記載の技術では、主な構成として、凝縮器と蒸発
器とをU字シール管を介して接続している。U字シール
管に冷媒を液封し、凝縮器と蒸発器との圧力差を保つこ
とにより冷房運転を行い、また、冷房運転で冷媒ポンプ
と吸収器と凝縮器に冷却水を循環させる冷却水ポンプを
停止し、凝縮器での圧力を上昇させ、U字シール管にお
いて液封された冷媒と蒸発器下部に溜った冷媒を蒸発器
側へ吹き抜かせ、U字シール管を気泡ポンプとして利用
することにより、暖房運転を行っている。
2. Description of the Related Art Conventionally, for example, Japanese Patent Publication No. 45-22072
In the technology described in the publication, as a main configuration, a condenser and an evaporator are connected via a U-shaped seal tube. A coolant is sealed in a U-shaped seal tube, and a cooling operation is performed by maintaining a pressure difference between the condenser and the evaporator, and a cooling water for circulating the cooling water to the refrigerant pump, the absorber, and the condenser in the cooling operation. The pump is stopped, the pressure in the condenser is increased, and the refrigerant sealed in the U-shaped seal tube and the refrigerant collected in the lower part of the evaporator are blown out to the evaporator side, and the U-shaped seal tube is used as a bubble pump. Thus, the heating operation is performed.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術の凝縮器
と蒸発器とをU字シール管を介して接続して成る吸収式
冷温水機において、例えば、冷房運転時に突然電源が切
れた場合、冷媒ポンプ、溶液ポンプ、再生器加熱源が停
止し、さらには吸収器、凝縮器に冷却水を循環させるた
めの冷却水ポンプが停止するため、凝縮器の圧力が上昇
してしまう。これにより、凝縮器と蒸発器との圧力差が
増大し、U字シール管において液封されている冷媒が蒸
発器側へ吹き抜けてしまう。電源復帰後に運転を再開さ
せても、冷媒が蒸発器側へ吹き抜けてから凝縮器と蒸発
器の圧力が安定するまでの間は、U字シール管に液封す
るための冷媒が気泡ポンプとして揚液されてしまうた
め、U字シール管に冷媒が液封できず、冷房運転になら
ないことがある。
In an absorption chiller / heater in which the above-mentioned conventional condenser and evaporator are connected via a U-shaped seal tube, for example, when the power is suddenly cut off during cooling operation, The refrigerant pump, the solution pump, and the regenerator heating source are stopped, and the cooling water pump for circulating the cooling water through the absorber and the condenser is stopped, so that the pressure of the condenser increases. As a result, the pressure difference between the condenser and the evaporator increases, and the refrigerant sealed in the U-shaped seal tube blows out to the evaporator side. Even when the operation is restarted after the power is restored, the refrigerant for liquid sealing in the U-shaped seal tube is pumped as a bubble pump until the pressure of the condenser and the evaporator is stabilized after the refrigerant blows out to the evaporator side. Since the refrigerant is liquefied, the refrigerant may not be sealed in the U-shaped seal tube, and the cooling operation may not be performed.

【0004】本発明は、上記従来技術の問題点を解決す
るためになされたもので、その目的は、冷房運転時に突
然電源が切れた場合、運転を再開してもスムーズに冷房
運転を立ち上げることのできる吸収式冷温水機及びその
制御方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art. It is an object of the present invention to start the cooling operation smoothly even if the power is suddenly cut off during the cooling operation even if the operation is restarted. And a method of controlling the same.

【0005】[0005]

【課題を解決するための手段】上記の目的は、吸収式冷
温水機の凝縮器と蒸発器の間の圧力差を吸収するために
設けられたU字シール管の両端の間を、冷房運転中の停
電時にバイパスすることにより達成され、また、吸収式
冷温水機の凝縮器と蒸発器の間の圧力差を吸収するため
に設けられたU字シール管の両端の間を、U字シール管
の凝縮器側下部の温度が所定値を越えたときにバイパス
することにより達成され、また、当該吸収式冷温水機電
源が冷房運転中に停電したのち、復電して冷房運転を再
開するときに、冷媒ポンプ、冷却水ポンプ、及び冷水ポ
ンプを作動させると同時に、凝縮器と蒸発器の間の圧力
差を吸収するために設けられたU字シール管の両端の間
をバイパス配管によりバイパス状態とし、予め定めた時
間を経過した後に上記バイパス配管を閉じて運転を開始
することにより達成される。
SUMMARY OF THE INVENTION The object of the present invention is to provide a cooling operation between both ends of a U-shaped seal pipe provided for absorbing a pressure difference between a condenser and an evaporator of an absorption type chiller / heater. A U-shaped seal is provided between both ends of a U-shaped seal pipe provided to absorb a pressure difference between a condenser and an evaporator of an absorption chiller / heater, which is achieved by bypassing during a power failure. This is achieved by bypassing when the temperature of the lower part of the condenser side of the pipe exceeds a predetermined value.After the power supply of the absorption type chiller / heater is stopped during the cooling operation, the power is restored to restart the cooling operation. At the same time, the refrigerant pump, the cooling water pump, and the chilled water pump are operated, and at the same time, a bypass pipe is provided between both ends of a U-shaped seal pipe provided for absorbing a pressure difference between the condenser and the evaporator. State and after a predetermined time has passed Close the serial bypass pipe is achieved by starting the operation.

【0006】[0006]

【作用】凝縮器と蒸発器とをU字シール管を介して接続
してなる吸収式冷温水機において、冷房運転時に突然電
源が切れ、凝縮器の圧力が上昇するような場合、U字シ
ール管の両端の間をバイパス配管でバイパスすることに
より、U字シール管に液封された冷媒が蒸発器側へ吹き
抜ける前に、高圧となる凝縮器側と低圧の蒸発器側の圧
力を平衡状態にすることができ、U字シール管に液封し
た冷媒が蒸発器側へ吹き抜けることがない。したがっ
て、電源復帰後運転を再開しても、スムーズに冷房運転
を立ち上げることができる。
In an absorption type chiller / heater in which a condenser and an evaporator are connected via a U-shaped seal pipe, if the power is suddenly cut off during cooling operation and the pressure of the condenser rises, a U-shaped seal is used. By bypassing between both ends of the pipe with a bypass pipe, the pressure of the high-pressure condenser side and the low-pressure evaporator side are balanced before the refrigerant sealed in the U-shaped seal pipe blows out to the evaporator side. The refrigerant sealed in the U-shaped seal tube does not blow out to the evaporator side. Therefore, even if the operation is resumed after the power is restored, the cooling operation can be started up smoothly.

【0007】また、不凝縮ガス発生時など、凝縮器の圧
力が過度に上昇したときに、U字シール管の凝縮器側下
部の温度でこれを検出し、バイパス配管でバイパスする
ことにより上記冷媒の吹抜けを防止できる。
Further, when the pressure of the condenser excessively rises, for example, when non-condensable gas is generated, the temperature is detected at the lower part of the U-shaped seal tube on the condenser side, and the refrigerant is bypassed by a bypass pipe to thereby carry out the refrigerant. Blow-by can be prevented.

【0008】また、停電時に、上記吹抜けが生じ、その
後の復電時に、まず上記バイパス配管でバイパスしなが
ら各ポンプを一定時間運転することで、蒸発器の温度を
低下させて冷房運転が可能な状態にして、運転をスムー
ズに再開できる。
[0008] Further, at the time of a power failure, the above-mentioned blow-by occurs, and at the time of a subsequent power recovery, by operating each of the pumps for a certain period of time while first bypassing the above-mentioned bypass pipe, the temperature of the evaporator can be lowered to perform the cooling operation. The operation can be resumed smoothly in the state.

【0009】[0009]

【実施例】以下、本発明の実施例を図面により説明す
る。図1は、本発明になる吸収式冷温水機の一実施例を
示すもので、高温再生器1、低温再生器2、凝縮器3、
蒸発器4、吸収器5、溶液ポンプ6、冷媒ポンプ7、高
温熱交換器8、低温熱交換器9、凝縮器と蒸発器を接続
するU字シール管12、液冷媒スプレ導管22、冷媒散
布装置27、溶液散布装置26、エゼクタポンプ14、
気液分離器13、溶液導管15、冷媒と溶液を混合させ
るための混合室16、気液分離器13の下部に溜った冷
媒を混合室16へ導くための配管19、冷却水ポンプ1
0、クーリングタワー11、U字シール管12を気泡ポ
ンプとして利用するとき蒸発器4の冷媒を供給するため
の配管20、可動弁21、低温再生器2と蒸発器4を結
ぶバイパス配管24、および均圧弁25等からなってい
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of an absorption type chiller / heater according to the present invention, in which a high-temperature regenerator 1, a low-temperature regenerator 2, a condenser 3,
Evaporator 4, absorber 5, solution pump 6, refrigerant pump 7, high-temperature heat exchanger 8, low-temperature heat exchanger 9, U-shaped seal tube 12 connecting condenser and evaporator, liquid refrigerant spray conduit 22, refrigerant dispersion Device 27, solution spraying device 26, ejector pump 14,
Gas-liquid separator 13, solution conduit 15, mixing chamber 16 for mixing the refrigerant and the solution, piping 19 for guiding the refrigerant collected in the lower part of gas-liquid separator 13 to mixing chamber 16, cooling water pump 1
0, a cooling tower 11, a pipe 20 for supplying the refrigerant of the evaporator 4 when using the U-shaped seal pipe 12 as a bubble pump, a movable valve 21, a bypass pipe 24 connecting the low-temperature regenerator 2 and the evaporator 4, and a uniform pipe. It comprises a pressure valve 25 and the like.

【0010】このような吸収式冷温水機の冷房運転時の
通常動作について説明する。冷房運転時には、可動弁1
8、21、および均圧弁25は閉じてられている。高温
再生器1にて溶液が外部熱源により加熱され、濃縮され
るときに発生した冷媒蒸気は、低温再生器2の加熱管内
に導かれて低温再生器2の溶液を加熱濃縮し、冷媒蒸気
を発生させて凝縮液化し凝縮器3に流入する。低温再生
器2で発生した冷媒蒸気は凝縮器3に導かれ、冷却水で
冷却されて凝縮液化し、高温再生器1からの冷媒ととも
に液冷媒導管(図示せず)を経て蒸発器4に送られる。
The normal operation of the absorption type water heater during the cooling operation will be described. During cooling operation, the movable valve 1
8, 21, and the pressure equalizing valve 25 are closed. Refrigerant vapor generated when the solution is heated by an external heat source and concentrated in the high-temperature regenerator 1 is guided into a heating tube of the low-temperature regenerator 2 to heat and concentrate the solution in the low-temperature regenerator 2, and to condense the refrigerant vapor. It is generated and condensed and liquefied and flows into the condenser 3. The refrigerant vapor generated in the low-temperature regenerator 2 is guided to the condenser 3, cooled by the cooling water to be condensed and liquefied, and sent to the evaporator 4 via the liquid refrigerant conduit (not shown) together with the refrigerant from the high-temperature regenerator 1. Can be

【0011】蒸発器4の液冷媒は、冷媒ポンプ7により
一部は液冷媒供給管23を経てU字シール管12に供給
され、それ以外は液冷媒スプレ導管22を経て冷媒散布
装置27に送られ、冷媒散布装置27から蒸発器伝熱管
群上に散布されて管内を流れる冷水と熱交換して蒸発気
化し、吸収器5に流入する。その際の蒸発潜熱により冷
房作用を発揮する。
A part of the liquid refrigerant in the evaporator 4 is supplied to the U-shaped seal pipe 12 through the liquid refrigerant supply pipe 23 by the refrigerant pump 7, and the other part is sent to the refrigerant spraying device 27 through the liquid refrigerant spray conduit 22. Then, heat is exchanged with cold water flowing from the refrigerant spraying device 27 onto the evaporator heat transfer tube group and flowing through the tubes to evaporate and flow into the absorber 5. The cooling effect is exerted by the latent heat of evaporation at that time.

【0012】吸収器5では、高温再生器1および低温再
生器2で濃縮された濃溶液がエゼクタポンプ14により
溶液散布装置26を介して吸収器伝熱管群上に散布さ
れ、管内を流れる冷却水で冷却されて蒸発器4からの冷
媒蒸気を吸収して希溶液を生成する。吸収器5の希溶液
は溶液ポンプ6によりその一部はエゼクタポンプ14の
駆動液となり吸収器5に再循環する。残りの希溶液は低
温熱交換器9を経由して2分され、一方は低温再生器2
に供給され、他方はさらに高温熱交換器8を経由して高
温再生器1に供給される。以上のように冷房サイクルが
構成されている。
In the absorber 5, the concentrated solution concentrated in the high-temperature regenerator 1 and the low-temperature regenerator 2 is sprayed onto the group of absorber heat transfer tubes by the ejector pump 14 via the solution spraying device 26, and the cooling water flowing in the tubes. And absorbs the refrigerant vapor from the evaporator 4 to generate a dilute solution. A part of the dilute solution in the absorber 5 becomes a driving liquid for the ejector pump 14 by the solution pump 6 and is recirculated to the absorber 5. The remaining dilute solution is divided into two parts via a low-temperature heat exchanger 9, one of which is a low-temperature regenerator 2.
And the other is further supplied to the high-temperature regenerator 1 via the high-temperature heat exchanger 8. The cooling cycle is configured as described above.

【0013】以上が冷房運転の動作概要であるが、この
運転が正常に停止されたときには、高温再生器1での外
部熱源、冷媒ポンプ7、冷却水ポンプ10が停止され、
その後、蒸発器伝熱管群内に冷水を循環させている冷水
ポンプ(図示せず)、および溶液ポンプ6が停止される
ように構成されている。さらに、運転時には閉じている
配管17の可動弁18を開き、凝縮器3に溜っている冷
媒を混合室16を介して吸収器5へ流し、溶液の希釈運
転が行われるように構成されている。
The above is the outline of the operation of the cooling operation. When the operation is normally stopped, the external heat source, the refrigerant pump 7 and the cooling water pump 10 in the high temperature regenerator 1 are stopped.
Thereafter, a chilled water pump (not shown) for circulating chilled water in the evaporator heat transfer tube group and the solution pump 6 are configured to be stopped. Further, during operation, the movable valve 18 of the closed pipe 17 is opened, and the refrigerant stored in the condenser 3 is caused to flow to the absorber 5 through the mixing chamber 16 to perform a dilution operation of the solution. .

【0014】上記のように、運転停止時には、凝縮器3
を冷却する冷却水ポンプ10が停止するため、凝縮器3
での圧力が上昇し、U字シール管12に液封した冷媒が
蒸発器4側へ吹き抜けようとするが、溶液の希釈運転と
して、運転時には閉じている配管17の可動弁18を開
き、凝縮器3に溜っている冷媒を混合室16を介して吸
収器5へ流すとともに、溶液ポンプ6で溶液を循環させ
ている。これにより、冷房運転停止時におけるU字シー
ル管12に液封した冷媒の蒸発器4側への吹き抜けが防
止できる。
As described above, when the operation is stopped, the condenser 3
The cooling water pump 10 for cooling the
Pressure rises, and the refrigerant liquid sealed in the U-shaped seal tube 12 tries to blow out to the evaporator 4 side. However, as a dilution operation of the solution, the movable valve 18 of the pipe 17 which is closed during operation is opened to condense the solution. The refrigerant stored in the vessel 3 flows to the absorber 5 through the mixing chamber 16, and the solution is circulated by the solution pump 6. This prevents the refrigerant sealed in the U-shaped seal tube 12 from flowing to the evaporator 4 when the cooling operation is stopped.

【0015】しかし、冷房運転中に何等かの原因、例え
ば停電のために電源が切れた場合には、高温再生器1で
の外部熱源、冷媒ポンプ7、溶液ポンプ6、冷却水ポン
プ10、冷水ポンプ(図示せず)が同時に停止し、かつ
配管17の可動弁18が閉じたままとなるので、溶液の
希釈運転ができない。図2は、このときの凝縮器3およ
び蒸発器4の圧力の時間変化を示すもので、時刻Aで電
源が切れたとすると、この時刻から凝縮器3の圧力が上
昇しはじめ、蒸発器4との差圧も同様に上昇する。この
差圧のために、U字シール管12によるシールができな
くなるが、このときの差圧をD、時刻をBとすると、時
刻BにU字シール管12に液封されていた冷媒が蒸発器
4側へ吹き抜けてしまい、蒸発器4の圧力が急上昇す
る。この場合、U字シール管12に液封されていた冷媒
が蒸発器4側へ吹き抜け、U字シール管12が気泡ポン
プとして動作している間は、電源復帰して運転を再開し
ても、蒸発器4内の温度が上がっていて冷房運転になら
ない。
However, if the power is turned off due to any cause during the cooling operation, for example, due to a power failure, the external heat source in the high temperature regenerator 1, the refrigerant pump 7, the solution pump 6, the cooling water pump 10, the cold water Since the pump (not shown) stops at the same time and the movable valve 18 of the pipe 17 remains closed, the dilution operation of the solution cannot be performed. FIG. 2 shows a time change of the pressures of the condenser 3 and the evaporator 4 at this time. If the power is turned off at a time A, the pressure of the condenser 3 starts to increase from this time, and Also increases. Due to this differential pressure, sealing by the U-shaped seal tube 12 cannot be performed. If the differential pressure at this time is D and the time is B, the refrigerant sealed in the U-shaped seal tube 12 at the time B evaporates. As a result, the pressure in the evaporator 4 rises sharply. In this case, even if the refrigerant sealed in the U-shaped seal tube 12 blows out to the evaporator 4 side and the U-shaped seal tube 12 is operating as a bubble pump, the power is restored and the operation is restarted. The temperature in the evaporator 4 has risen and the cooling operation does not start.

【0016】そこで、本実施例においては、低温再生器
2と蒸発器4とを結ぶように設けたバイパス配管24の
均圧弁25を、電源が切れると同時に開くようにする。
ここで均圧弁25は、電源が入っているときには閉じて
いるが、電源が切れると同時に開くような電磁弁である
とする。この時の凝縮器3と蒸発器4の圧力は、図3に
示すように、時刻Aに電源が切れたとすると、その時刻
Aから均圧弁25を開くので、高温再生器1で発生した
冷媒蒸気の一部が蒸発器4へ流入し、これにより凝縮器
3の過度な圧力上昇を防止できるとともに、蒸発器4の
圧力も凝縮器3とともに変化させることができることか
ら、凝縮器3と蒸発器4との圧力差を小さく維持するこ
とができ、U字シール管12に液封した冷媒の蒸発器4
側への吹き抜けを防ぐことができる。以上のようにし
て、電源が切れてからの経過時間に関係なく、電源復帰
後に運転を再開したとき、スムーズに冷房運転を立ち上
げることができる。
Therefore, in the present embodiment, the equalizing valve 25 of the bypass pipe 24 provided so as to connect the low-temperature regenerator 2 and the evaporator 4 is opened at the same time when the power is turned off.
Here, it is assumed that the pressure equalizing valve 25 is an electromagnetic valve that is closed when the power is turned on, but is opened when the power is turned off. At this time, as shown in FIG. 3, when the power is turned off at time A, the pressure equalizing valve 25 is opened from time A, so that the refrigerant vapor generated in the high temperature regenerator 1 Flows into the evaporator 4, thereby preventing an excessive rise in the pressure of the condenser 3 and changing the pressure of the evaporator 4 together with the condenser 3, so that the condenser 3 and the evaporator 4 And the pressure difference between the refrigerant evaporator 4 and the liquid-sealed refrigerant in the U-shaped seal tube 12 can be maintained.
A blow-by to the side can be prevented. As described above, the cooling operation can be smoothly started when the operation is restarted after the power is restored, regardless of the elapsed time since the power was turned off.

【0017】図4は、本発明になる吸収式冷温水機の別
の実施例を示すもので、U字シール管12の凝縮器3側
の液面と底部との間に、U字シール管12内の温度を検
出する温度検出装置28を取り付け、またその出力を取
り込んで均圧弁25と、抽気装置31と凝縮器3を結ぶ
配管に設けた抽気弁30とを制御するための制御装置2
9を設置している。
FIG. 4 shows another embodiment of the absorption type chiller / heater according to the present invention, in which a U-shaped sealing pipe is provided between the liquid level on the condenser 3 side of the U-shaped sealing pipe 12 and the bottom. A control device 2 for attaching a temperature detecting device 28 for detecting the temperature in the inside 12 and taking in the output to control the pressure equalizing valve 25 and a bleed valve 30 provided in a pipe connecting the bleed device 31 and the condenser 3.
9 are installed.

【0018】図1の実施例では、停電時のU字シール管
12の吹抜け防止が目的であったが、U字シール管12
の吹抜けは停電時以外にも、(1)不凝縮ガスが凝縮器
3内に溜ったとき、(2)低温再生器2周りの溶液循環
不良による低温再生器2内の液面が低下したとき、
(3)高温再生器1へ過度のガスが入力されたとき、
(4)冷却水が循環不良になったとき、等に生じること
がある。これらの場合には、凝縮器3内の圧力・温度が
上昇し、U字シール管12内の冷媒液は凝縮器3側から
押されて液面が低下する。これにともなって温度検出機
28部分の温度が上昇する。従って、冷房運転時に制御
装置28は、一定周期毎に温度検出装置28の検出温度
を調べ、その温度があらかじめ設定された設定温度より
高くなったと判断したときには、制御装置29により均
圧弁25を開き、U字シール管12に液封した冷媒が蒸
発器4側へ吹き抜けないようにする。
Although the purpose of the embodiment shown in FIG. 1 is to prevent the U-shaped seal tube 12 from blowing through during a power failure,
In addition to the power failure, there are (1) when the non-condensable gas accumulates in the condenser 3 and (2) when the liquid level in the low-temperature regenerator 2 drops due to poor circulation of the solution around the low-temperature regenerator 2. ,
(3) When excessive gas is input to the high temperature regenerator 1,
(4) This may occur when the circulation of cooling water becomes poor. In these cases, the pressure and temperature in the condenser 3 increase, and the refrigerant liquid in the U-shaped seal tube 12 is pushed from the condenser 3 side and the liquid level decreases. Accordingly, the temperature of the temperature detector 28 increases. Therefore, during the cooling operation, the control device 28 checks the temperature detected by the temperature detection device 28 at regular intervals, and when it is determined that the temperature has become higher than the preset temperature, the control device 29 opens the equalizing valve 25 by the control device 29. The refrigerant sealed in the U-shaped seal tube 12 is prevented from flowing to the evaporator 4 side.

【0019】また、制御装置29により、単独あるいは
均圧弁25と連動して、圧力上昇の原因が不凝縮ガスに
よる場合には、抽気弁30を開けて抽気装置31を起動
し、また、高温再生器1への過度なガス入力、あるいは
冷却水循環不良の場合には、高温再生器1へのガス入力
量を強制的に抑えるようにする。このようにすれば、U
字シール管12内の冷媒が蒸発器4側へ吹き抜けるよう
な凝縮器3の圧力上昇を直接的に防止できる。
If the cause of the pressure rise is caused by the non-condensable gas by the control device 29 alone or in conjunction with the pressure equalizing valve 25, the bleed valve 30 is opened to start the bleed device 31, and the high temperature regeneration is performed. In the case of excessive gas input to the reactor 1 or poor cooling water circulation, the amount of gas input to the high temperature regenerator 1 is forcibly suppressed. In this way, U
It is possible to directly prevent the pressure in the condenser 3 from rising such that the refrigerant in the U-shaped seal tube 12 blows toward the evaporator 4.

【0020】以上のように、冷房運転時にU字シール管
12内の温度を制御装置29で把握することにより、U
字シール管12に液封した冷媒が蒸発器4側へ吹き抜け
るような、凝縮器3側の過度な圧力上昇を防止すること
ができる。
As described above, the temperature in the U-shaped seal tube 12 is grasped by the control device 29 during the cooling operation, whereby
It is possible to prevent an excessive rise in pressure on the condenser 3 side such that the refrigerant sealed in the U-shaped seal tube 12 blows out to the evaporator 4 side.

【0021】なお、上記の均圧弁25は、温度検出装置
28の出力に応じて制御装置29により制御されるが、
均圧弁25を図1の実施例と同様の電磁弁としておけ
ば、停電時にも自動的に開かれ、図1の実施例と同様な
効果がある。
The pressure equalizing valve 25 is controlled by a control device 29 in accordance with the output of the temperature detecting device 28.
If the equalizing valve 25 is an electromagnetic valve similar to that of the embodiment of FIG. 1, it is automatically opened even at the time of a power failure, and has the same effect as that of the embodiment of FIG.

【0022】図5は、図1の実施例の変形例で、図1で
は均圧弁25を介したバイパス配管24を、U字シール
管12をバイパスするために、低温再生器2と蒸発器4
との間に設けていたが、これをU字シール管12自体の
上部に取り付けている。そして、冷房運転時に何等かの
原因で電源が切れた場合、U字シール管12に接続した
バイパス配管24の均圧弁25を開くことにより、図1
に示す第1の実施例と同様の効果を得ることができ、U
字シール管12の冷媒が蒸発器4側へ吹き抜けることな
く停止できるので、停止後経過時間に関係なく、電源復
帰後運転を再開したとき、スムーズに冷房運転を立ち上
げることができる。
FIG. 5 shows a modification of the embodiment of FIG. 1. In FIG. 1, the low-temperature regenerator 2 and the evaporator 4 are used to bypass the bypass pipe 24 via the equalizing valve 25 and the U-shaped seal pipe 12.
Which is attached to the upper part of the U-shaped seal tube 12 itself. Then, when the power is cut off for some reason during the cooling operation, the equalizing valve 25 of the bypass pipe 24 connected to the U-shaped seal pipe 12 is opened, whereby
Can obtain the same effect as the first embodiment shown in FIG.
Since the refrigerant in the U-shaped seal tube 12 can be stopped without blowing to the evaporator 4 side, the cooling operation can be smoothly started when the operation is resumed after the power is restored, regardless of the elapsed time after the stop.

【0023】なお、以上の実施例においては、均圧弁2
5はその電源が切れると自動的に開き、電源が入ると閉
じるような電磁弁とした。しかし本発明は、その開閉に
電源が必要な均圧弁を用いても構成できる。その1つの
方法は、図4の構成で、制御装置29に吸収式冷温水機
とは別系統の電源、例えば停電時のバックアップ電源を
用意しておき、停電するとこのバックアップ電源により
均圧弁を開けるものである。
In the above embodiment, the pressure equalizing valve 2
Numeral 5 is a solenoid valve that opens automatically when the power is turned off and closes when the power is turned on. However, the present invention can also be configured using a pressure equalizing valve that requires a power supply for opening and closing. One of the methods is a configuration shown in FIG. 4 in which a power supply of a different system from the absorption chiller / heater, for example, a backup power supply at the time of power failure is prepared in the control device 29, and when the power failure occurs, the pressure equalizing valve is opened by the backup power supply. Things.

【0024】また、別電源を用意しない場合には、図4
の構成で、制御装置29により図6に示すような制御を
行う。即ち、停電後、電源が復帰すると(ステップ60
1)、温度検出装置28の検出した温度が設定値以上か
を調べる(ステップ602)。ここでの設定値は、停電
によりU字シール管の吹抜けが生じ、U字シール管内が
高温になっている場合に計測されるような温度を検出す
るための値とする。そして検出した温度が設定値以下な
ら、直ちに通常の冷房運転にはいる(ステップ608)
が、温度が設定値を越えているときは、均圧弁25を開
き(ステップ603、このときは復電直後なので弁駆動
の電源は生きている)、冷媒ポンプ7、冷却水ポンプ1
0、及び冷水ポンプ(図示せず)を動作させて一定時間
待つ(ステップ604〜606)。これにより蒸発器4
内の温度が下げられ、冷房運転を行える状態になるか
ら、均圧弁25を閉じ(ステップ607)、冷房運転に
はいる(ステップ608)。
If no separate power supply is provided,
With the configuration described above, the control device 29 performs control as shown in FIG. That is, when the power is restored after the power failure (step 60).
1) It is checked whether the temperature detected by the temperature detecting device 28 is equal to or higher than a set value (step 602). The set value here is a value for detecting a temperature that is measured when a power failure causes a blow-through of the U-shaped seal tube and the inside of the U-shaped seal tube is at a high temperature. If the detected temperature is equal to or lower than the set value, the normal cooling operation is immediately started (step 608).
However, when the temperature exceeds the set value, the pressure equalizing valve 25 is opened (step 603, in which case the power supply for valve driving is alive because the power has just been restored), and the refrigerant pump 7, the cooling water pump 1
0, and operate a chilled water pump (not shown) and wait for a predetermined time (steps 604 to 606). Thereby, the evaporator 4
Since the inside temperature is lowered and the cooling operation can be performed, the pressure equalizing valve 25 is closed (step 607), and the cooling operation is started (step 608).

【0025】本実施例によると、停電時にU字シール管
の吹抜けが起こっても、蒸発器の状態を冷房運転可能に
してから起動できる。
According to the present embodiment, even if the U-shaped seal tube blows through during a power failure, the evaporator can be started after the cooling operation can be performed.

【0026】[0026]

【発明の効果】以上説明したように、本発明によれば、
冷房運転時にU字シール管12に液封される冷媒の液面
をバイパスするように、均圧弁25を介したバイパス配
管24で接続することにより、冷房運転時に突然電源が
切れた場合は、バイパス配管24の均圧弁25を開くこ
とで、U字シール管12に液封した冷媒が蒸発器4側へ
吹き抜けることなく、電源復帰後運転を再開できるの
で、スムーズに冷房運転を立ち上げることができる。
As described above, according to the present invention,
When the power is suddenly cut off during the cooling operation, the bypass is connected by a bypass pipe 24 via a pressure equalizing valve 25 so as to bypass the liquid level of the refrigerant liquid sealed in the U-shaped seal pipe 12 during the cooling operation. By opening the pressure equalizing valve 25 of the pipe 24, the refrigerant sealed in the U-shaped seal tube 12 does not blow out to the evaporator 4 side, and the operation can be resumed after the power is returned, so that the cooling operation can be started up smoothly. .

【0027】また、停電時にU字シール管オフ気抜けが
生じても、復電時に蒸発器の状態を自動的に復帰させる
ことができるので、スムーズに冷房運転を立ち上げるこ
とができる。
Further, even if the U-shaped seal tube is turned off during a power failure, the state of the evaporator can be automatically restored when the power is restored, so that the cooling operation can be started smoothly.

【0028】さらに、冷房運転時に何等かの原因で凝縮
器3の圧力が上昇し、U字シール管12に液封した冷媒
が蒸発器4側へ吹き抜けるような場合にも、均圧弁25
を開くことで、U字シール管12に液封した冷媒が蒸発
器4側へ吹き抜けるような、凝縮器3の過度な圧力上昇
を防止することができる。
Further, even when the pressure of the condenser 3 rises for some reason during the cooling operation and the refrigerant sealed in the U-shaped seal tube 12 blows out to the evaporator 4 side, the pressure equalizing valve 25 is also used.
, It is possible to prevent an excessive rise in the pressure of the condenser 3 such that the refrigerant sealed in the U-shaped seal tube 12 blows out to the evaporator 4 side.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明になる吸収式冷温水機の一実施例を示す
サイクル構成図である。
FIG. 1 is a cycle configuration diagram showing one embodiment of an absorption-type hot / cold water heater according to the present invention.

【図2】従来の冷房サイクルにおいて電源が切れたとき
の凝縮器と蒸発器の圧力変化例を示す図である。
FIG. 2 is a diagram showing an example of pressure changes in a condenser and an evaporator when power is turned off in a conventional cooling cycle.

【図3】図1の冷房サイクルにおいて電源が切れたとき
の凝縮器と蒸発器の圧力変化例を示す図である。
FIG. 3 is a diagram illustrating an example of pressure changes in a condenser and an evaporator when power is turned off in the cooling cycle of FIG. 1;

【図4】本発明になる吸収式冷温水機の第2の実施例を
示すサイクル構成図である。
FIG. 4 is a cycle configuration diagram showing a second embodiment of the absorption chiller / heater according to the present invention.

【図5】図1の実施例の変形例である。FIG. 5 is a modification of the embodiment of FIG.

【図6】その開閉に電源を必要とする均圧弁を用いたと
きの停電時の制御方法を示すフローチャートである。
FIG. 6 is a flowchart illustrating a control method at the time of a power failure when a pressure equalizing valve that requires a power supply for opening and closing is used.

【符号の説明】[Explanation of symbols]

1 高温再生器 2 低温再生器 3 凝縮器 4 蒸発器 5 吸収器 12 U字シール管 24 バイパス配管 25 均圧弁 28 温度検出装置 29 制御装置 30 抽気弁 31 抽気装置 DESCRIPTION OF SYMBOLS 1 High-temperature regenerator 2 Low-temperature regenerator 3 Condenser 4 Evaporator 5 Absorber 12 U-shaped seal tube 24 Bypass piping 25 Equalization valve 28 Temperature detector 29 Control device 30 Bleed valve 31 Bleed device

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−229645(JP,A) 特開 昭60−71864(JP,A) 実開 平3−37368(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25B 15/00 306 F25B 15/00 303 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-6-229645 (JP, A) JP-A-60-71864 (JP, A) JP-A-3-37368 (JP, U) (58) Survey Field (Int.Cl. 7 , DB name) F25B 15/00 306 F25B 15/00 303

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 凝縮器と蒸発器とを有する吸収式冷温水
機において、凝縮器と蒸発器の間の圧力差を吸収するた
めに、凝縮器と蒸発器との間に設けたU字シール管と、
上記U字シール管の両端の間の圧力を均一化するため
の、均圧弁を介したバイパス配管と、当該吸収式冷温水
機の電源の停電時に開状態になるよう上記均圧弁を制御
する手段と、を備えることを特徴とする吸収式冷温水
機。
1. An absorption chiller / heater having a condenser and an evaporator, a U-shaped seal provided between the condenser and the evaporator to absorb a pressure difference between the condenser and the evaporator. Tubes and
A bypass pipe through a pressure equalizing valve for equalizing the pressure between both ends of the U-shaped seal pipe, and means for controlling the pressure equalizing valve so that the pressure equalizing valve is opened when a power supply of the absorption chiller / heater is out of power. And an absorption chiller / heater.
【請求項2】 前記均圧弁は、当該吸収式冷温水機電源
が冷房運転中に停電したのち、復電して冷房運転を再開
するときに、冷媒ポンプ、冷却水ポンプ、及び冷水ポン
プを作動させると同時に開状態とされ、予め定められた
時間経過した後に閉状態となるように制御されることを
特徴とする請求項1に記載の吸収式冷温水機。
2. The pressure equalizing valve operates a refrigerant pump, a cooling water pump, and a chilled water pump when power is restored and cooling operation is resumed after the power supply of the absorption type chiller / heater has been stopped during cooling operation. 2. The absorption type chiller / heater according to claim 1, wherein the chiller is set to an open state at the same time as the operation, and is controlled to be set to a closed state after a lapse of a predetermined time.
【請求項3】 蒸発器、吸収器、凝縮器、低温再生器、
高温再生器、低温熱交換器、及び高温熱交換器を有した
吸収式冷温水機の制御方法に於て、上記凝縮器と蒸発器
の間の圧力差を吸収するために設けられたU字シール管
の両端の間を、冷房運転中の停電時にバイパスすること
を特徴とする吸収式冷温水機の制御方法。
3. An evaporator, an absorber, a condenser, a low-temperature regenerator,
In a control method of an absorption chiller / heater having a high-temperature regenerator, a low-temperature heat exchanger, and a high-temperature heat exchanger, a U-shape provided for absorbing a pressure difference between the condenser and the evaporator. A method for controlling an absorption type water cooler / heater, characterized in that a portion between both ends of a seal pipe is bypassed during a power failure during a cooling operation.
【請求項4】 蒸発器、吸収器、凝縮器、低温再生器、
高温再生器、低温熱交換器、及び高温熱交換器を有した
吸収式冷温水機の制御方法に於て、上記凝縮器と蒸発器
の間の圧力差を吸収するために設けられたU字シール管
の両端の間を、U字シール管の凝縮器側下部の温度が所
定値を越えたときにバイパスすることを特徴とする吸収
式冷温水機の制御方法。
4. An evaporator, an absorber, a condenser, a low-temperature regenerator,
In a control method of an absorption chiller / heater having a high-temperature regenerator, a low-temperature heat exchanger, and a high-temperature heat exchanger, a U-shape provided for absorbing a pressure difference between the condenser and the evaporator. A method for controlling an absorption-type water cooler / heater, comprising: bypassing a portion between both ends of a seal tube when a temperature of a lower portion of a U-shaped seal tube on a condenser side exceeds a predetermined value.
【請求項5】 蒸発器、吸収器、凝縮器、低温再生器、
高温再生器、低温熱交換器、及び高温熱交換器を有した
吸収式冷温水機の制御方法に於て、当該吸収式冷温水機
電源が冷房運転中に停電したのち、復電して冷房運転を
再開するときに、冷媒ポンプ、冷却水ポンプ、及び冷水
ポンプを作動させると同時に、凝縮器と蒸発器の間の圧
力差を吸収するために設けられたU字シール管の両端の
間をバイパス配管によりバイパス状態とし、予め定めた
時間を経過した後に上記バイパス配管を閉じて運転を開
始することを特徴とする吸収式冷温水機の制御方法。
5. An evaporator, an absorber, a condenser, a low-temperature regenerator,
In the control method of the absorption chiller / heater having the high temperature regenerator, the low temperature heat exchanger, and the high temperature heat exchanger, after the power supply of the absorption chiller / heater is interrupted during the cooling operation, the power is restored and the cooling is performed. When the operation is resumed, the refrigerant pump, the cooling water pump, and the chilled water pump are operated, and at the same time, between both ends of the U-shaped seal pipe provided for absorbing the pressure difference between the condenser and the evaporator. A method for controlling an absorption-type water chiller / heater, wherein a bypass state is established by a bypass pipe, and after a predetermined time has elapsed, the bypass pipe is closed and operation is started.
JP24157094A 1994-10-05 1994-10-05 Absorption chiller / heater and control method thereof Expired - Fee Related JP3188111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24157094A JP3188111B2 (en) 1994-10-05 1994-10-05 Absorption chiller / heater and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24157094A JP3188111B2 (en) 1994-10-05 1994-10-05 Absorption chiller / heater and control method thereof

Publications (2)

Publication Number Publication Date
JPH08105662A JPH08105662A (en) 1996-04-23
JP3188111B2 true JP3188111B2 (en) 2001-07-16

Family

ID=17076298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24157094A Expired - Fee Related JP3188111B2 (en) 1994-10-05 1994-10-05 Absorption chiller / heater and control method thereof

Country Status (1)

Country Link
JP (1) JP3188111B2 (en)

Also Published As

Publication number Publication date
JPH08105662A (en) 1996-04-23

Similar Documents

Publication Publication Date Title
KR100416685B1 (en) Control Method and Apparatus for Suction Type Refrigerator
KR100522650B1 (en) Absorption Type Refrigerator and Controlling Method Therefor
JP3188111B2 (en) Absorption chiller / heater and control method thereof
JP3227531B2 (en) Cooling operation method of absorption refrigerator
JP2001099474A (en) Air conditioner
JP3081472B2 (en) Control method of absorption refrigerator
JPS5896963A (en) Controller for absorption refrigerator
JP2706871B2 (en) Cooling control device for absorption chiller / heater
JP3167491B2 (en) Absorption refrigerator
JP2873534B2 (en) Double-effect absorption chiller / heater
JP3143227B2 (en) Refrigerant freezing prevention device for absorption refrigerator
JP2768629B2 (en) Absorption chiller / heater
JP3280261B2 (en) Absorption refrigeration equipment
JP2768630B2 (en) Absorption refrigerator
JP3084650B2 (en) Absorption chiller / heater and its control method
JP3434279B2 (en) Absorption refrigerator and how to start it
JPH02140564A (en) Controlling method for absorption refrigerator
KR910008683Y1 (en) Absorption type refrigerator
KR950008337B1 (en) By-pass line in absorption refregerator
JP3429904B2 (en) Absorption refrigerator
JPH06347121A (en) Absorption type cold or hot water heater
JPH0451320Y2 (en)
JP3224766B2 (en) Double effect absorption chiller / heater
JP3210765B2 (en) Absorption refrigerator
JPH02306071A (en) Automatic gas extraction device of absorption refrigerator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees