JPH04369361A - Direct fire type high temperature reproducer - Google Patents

Direct fire type high temperature reproducer

Info

Publication number
JPH04369361A
JPH04369361A JP17182191A JP17182191A JPH04369361A JP H04369361 A JPH04369361 A JP H04369361A JP 17182191 A JP17182191 A JP 17182191A JP 17182191 A JP17182191 A JP 17182191A JP H04369361 A JPH04369361 A JP H04369361A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer surface
liquid
absorption liquid
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17182191A
Other languages
Japanese (ja)
Other versions
JP2976037B2 (en
Inventor
Kotohiko Sekoguchi
言彦 世古口
Masahiro Furukawa
雅裕 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP3171821A priority Critical patent/JP2976037B2/en
Publication of JPH04369361A publication Critical patent/JPH04369361A/en
Application granted granted Critical
Publication of JP2976037B2 publication Critical patent/JP2976037B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To enable execution of operation with constantly excellent heat transfer performance provided, to enable reduction of the size of a device, and to reduce the occurrence of corrosion of a member by providing a delivery port for rare absorption liquid or a refrigerant in the vicinity of the heat transfer surface on the liquid contact side of a furnace cylinder CONSTITUTION:In a direct fire type high temperature reproducer 1, a delivery port for rare absorption liquid or a refrigerant is formed in the vicinity of the heat transfer surface on the liquid contact side of a furnace cylinder 11. The rare absorption liquid fed in the high temperature reproducer 1 from an absorber 6 and flowing to the vicinity of the porous heat transfer surface of the furnace cylinder 11 is already adequately concentrated and attains concentration approximately equal to that of intermediate liquid. In which case, when the rare absorption liquid or the refrigerant is delivered and fed, concentration of absorption liquid at this part is rapidly reduced and a boiling point is lowered, resulting in the occurrence of violent boiling. Thus, when the heat transfer coefficient of a porous heat transfer surface is lowered owing to a contaminant, through occurring violent boiling during delivery of the rare absorption liquid or the refrigerant, a contaminant on the porous heat transfer surface is removed and heat transfer performance is rapidly restored.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、吸収式冷凍機あるいは
吸収式ヒートポンプに使用される直火式高温再生器(以
下、高温再生器と云う)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a direct-fired high-temperature regenerator (hereinafter referred to as a high-temperature regenerator) used in an absorption refrigerator or an absorption heat pump.

【0002】0002

【従来の技術】臭化リチウム−水系などの吸収式冷凍機
あるいは吸収式ヒートポンプに使用される高温再生器と
しては、被加熱側(接液側)の伝熱表面に伝熱フィンを
形成する技術が特公昭46−43069号公報、特公昭
53−26858号公報などに提案されている。
[Prior Art] A technology for forming heat transfer fins on the heat transfer surface of the heated side (wetted side) for high-temperature regenerators used in lithium bromide-water absorption chillers or absorption heat pumps. has been proposed in Japanese Patent Publication No. 46-43069, Japanese Patent Publication No. 53-26858, etc.

【0003】しかし、上記伝熱フィンを接液側に形成す
る高温再生器においては、伝熱面積は増大するが沸騰を
促進させる形状ではないため、接液側の熱伝達率は上昇
しないと云う不都合があった。
However, in high-temperature regenerators in which the heat transfer fins are formed on the wetted side, the heat transfer area increases, but the shape does not promote boiling, so the heat transfer coefficient on the wetted side does not increase. There was an inconvenience.

【0004】上記従来技術の欠点を解決する目的で、接
液側伝熱面に微細な人工的キャビティを形成して接液側
の熱伝達率を向上させ、膜沸騰を防止して稀吸収液の過
熱による分解(不凝縮ガスの発生)と伝熱面の過熱によ
る腐食を解決し、同時に熱伝達率の向上によって装置の
小型化を図る高温再生器の提案が特願平3−10352
8号にある。
In order to solve the above-mentioned drawbacks of the prior art, fine artificial cavities are formed on the heat transfer surface on the liquid-contacting side to improve the heat transfer coefficient on the liquid-contacting side and prevent film boiling, thereby reducing the dilute absorbent liquid. Patent application No. 3-10352 proposes a high-temperature regenerator that solves the problems of decomposition due to overheating (generation of non-condensable gas) and corrosion due to overheating of the heat transfer surface, while at the same time reducing the size of the device by improving the heat transfer coefficient.
It's in number 8.

【0005】しかし、特願平3−103528号の高温
再生器は、微細なキャビティが形成された沸騰促進面が
時間の経過と共に劣化し、伝熱性能が低下することが分
かった。すなわち、運転中に汚れた稀吸収液や異物(錆
など)が沸騰促進面の微細なキャビティに入り込んだり
、装置を一旦停止したときに稀吸収液がキャビティ内に
入り込み、再起動しても稀吸収液がキャビティ内から排
出されないなどの理由から、運転時間の経過と共に接液
側の伝熱性能が低下する。特に、起動/停止を頻繁に繰
り返すことの多い装置において、伝熱性能が劣化し易い
と云う問題があった。伝熱性能が低下した状態のまま装
置を運転していると、伝熱面の温度が異常に上昇して腐
食が早まったり、鉄板との作用で水素の発生が増加し、
その結果として不凝縮ガスによる能力低下を引き起こし
ていた。
However, in the high-temperature regenerator disclosed in Japanese Patent Application No. 3-103528, it has been found that the boiling promoting surface in which fine cavities are formed deteriorates over time, resulting in a decrease in heat transfer performance. In other words, dirty dilute absorbent liquid or foreign matter (rust, etc.) may enter the fine cavities on the boiling promotion surface during operation, or dilute absorbent liquid may enter the cavities when the device is temporarily stopped, and even if the device is restarted, it will rarely occur. For reasons such as the fact that the absorbing liquid is not discharged from the cavity, the heat transfer performance on the liquid-contacting side deteriorates as the operating time passes. In particular, there has been a problem in that heat transfer performance tends to deteriorate in devices that are frequently started and stopped. If the equipment is operated with reduced heat transfer performance, the temperature of the heat transfer surface will rise abnormally, accelerating corrosion, and hydrogen generation will increase due to interaction with the steel plate.
As a result, capacity was reduced due to non-condensable gas.

【0006】[0006]

【発明が解決しようとする課題】したがって、接液側伝
熱面に形成した沸騰促進面の性能低下を速やかに回復す
ることのできる高温再生器の開発が強く期待されていた
[Problems to be Solved by the Invention] Therefore, there have been strong expectations for the development of a high-temperature regenerator that can quickly recover from the deterioration in performance of the boiling promoting surface formed on the liquid-contacting heat transfer surface.

【0007】[0007]

【課題を解決するための手段】本発明は上記した従来技
術の課題を解決するためになされたものであって、炉筒
を内蔵し、炉筒と再生器胴内壁との間の稀吸収液を加熱
して稀吸収液から冷媒蒸気を分離する直火式高温再生器
において、炉筒の接液側伝熱面近傍に稀吸収液あるいは
冷媒の吐出口が設けられたことを特徴とする直火式高温
再生器であり、炉筒を内蔵し、炉筒と再生器胴内壁との
間の稀吸収液を加熱して稀吸収液から冷媒蒸気を分離す
る直火式高温再生器において、炉筒の後部管板の接液側
伝熱面を多孔性伝熱面に形成し、この多孔性伝熱面近傍
に稀吸収液あるいは冷媒の吐出口が設けられたことを特
徴とする直火式高温再生器であり、気泡検出手段が接液
側伝熱面近傍に設けられたことを特徴とする直火式高温
再生器である。
[Means for Solving the Problems] The present invention has been made in order to solve the problems of the prior art described above. In a direct-fired high-temperature regenerator that separates refrigerant vapor from a dilute absorbent liquid by heating the refrigerant, the direct-fired high-temperature regenerator is characterized in that a discharge port for the dilute absorbent liquid or refrigerant is provided near the heat transfer surface on the liquid contact side of the furnace tube. A direct-fired high-temperature regenerator that has a built-in furnace cylinder and heats the diluted absorption liquid between the furnace cylinder and the inner wall of the regenerator body to separate refrigerant vapor from the diluted absorption liquid. A direct-fire type characterized in that the heat transfer surface on the liquid contact side of the rear tube plate of the cylinder is formed as a porous heat transfer surface, and a discharge port for dilute absorption liquid or refrigerant is provided near the porous heat transfer surface. The present invention is a direct-fired high-temperature regenerator characterized in that a bubble detection means is provided near the heat transfer surface on the liquid-contacting side.

【0008】[0008]

【作用】吸収器から高温再生器に送り込まれ、炉筒の多
孔性伝熱面近傍に流動してきた稀吸収液は、既に相当加
熱濃縮されて中間液の濃度に近づいている。ここに稀吸
収液あるいは冷媒が吐出供給されると、この部分では吸
収液濃度が急激に低下し、沸点が低下するため激しい沸
騰が起こる。したがって、多孔性伝熱面の熱伝達率が汚
れなどによって低下したとき、稀吸収液あるいは冷媒を
吐出させると、激しく起こる沸騰によって多孔性伝熱面
の汚れなどが取り除かれ、伝熱性能が速やかに回復され
る。稀吸収液あるいは冷媒の吐出は、気泡の発生状況を
気泡検出手段にって観察することにより効率的な再活性
化が行われる。
[Operation] The dilute absorption liquid, which has been sent from the absorber to the high-temperature regenerator and has flowed near the porous heat transfer surface of the furnace tube, has already been considerably heated and concentrated and has reached a concentration approaching that of the intermediate liquid. When a dilute absorbent liquid or refrigerant is discharged and supplied to this part, the concentration of the absorbent drops rapidly in this part, and the boiling point lowers, resulting in violent boiling. Therefore, when the heat transfer coefficient of a porous heat transfer surface is reduced due to dirt, etc., when a dilute absorption liquid or refrigerant is discharged, the dirt, etc. on the porous heat transfer surface is removed by violent boiling, and the heat transfer performance is quickly improved. will be recovered. Efficient reactivation of the dilute absorption liquid or refrigerant is performed by observing the generation of bubbles using a bubble detection means.

【0009】[0009]

【実施例】図1に示した高温再生器1は炉筒11を内蔵
し、この炉筒11の後部管板12の接液側表面に微細な
キャビティを有する人工の多孔性伝熱面Aが形成されて
いる。そして、この多孔性伝熱面Aに稀吸収液あるいは
冷媒を適宜供給することができるように、バルブ13を
有する沸騰促進剤供給管14がその吐出口を多孔性伝熱
面Aの下部に向かって開口するように配管されている。
[Embodiment] The high-temperature regenerator 1 shown in FIG. 1 has a built-in furnace cylinder 11, and an artificial porous heat transfer surface A having fine cavities is provided on the liquid-contacting surface of the rear tube plate 12 of the furnace cylinder 11. It is formed. Then, a boiling accelerator supply pipe 14 having a valve 13 directs its discharge port toward the lower part of the porous heat transfer surface A so that the dilute absorption liquid or refrigerant can be appropriately supplied to the porous heat transfer surface A. The pipes are designed to open at the same time.

【0010】前記多孔性伝熱面Aは、例えば平均粒子径
35μmのニッケル−クロム合金を鉄の母材部表面に平
均厚さは30μmに溶射してキャビティを形成したもの
であり、その多孔度は大略5%である。
The porous heat transfer surface A is formed by spraying a nickel-chromium alloy with an average particle size of 35 μm onto the surface of an iron base material to an average thickness of 30 μm to form a cavity, and the porosity is approximately 5%.

【0011】15は気泡検出手段(例えばボイドセンサ
ー)であり、図2のように多孔性伝熱面Aの上部近傍に
取付けることにより、この多孔性伝熱面Aで加熱されて
沸騰する気泡の個数をカウントすることができる。そし
て、この気泡検出手段15がカウントする気泡の数が所
定の敷居値より減少したとき、バルブ制御装置16の指
示によって前記バルブ13を開き、沸騰促進剤供給管1
4から稀吸収液あるいは冷媒を吐出することができる。 気泡検出手段15による沸騰状態の観察は常時行っても
良いし、定期的(例えば100時間毎)に行っても良い
。なお、この気泡検出手段15は多孔性伝熱面Aの下部
近傍などにも取付けて、多孔性伝熱面Aの劣化をより詳
細に観察することも可能である。
Reference numeral 15 denotes a bubble detection means (for example, a void sensor), which is installed near the top of the porous heat transfer surface A as shown in FIG. You can count the number of pieces. When the number of bubbles counted by the bubble detection means 15 decreases below a predetermined threshold value, the valve 13 is opened according to an instruction from the valve control device 16, and the boiling accelerator supply pipe 1
4 can discharge dilute absorption liquid or refrigerant. The boiling state may be observed by the bubble detection means 15 all the time, or periodically (for example, every 100 hours). Note that this bubble detection means 15 can also be attached near the bottom of the porous heat transfer surface A to observe the deterioration of the porous heat transfer surface A in more detail.

【0012】ところで、本発明の高温再生器1は従来の
高温再生器と同様、煙管17、バーナ18などを有する
ものであり、他の機器と例えば図3に示したように配管
接続して使用される。ここで、3は低温再生器、4は凝
縮器、5は蒸発器、6は吸収器、7は高温熱交換器、8
は低温熱交換器、P1は稀液ポンプ、P2は冷媒ポンプ
であり、前記沸騰促進剤供給管14はこの場合稀液ポン
プP1によって稀吸収液を吸収器6から高温再生器1に
供給する稀液管61の途中から分岐するように形成され
ている。
By the way, the high-temperature regenerator 1 of the present invention has a smoke pipe 17, a burner 18, etc., like the conventional high-temperature regenerator, and can be used by being connected to other equipment by piping, for example, as shown in FIG. be done. Here, 3 is a low temperature regenerator, 4 is a condenser, 5 is an evaporator, 6 is an absorber, 7 is a high temperature heat exchanger, 8
is a low-temperature heat exchanger, P1 is a diluted liquid pump, and P2 is a refrigerant pump, and the boiling accelerator supply pipe 14 is a diluted liquid pump P1 that supplies the diluted absorption liquid from the absorber 6 to the high-temperature regenerator 1. The liquid pipe 61 is formed so as to branch from the middle.

【0013】多孔性伝熱面Aは、長期間の使用によって
汚れた稀吸収液が微細なキャビティに入り込んだり、装
置の運転を一旦停止したときに稀吸収液がキャビティ内
に入り込み、再起動の際にも稀吸収液がキャビティ内か
ら排出されなかったりして、運転時間の経過と共に伝熱
性能が低下するので、多孔性伝熱面Aでの稀吸収液の沸
騰が減少して冷媒を蒸発分離して濃縮する効率が低下す
る。
[0013] The porous heat transfer surface A prevents the dilute absorbing liquid that has become dirty due to long-term use from entering the fine cavities, or when the equipment is temporarily stopped, the dilute absorbing liquid may enter the cavities and prevent restarting. In some cases, the dilute absorbent liquid is not discharged from the cavity, and the heat transfer performance deteriorates as the operating time passes, so the boiling of the dilute absorbent liquid on the porous heat transfer surface A decreases and the refrigerant evaporates. The efficiency of separation and concentration decreases.

【0014】多孔性伝熱面Aの劣化は、発生する気泡の
個数を気泡検出手段15によりカウントすることによっ
て検知することができるので、気泡数が所定の数を下回
ってきたときにバルブ制御装置16の指示によってバル
ブ13を開き、稀吸収液を沸騰促進剤供給管14から吐
出供給する。
Deterioration of the porous heat transfer surface A can be detected by counting the number of bubbles generated by the bubble detection means 15, so that when the number of bubbles falls below a predetermined number, the valve control device 16, the valve 13 is opened and the dilute absorption liquid is discharged and supplied from the boiling accelerator supply pipe 14.

【0015】通常、多孔性伝熱面Aが形成された炉筒1
1の後部管板12近傍の稀吸収液は、送り込まれたとき
より加熱濃縮されて中間液の濃度に近づいている。した
がって、この濃度の高い所に濃度の薄い稀吸収液を供給
すると吸収液の濃度が急激に低下し、沸点降下によって
沸騰が激しく起こる。このため、多孔性伝熱面Aに汚れ
などがあって熱伝達率が低下していても、稀吸収液が激
しく攪拌される結果、多孔性伝熱面Aのキャビティに入
り込んだ液や汚れが追い出され、失われていた伝熱性能
が速やかに回復される。また、上記を同様の方法によっ
て運転初期の沸騰性能の増進を図ることができる。
Usually, a furnace cylinder 1 on which a porous heat transfer surface A is formed
The dilute absorption liquid near the rear tube plate 12 of No. 1 has been heated and concentrated since it was sent in, and has approached the concentration of the intermediate liquid. Therefore, if a dilute absorption liquid with a low concentration is supplied to a place where the concentration is high, the concentration of the absorption liquid will rapidly decrease, and boiling will occur violently due to a drop in the boiling point. Therefore, even if there is dirt or the like on the porous heat transfer surface A and the heat transfer coefficient is reduced, the dilute absorption liquid will be vigorously agitated and the liquid or dirt that has entered the cavity of the porous heat transfer surface A will be removed. The heat transfer performance that was lost due to the expulsion is quickly recovered. Further, the boiling performance at the initial stage of operation can be improved by a method similar to the above.

【0016】したがって、本発明の高温再生器1ではガ
スなどの燃料をバーナ18から供給して燃焼させたとき
、火炎によって強熱される炉筒11の後部管板12は多
孔性伝熱面Aを介して常に効率良く稀吸収液に放熱する
ため過熱状態になることがない。また、燃焼ガスの熱は
稀吸収液に多孔性伝熱面Aを介して稀吸収液側に効率良
く放熱され、煙管17に流入するガスの温度は充分低く
なっているので、煙管17の腐食環境も緩和される。 このため、装置の寿命が従来装置に比較して大幅に伸び
る。
Therefore, in the high temperature regenerator 1 of the present invention, when fuel such as gas is supplied from the burner 18 and combusted, the rear tube plate 12 of the furnace tube 11, which is ignited by the flame, has a porous heat transfer surface A. Since heat is always efficiently dissipated to the dilute absorbing liquid through the filter, overheating never occurs. In addition, the heat of the combustion gas is efficiently radiated to the dilute absorption liquid through the porous heat transfer surface A, and the temperature of the gas flowing into the smoke tube 17 is sufficiently low, so that the smoke tube 17 is corroded. The environment will also be relaxed. Therefore, the life of the device is significantly extended compared to conventional devices.

【0017】図4に例示した吸収式冷凍機の高温再生器
1は、沸騰促進剤供給管14が冷媒液管51の冷媒ポン
プP2の吐出側から分岐して設けられたものである。こ
の場合も、バルブ13の開閉は気泡検出手段15によっ
て観察する多孔性伝熱面Aの劣化の程度に応じて冷媒を
多孔性伝熱面Aの底部に供給するものである。
The high-temperature regenerator 1 of the absorption refrigerator illustrated in FIG. 4 is provided with a boiling accelerator supply pipe 14 branched from a refrigerant liquid pipe 51 on the discharge side of the refrigerant pump P2. In this case as well, the valve 13 is opened and closed to supply refrigerant to the bottom of the porous heat transfer surface A depending on the degree of deterioration of the porous heat transfer surface A observed by the bubble detection means 15.

【0018】図5に例示した吸収式冷凍機の高温再生器
1は、図4に示した高温再生器1の気泡検出手段15が
CCDカメラであり、このCCDカメラの撮影した画像
をVTR19に記録すると共に、コンピュータ20によ
って画像処理し、気泡の発生状態を初期状態(ボイド率
、気泡発生数)と比較し、例えば初期の沸騰状態より8
5%まで能力が低下したときに、コンピュータ20の指
示によりバルブ13を開いて沸騰促進剤供給管14から
冷媒を吐出供給するものである。
In the high temperature regenerator 1 of the absorption refrigerator shown in FIG. 5, the bubble detection means 15 of the high temperature regenerator 1 shown in FIG. At the same time, the computer 20 processes the image and compares the state of bubble generation with the initial state (void ratio, number of bubbles generated).
When the capacity drops to 5%, the valve 13 is opened according to instructions from the computer 20, and refrigerant is discharged and supplied from the boiling accelerator supply pipe 14.

【0019】なお、CCDカメラによって気泡の発生状
況を観察する方法は、図6に例示したフローチャートに
基づいて気泡の流動解析を行うことも可能である。
Note that as a method of observing the bubble generation using a CCD camera, it is also possible to perform a bubble flow analysis based on the flowchart illustrated in FIG.

【0020】このCCDカメラによる観察窓からの非接
触の観察方法は、ボイドセンサーなどを内部に設置する
方法に比べ、真空保持あるいはセンサーの劣化がないと
云う点で優れている。
This non-contact observation method using a CCD camera through an observation window is superior to methods in which a void sensor or the like is installed inside in that it does not require vacuum maintenance or deterioration of the sensor.

【0021】なお、沸騰促進剤供給管14からは冷媒の
蒸気を吐出しても良いので、沸騰促進剤供給管14を冷
媒蒸気管31から分岐して取付けることも可能である。
Note that since refrigerant vapor may be discharged from the boiling accelerator supply pipe 14, it is also possible to install the boiling accelerator supply pipe 14 by branching from the refrigerant vapor pipe 31.

【0022】また、バルブ13の開閉は単にタイマーに
よって定期的に行っても良い。開閉するタイミングは、
高温再生器1の設計時に行う実験に基づいて決定すれば
構成が簡略化されるため装置が廉価になると云うメリッ
トがある。
Further, the valve 13 may be opened and closed periodically simply by a timer. The timing of opening and closing is
If the determination is made based on experiments conducted when designing the high temperature regenerator 1, the configuration can be simplified and the cost of the device can be reduced.

【0023】[0023]

【発明の効果】以上説明したように本発明になる高温再
生器は、金属溶射などによって形成した人工的沸騰核を
有する多孔性の沸騰促進面に稀吸収液あるいは冷媒を吐
出供給することにより、この多孔性伝熱面近傍で激しい
沸騰を起こすことができる。したがって、多孔性伝熱面
に付着した汚れなどを取り除いて接液側の沸騰熱伝達率
を容易に回復することができる。このため、常に良好な
伝熱性能を有して運転できるので装置の小型化が可能で
あり、炉筒、煙管などは表面温度が低下するので部材の
腐食が軽減される。また、強制対流による循環力の低下
がないので稀吸収液の停滞部がなくなり、局部過熱が回
避されるなどの理由から装置の寿命が大幅に伸びる。特
に、沸騰状況を気泡検出手段によって監視し、発生する
気泡の数が所定の個数まで減少した時に稀吸収液あるい
は冷媒を供給すれば、劣化した多孔性伝熱面を効率良く
再活性化することが可能であり、熱効率が高い。
Effects of the Invention As explained above, the high temperature regenerator according to the present invention has the following advantages: Violent boiling can occur near this porous heat transfer surface. Therefore, it is possible to easily restore the boiling heat transfer coefficient on the liquid-contacting side by removing dirt and the like adhering to the porous heat transfer surface. Therefore, the apparatus can be operated with good heat transfer performance at all times, allowing the apparatus to be downsized, and the surface temperature of the furnace tube, smoke pipe, etc. is lowered, so corrosion of the members is reduced. In addition, since there is no reduction in circulation force due to forced convection, there is no stagnation area for the dilute absorption liquid, and local overheating is avoided, which greatly extends the life of the device. In particular, if the boiling situation is monitored by a bubble detection means and a dilute absorption liquid or refrigerant is supplied when the number of generated bubbles has decreased to a predetermined number, the deteriorated porous heat transfer surface can be efficiently reactivated. is possible and has high thermal efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】一実施例の一部破断説明図である。FIG. 1 is a partially cutaway explanatory diagram of one embodiment.

【図2】気泡検出手段を有する高温再生器の説明図であ
る。
FIG. 2 is an explanatory diagram of a high temperature regenerator having bubble detection means.

【図3】稀吸収液を吐出する高温再生器の説明図である
FIG. 3 is an explanatory diagram of a high-temperature regenerator that discharges a dilute absorption liquid.

【図4】冷媒液を吐出する高温再生器の説明図である。FIG. 4 is an explanatory diagram of a high-temperature regenerator that discharges refrigerant liquid.

【図5】気泡検出手段がCCDカメラである高温再生器
の説明図である。
FIG. 5 is an explanatory diagram of a high temperature regenerator in which the bubble detection means is a CCD camera.

【図6】気泡の流動解析を行う時のフローチャートであ
る。
FIG. 6 is a flowchart when performing bubble flow analysis.

【符号の説明】[Explanation of symbols]

1  高温再生器 11  炉筒 12  炉筒後部管板 13  バルブ 14  沸騰促進剤供給管 15  気泡検出手段 16  バルブ制御装置 17  煙管 18  バーナ 19  VTR 20  コンピュータ 3  低温再生器 4  凝縮器 5  蒸発器 6  吸収器 7  高温熱交換器 8  低温熱交換器 P1  稀液ポンプ P2  冷媒ポンプ A  多孔性伝熱面 1 High temperature regenerator 11 Furnace tube 12 Furnace tube rear tube plate 13 Valve 14 Boiling accelerator supply pipe 15 Bubble detection means 16 Valve control device 17 Smoke pipe 18 Burner 19 VTR 20 Computer 3 Low temperature regenerator 4 Condenser 5 Evaporator 6 Absorber 7 High temperature heat exchanger 8 Low temperature heat exchanger P1 Dilute liquid pump P2 Refrigerant pump A Porous heat transfer surface

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  炉筒を内蔵し、炉筒と再生器胴内壁と
の間の稀吸収液を加熱して稀吸収液から冷媒蒸気を分離
する直火式高温再生器において、炉筒の接液側伝熱面近
傍に稀吸収液あるいは冷媒の吐出口が設けられたことを
特徴とする直火式高温再生器。
Claim 1: In a direct-fired high-temperature regenerator that has a built-in furnace cylinder and heats the diluted absorption liquid between the furnace cylinder and the inner wall of the regenerator body to separate refrigerant vapor from the diluted absorption liquid, A direct-fired high-temperature regenerator characterized in that a discharge port for a dilute absorption liquid or refrigerant is provided near the heat transfer surface on the liquid side.
【請求項2】  炉筒を内蔵し、炉筒と再生器胴内壁と
の間の稀吸収液を加熱して稀吸収液から冷媒蒸気を分離
する直火式高温再生器において、炉筒の後部管板の接液
側伝熱面を多孔性伝熱面に形成し、この多孔性伝熱面近
傍に稀吸収液あるいは冷媒の吐出口が設けられたことを
特徴とする直火式高温再生器。
2. In a direct-fired high-temperature regenerator that includes a built-in furnace cylinder and heats the dilute absorption liquid between the furnace cylinder and the inner wall of the regenerator body to separate refrigerant vapor from the dilute absorption liquid, the rear part of the furnace cylinder A direct-fired high-temperature regenerator characterized in that the heat transfer surface on the liquid contact side of the tube plate is formed as a porous heat transfer surface, and a discharge port for dilute absorption liquid or refrigerant is provided near the porous heat transfer surface. .
【請求項3】  気泡検出手段が接液側伝熱面近傍に設
けられたことを特徴とする請求項1または2何れかに記
載の直火式高温再生器。
3. The direct-fired high-temperature regenerator according to claim 1, wherein the bubble detection means is provided near the heat transfer surface on the liquid contact side.
JP3171821A 1991-06-18 1991-06-18 Direct fire high temperature regenerator Expired - Fee Related JP2976037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3171821A JP2976037B2 (en) 1991-06-18 1991-06-18 Direct fire high temperature regenerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3171821A JP2976037B2 (en) 1991-06-18 1991-06-18 Direct fire high temperature regenerator

Publications (2)

Publication Number Publication Date
JPH04369361A true JPH04369361A (en) 1992-12-22
JP2976037B2 JP2976037B2 (en) 1999-11-10

Family

ID=15930367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3171821A Expired - Fee Related JP2976037B2 (en) 1991-06-18 1991-06-18 Direct fire high temperature regenerator

Country Status (1)

Country Link
JP (1) JP2976037B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109494152A (en) * 2017-09-11 2019-03-19 东京毅力科创株式会社 Substrate liquid processing device, substrate liquid processing method and storage medium
KR20190029448A (en) * 2017-09-11 2019-03-20 도쿄엘렉트론가부시키가이샤 Substrate liquid processing apparatus, substrate liquid processing method and recording medium

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109494152A (en) * 2017-09-11 2019-03-19 东京毅力科创株式会社 Substrate liquid processing device, substrate liquid processing method and storage medium
KR20190029448A (en) * 2017-09-11 2019-03-20 도쿄엘렉트론가부시키가이샤 Substrate liquid processing apparatus, substrate liquid processing method and recording medium
JP2019050349A (en) * 2017-09-11 2019-03-28 東京エレクトロン株式会社 Substrate liquid processing apparatus, substrate liquid processing method and storage medium
JP2022103440A (en) * 2017-09-11 2022-07-07 東京エレクトロン株式会社 Substrate liquid processing apparatus, substrate liquid processing method and storage medium
US11594430B2 (en) 2017-09-11 2023-02-28 Tokyo Electron Limited Substrate liquid processing apparatus, substrate liquid processing method and recording medium
CN109494152B (en) * 2017-09-11 2023-11-14 东京毅力科创株式会社 Substrate liquid processing apparatus, substrate liquid processing method, and storage medium

Also Published As

Publication number Publication date
JP2976037B2 (en) 1999-11-10

Similar Documents

Publication Publication Date Title
JP2005009754A (en) Single/double effect absorption refrigerating machine, and its operation control method
JPH04369361A (en) Direct fire type high temperature reproducer
JP3283621B2 (en) Absorption refrigerators and chiller / heaters using both low-temperature regenerators and low-temperature regenerators for waste heat recovery
CN210463649U (en) Aluminum smelting process waste heat flue gas type lithium bromide unit
JP3081472B2 (en) Control method of absorption refrigerator
JP4308076B2 (en) Absorption refrigerator
JP2003287314A (en) Absorption refrigerating machine
US11841147B2 (en) Heat recovery apparatus and methods of increasing energy efficiency of hybrid heating systems using the apparatus
JP3188111B2 (en) Absorption chiller / heater and control method thereof
KR100393853B1 (en) The heating device of the absorption refrigeration and heating apparatus
JPS5896963A (en) Controller for absorption refrigerator
JPH0646125B2 (en) Control method for double-effect absorption refrigerator
KR200172397Y1 (en) High temperature generator for an absorption refrigerator
JP3215247B2 (en) Method and apparatus for extracting high-temperature hot water from absorption chiller / heater
JP3143227B2 (en) Refrigerant freezing prevention device for absorption refrigerator
JP2022066605A (en) Absorption type refrigerator and control method for absorption type refrigerator
KR200161048Y1 (en) Regenerator of absorption type refrigerator
JP3084650B2 (en) Absorption chiller / heater and its control method
KR200154868Y1 (en) Self parting device of absorption type cooler
JP3831427B2 (en) Heat input control method of absorption refrigerator
JPH0451320Y2 (en)
KR200152369Y1 (en) Complementary eductor of absorption type air conditioner
JPH01137171A (en) Absorption refrigerator
JP2005098596A (en) Absorption refrigerator
JPS6022255B2 (en) Control device for dual effect absorption chiller

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070910

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees