JP2975910B2 - Method of manufacturing discrete substrate - Google Patents

Method of manufacturing discrete substrate

Info

Publication number
JP2975910B2
JP2975910B2 JP9133794A JP13379497A JP2975910B2 JP 2975910 B2 JP2975910 B2 JP 2975910B2 JP 9133794 A JP9133794 A JP 9133794A JP 13379497 A JP13379497 A JP 13379497A JP 2975910 B2 JP2975910 B2 JP 2975910B2
Authority
JP
Japan
Prior art keywords
diffusion
thickness
wafer
diffusion layer
dislocation density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9133794A
Other languages
Japanese (ja)
Other versions
JPH10326753A (en
Inventor
佐藤  茂樹
勉 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Naoetsu Electronics Co Ltd
Original Assignee
Naoetsu Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Naoetsu Electronics Co Ltd filed Critical Naoetsu Electronics Co Ltd
Priority to JP9133794A priority Critical patent/JP2975910B2/en
Publication of JPH10326753A publication Critical patent/JPH10326753A/en
Application granted granted Critical
Publication of JP2975910B2 publication Critical patent/JP2975910B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は一方の面が拡散層で
他方の面がその表面を研磨仕上げされた未拡散層の2層
構造よりなるデスクリート用基板の製造方法に関し、更
に詳しくはトランジスター、ダイオード等のデスクリー
ト用基板を素材ウエハを拡散して製造していく際に、拡
散工程において発生する未拡散層内の転位の制御方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a discrete substrate having a two-layer structure in which one surface is a diffusion layer and the other surface is a non-diffusion layer whose surface is polished, and more particularly to a transistor. The present invention relates to a method for controlling dislocations in a non-diffusion layer generated in a diffusion step when a discrete substrate such as a diode is manufactured by diffusing a material wafer.

【0002】[0002]

【従来の技術】[Prior art]

従来方法(1) 従来におけるデスクリート用基板の製造方法をトランジ
スターの例で簡単に説明すると、製品厚さに、 機械加工代を加えて最小の素材ウエハ厚さを決定し
(A) 拡散法により両面より所要の深さの拡散層を形成し
(B) ウエハの一方の面の拡散層を研削手段で完全に除去し、
研磨仕上げし(C) 所定の拡散層厚さ(Xjという)と、その表面が研磨仕
上げの所定の未拡散層厚さ(Xiという)のデスクリー
ト用基板を製造していた。尚、ダイオードの多くの例で
も拡散層厚さ、未拡散表面の仕上げの程度及び厚さ等に
程度の差はあるものの基本的には(A)から(C)に至
る工程が同一である。
Conventional method (1) A conventional method of manufacturing a discrete substrate will be briefly described with an example of a transistor. A minimum material wafer thickness is determined by adding a machining allowance to a product thickness. (A) Diffusion method Forming a diffusion layer of a required depth from both sides (B) completely removing the diffusion layer on one side of the wafer by grinding means;
Polishing and Finishing (C) A discrete substrate having a predetermined diffusion layer thickness (referred to as Xj) and a polished surface having a predetermined non-diffusion layer thickness (referred to as Xi) has been manufactured. In many examples of the diode, the steps from (A) to (C) are basically the same, although there are differences in the thickness of the diffusion layer, the degree of finish of the non-diffusion surface, the thickness, and the like.

【0003】従来方法(2) 上記の従来方法(1)ではウエハの両面に形成されてい
た拡散層のどちらか一方は研削・研磨加工により除去さ
れ、結果的には拡散工程の半分が無駄になってしまうと
言うことから、同じくトランジスターの例であるが以下
の方法が最近取り入れられている。その方法は、素材ウ
エハとして上記従来方法(1)のほぼ2倍程の厚さを有
するウエハの両面より同様に拡散層を形成し、その後ウ
エハ厚さ方向の中央部よりウエハを2分割し、その切断
面を研削・研磨加工し2枚のデスクリート用基板を製造
する方法である。
Conventional method (2) In the conventional method (1), one of the diffusion layers formed on both surfaces of the wafer is removed by grinding and polishing, and as a result, half of the diffusion process is wasted. The following method has recently been adopted because of the fact that it is an example of a transistor. In this method, a diffusion layer is formed in the same manner from both sides of a wafer having a thickness approximately twice that of the conventional method (1) as a material wafer, and then the wafer is divided into two parts from the center in the wafer thickness direction. In this method, two cut substrates are manufactured by grinding and polishing the cut surface.

【0004】2枚のデスクリート用基板を得ても元々厚
いウエハを使用しており、一見原材料の低減には結び付
かないように思えるが、原材料の低減はインゴットより
ウエハを切り出す時のロスも考慮に加えるべきで、その
時の素材(インゴット)から製品(デスクリート用基
板)完成までの全工程を通して原材料の低減が確実に確
実に計られている方法である。以上、従来方法として
(1)、(2)を述べたが、何れの場合にしても当然の
ことながら拡散前の素材のウエハの厚さは製品の厚さ
(デスクリート用基板の厚さ)と原材料の低減を計るべ
く、それに至るまでの可能な最小限の機械加工代(結果
的には切り粉)とを加えて素材ウエハの厚さとしてい
た。
[0004] Even if two discrete substrates are obtained, a thick wafer is originally used, and it seems that this does not seem to lead to a reduction in raw materials at first glance. It is a method that should be taken into consideration, and that the reduction of raw materials is surely ensured throughout the entire process from the material (ingot) at that time to the completion of the product (discrete substrate). As described above, the conventional methods (1) and (2) have been described. In any case, the thickness of the wafer of the material before diffusion is naturally the thickness of the product (thickness of the discrete substrate). In order to reduce the amount of raw materials, the minimum possible machining cost (and consequently, chips) up to that point was added to make the thickness of the material wafer.

【0005】[0005]

【発明が解決しようとする課題】拡散法によりデスクリ
ート用基板を製造する際に、所定の不純物の拡散層深さ
を得るために、高温(例えば1280℃)で長時間(例えば
165時間)のウエハ熱処理がなされている。この熱処理
がなされる時に、 拡散層を形成するための不純物でN型、P型の代表
的不純物であるリン、ボロンも原子半径がシリコンのそ
れより小さく、拡散層に収縮力が発生し未拡散層に応力
を発生させること。(拡散層についても同様に応力が発
生しているが、本発明の課題は未拡散層を対象としてお
り、従って以後は拡散層については言及しない) 拡散炉へのウエハの出し入れの際に、ウエハ群はお
互いに密着した状態であるという特殊事情により、特に
一定厚さ以上のウエハにおいてはウエハ外周部と中心部
の温度差がより拡大し、未拡散層に熱応力が発生してし
まうこと。 これら主な理由のどちらか一方又は両方によりウエハの
未拡散層内には必然的に転位が発生する。そして、未拡
散層内に存在する転位は最終的に素子となった時にその
電気特性に多大の影響を与えるものである。
When a discrete substrate is manufactured by a diffusion method, a high temperature (for example, 1280 ° C.) and a long time (for example,
(165 hours). When this heat treatment is performed, phosphorus and boron, which are typical N-type and P-type impurities for forming a diffusion layer, also have a smaller atomic radius than that of silicon, and a contraction force is generated in the diffusion layer to cause non-diffusion. To create stress in a layer. (Similar stress is generated also in the diffusion layer, but the subject of the present invention is directed to the non-diffusion layer, and hence the diffusion layer will not be referred to hereinafter.) When the wafer is taken in and out of the diffusion furnace, Due to the special circumstance that the groups are in close contact with each other, the temperature difference between the outer peripheral portion and the central portion of the wafer becomes larger, especially in the case of a wafer having a certain thickness or more, and thermal stress is generated in the non-diffusion layer. Dislocations necessarily occur in the undiffused layer of the wafer for one or both of these main reasons. The dislocations existing in the non-diffusion layer have a great effect on the electrical characteristics of the device when it finally becomes a device.

【0006】一般的に転位については最終的な素子とな
った時に、この転位が汚染物質の集合場所となっていて
耐圧等の電気特性を劣化させるといわれている。従っ
て、傾向としても、より低転位の基板が要求されてきて
いるが、一方転位の(均一)存在は高周波特性を良好す
ることができるという側面から、高いレベルの転位密度
の基板を要求される場合もあり、デスクリート用基板の
使用目的は実に多彩である。この様に、転位レベルの要
求は決して一律ではなく、製造側は最終製品の要求特性
に応じた転位のレベルで製造することが要求されてい
る。
In general, it is said that when a dislocation becomes a final device, the dislocation serves as a gathering place of contaminants and deteriorates electrical characteristics such as withstand voltage. Accordingly, there is a tendency to require a substrate having a lower dislocation density. On the other hand, a substrate having a higher level of dislocation density is required from the aspect that the (uniform) presence of the dislocation can improve the high frequency characteristics. In some cases, the purpose of use of the discrete substrate is quite diverse. As described above, the requirement of the dislocation level is not uniform, and the manufacturing side is required to manufacture at the dislocation level according to the required characteristics of the final product.

【0007】しかしながら、この転位レベルに関して
は、従来より低めの転位を目標とする時に限って、ラッ
プ仕上げされたウエハを使用し、ほぼ均一な加工歪のゲ
ッタリング効果によりある程度転位を吸収・低下させる
という手段は可能なものの、それ以上の、例えば転位密
度がほぼ0の無欠陥結晶に近いものを要求された場合
や、要求毎のレベルに合わせ込むという手段は次工程で
ある拡散工程では、前述の転位に関する、の要因に
対処不可能であり、拡散後発生する転位については、い
わば「成り行き任せ」で最終的素子となった時に目標と
する特性が得られないという大きな問題があった。本発
明は上記した実状に鑑みて、低いレベルの転位密度のデ
スクリート用基板を対象に、要求される転位密度のレベ
ルに自在に合わせ込むことができる製造方法を提供する
ことを課題とする。
However, with regard to the dislocation level, only when a dislocation lower than the conventional one is targeted, the lap-finished wafer is used, and the dislocation is absorbed and reduced to some extent by the gettering effect of substantially uniform processing strain. Although it is possible to use such a means, if a crystal having a dislocation density close to a defect-free crystal having a dislocation density of almost 0 is required, or a method of adjusting the level to the level required for each request is used in the next step, the diffusion step, as described above. It is impossible to cope with the factor (1) regarding the dislocation, and the dislocation generated after the diffusion has a serious problem that the desired characteristics cannot be obtained when the final element is obtained, so to speak. The present invention has been made in view of the above circumstances, and has as its object to provide a manufacturing method that can be freely adjusted to a required dislocation density level for a discrete substrate having a low dislocation density.

【0008】[0008]

【課題を解決するための手段】上記課題を達成するため
に請求項1は、転位密度5000個/cm2 以下の一般的に
低いレベルの転位密度といわれる範囲のデスクリート用
基板を製造する時に、最終的な素子の特性に基づき、各
自各様に要求される異なった転位レベルに対しても自在
に対応できるように、拡散前の素材ウエハ厚さを一定範
囲内で調整(決定)してから拡散し、目標としていた転
位密度のデスクリート用基板を容易に製造し得る手段を
採用する。更に詳しく説明すると、素材ウエハ厚さ
(T)は、T=2Xj+Xi+α で示され、拡散層は
ウエハ両面より形成(片面のみの形成は現状不可能)さ
れるため少なくとも1枚のデスクリート用基板を得るに
は素材ウエハ厚さとしては(2Xj+Xi)の厚さが最
小限必要であり、そこにプラスされたαは素材ウエハ厚
さを決定する時の調整代であり、このαの値を本出願で
いう低いレベルの転位密度の期待できる 330μmからス
リップ(後述)が発生しないと確認できる限界値 930μ
m内の範囲において、その要求の転位密度に対応させて
決定し、予め素材ウエハ厚さを調整してから拡散工程に
入ることにより目的を達成(目標数値の達成)する製造
方法である。尚、この調整代αの決定に関しては、基本
的にはXj値(拡散深さ若しくは拡散層厚さ)に拠るも
前もって確認(実験)した線図より決定するのが最も確
実な方法である。
In order to achieve the above object, the present invention provides a method for manufacturing a discrete substrate having a dislocation density of 5,000 or less per cm 2 which is generally called a low level of dislocation density. Based on the characteristics of the final device, the thickness of the material wafer before diffusion is adjusted (determined) within a certain range so as to be able to cope with different dislocation levels required individually. Means that can easily produce a discrete substrate having a target dislocation density. More specifically, the thickness (T) of the material wafer is represented by T = 2Xj + Xi + α. Since the diffusion layer is formed from both surfaces of the wafer (only one surface cannot be formed at present), at least one discrete substrate is required. In order to obtain the material wafer thickness, a minimum thickness of (2Xj + Xi) is required, and α added thereto is an adjustment allowance for determining the material wafer thickness. From the expected low dislocation density of 330 μm, which is referred to as above, the limit value at which no slip (described later) can be confirmed to be 930 μm
This is a manufacturing method in which the objective is achieved (attainment of the target numerical value) by determining in accordance with the required dislocation density within the range of m, adjusting the thickness of the material wafer in advance, and entering the diffusion step. It is to be noted that the most reliable method for determining the adjustment margin α is basically based on the Xj value (diffusion depth or diffusion layer thickness) or from a diagram confirmed (experimented) in advance.

【0009】上記手段の基礎となっている拡散前素材ウ
エハ厚さとその時発生する転位について、これを図1の
概念図で説明すると、拡散終了後のウエハ断面図(図2
参照)の拡散層厚さをXj、デスクリート用基板となっ
た時の未拡散層厚さをXiとし、中央の未拡散層でその
一部分の厚さをαとした時、FZ法、N型、〈11
1〉、 100φウエハを対象に所定の同一の拡散条件で、
発生する転位の密度を決定する最大の因子であるXjを
パラメータにして、αの値を変化させた時の未拡散層の
表面における転位密度の変化を示している。Xj(拡散
深さ)は概念的に「浅い」、「中間」、「深い」ととら
えられているものをここで改めて浅いもの(Xj< 120
μm)、中間のもの( 120μm≦Xj< 250)、深いも
の(Xj≧ 250μm)とし、その各々の代表として曲線
(80μm)、曲線( 170μm)、曲線( 300μ
m)の3例を示す。拡散深さが深い程このαの値を大き
くとる(素材ウエハを厚くする)ことにより転位密度が
著しく減少していくことが判る。しかしながら、一方的
に素材ウエハ厚さを増大させていくと以下の様な別の問
題が発生する。
The thickness of the material wafer before diffusion and the dislocation generated at that time, which are the basis of the above means, will be described with reference to the conceptual diagram of FIG.
Xj, the thickness of the non-diffusion layer when the substrate becomes a discrete substrate is Xi, and the thickness of a part of the central non-diffusion layer is α, FZ method, N-type , <11
1>, under the same specified diffusion conditions for 100φ wafers,
The graph shows a change in the dislocation density on the surface of the non-diffusion layer when the value of α is changed using Xj, which is the largest factor for determining the density of generated dislocations, as a parameter. Xj (diffusion depth) is conceptually regarded as “shallow”, “intermediate”, or “deep”, and is here changed to shallow (Xj <120)
μm), middle one (120 μm ≦ Xj <250), deep one (Xj ≧ 250 μm), and as typical examples thereof, a curve (80 μm), a curve (170 μm), and a curve (300 μm)
m) shows three examples. It can be seen that the dislocation density is significantly reduced by increasing the value of α (thickening the material wafer) as the diffusion depth increases. However, when the thickness of the material wafer is unilaterally increased, another problem as described below occurs.

【0010】デスクリート用基板に要求されている拡散
層は通常深く、高温・長時間の処理を余儀無くされる
為、当然コスト面を考慮すれば拡散炉中の1バッチ当た
りの仕込み枚数の多いことが望まれ、その仕込み形態と
してウエハ同士は緩衝剤(石英粉等)を介して密着した
特殊な状態で行われている。従って、複数枚ウエハの拡
散炉中への出し入れの際に通常の熱処理されるウエハが
一定間隔の間隙をもって並べられている状態と異なり、
ウエハ中心と外周部との温度差が大きくなり熱応力が発
生しその結果、直線上に連なる別の形態の転位(スリッ
プ)の発生が、素材ウエハ厚さにして1400μm程度を過
ぎるに従って顕著になっていくからである。これを図中
の曲線で示す。(但し、図1においてスリップは部分
的に集中し、数値化しにくいため強弱の表現のみで示
す。) 以上が本発明でいうα値が一定の範囲内である理由であ
り、又α値の決定(素材ウエハ厚さの決定)により拡散
終了後の転位密度、即ちデスクリート用基板となった時
の未拡散層表面で計数される転位密度を自在に制御でき
る理由である。
[0010] The diffusion layer required for the substrate for the discrete is usually deep and must be processed at a high temperature for a long time. Therefore, considering the cost, naturally, the number of sheets to be prepared per batch in the diffusion furnace is large. It is desired that the wafers are prepared in a special state in which the wafers are in close contact with each other via a buffer (quartz powder or the like). Therefore, unlike a state in which a plurality of wafers to be subjected to normal heat treatment are taken in and out of the diffusion furnace in a state where the wafers are arranged at regular intervals.
The temperature difference between the center and the outer periphery of the wafer increases, and thermal stress is generated. As a result, the occurrence of dislocations (slips) in another form that continues on a straight line becomes more pronounced as the material wafer thickness exceeds about 1400 μm. Because it goes. This is shown by the curve in the figure. (However, in FIG. 1, the slip is partially concentrated and is hardly converted into a numerical value, so it is shown only in terms of strength.) The above is the reason why the α value in the present invention is within a certain range, and the determination of the α value The reason is that the dislocation density after the completion of diffusion, that is, the dislocation density counted on the surface of the non-diffusion layer when the substrate becomes a discrete substrate, can be freely controlled by (determination of the thickness of the material wafer).

【0011】又、請求項2に係わる手段は、例えばその
下限値 120μmを切るような拡散層厚さ(Xj)の浅い
ものは図1の曲線(90μm)の例で示すように転位の
発生がもともと少ないからウエハ厚さを増加させても得
られる効果が薄い。従って、Xjとして 120μmを下限
値に、実用上の拡散可能深さ 450μmを上限値とし、同
じく実用上のXi層20μmを下限値とした請求項2は前
記した請求項1に係わる手段の最も効果的な範囲を示し
ている。
Further, the means according to the second aspect of the present invention is characterized in that, when the diffusion layer thickness (Xj) is less than the lower limit value of 120 μm, dislocations are generated as shown by an example of a curve (90 μm) in FIG. Since it is originally small, the effect obtained even when the wafer thickness is increased is small. Therefore, the lower limit of Xj is set to 120 μm, the upper limit is set to a practically diffusible depth of 450 μm, and the lower limit is set to 20 μm for the practical Xi layer. It shows a typical range.

【0012】[0012]

【発明の実施の形態】以下、本発明に係るデスクリート
用基板の製造方法に関する実施例を説明する。 [実施例1]デスクリート用基板としては代表的口径の
100φウエハの実施例で、製品仕様はFZ法、N型、
〈111〉、30〜40Ω・cm、Xj= 170μm、Xi=
50μmで転位密度として 300個/cm2 以下を要求され
る例を示す。尚、素材ウエハ(拡散前)はもともと転位
の発生を抑制するといわれる加工歪みを有する面仕上
げ、即ちラップ加工仕上げしたウエハを使用している。
要求された転位密度の規格に対し、[実施例1]におけ
るα値の決定は過去の実績データより(α= 600μm)
を設定し結果も満足しているが、参考の為にαを敢えて
その上・下限値に設定した参考a及び参考bの結果も比
較例として表−1に併記する。採用例は参考(a)に比
して素材ウエハの厚さを 270μm増大させるだけで、転
位が著しく減少し、要求されている転位密度「 300個/
cm2 以下」を十分満足させることができる。参考
(b)は採用例より素材ウエハ厚さにして 330μmを増
大させた場合であり、規格は十分満足しているものの、
転位は顕微鏡下ではほとんど観察されず、完全結晶に近
いXi層を要求される時に採用される特殊例といえ、そ
れ以外の目的ではコストアップに直結しているため[実
施例1]では採用しない。尚、α値の設定に関し、過去
の実績等より推定のつかない新規製品仕様のものに対し
ては、Xj(拡散深さ)の他に、インゴットの製法(F
Z法又はCZ法)、口径、抵抗率及び導電型(N型又は
P型)等にもより微妙に影響を受けることが確認されて
おり、前もって確認しておくことが最も堅実な方法であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for manufacturing a discrete substrate according to the present invention will be described below. [Example 1] A substrate having a typical diameter as a substrate for discrete
In the embodiment of 100φ wafer, product specifications are FZ method, N type,
<111>, 30-40 Ω · cm, Xj = 170 μm, Xi =
An example in which the dislocation density is required to be 300 / cm 2 or less at 50 μm will be described. In addition, the material wafer (before diffusion) originally uses a wafer that has been subjected to a surface finishing having a processing distortion called to suppress the generation of dislocation, that is, a lapping finished wafer.
For the required dislocation density standard, the determination of the α value in [Example 1] is based on past actual data (α = 600 µm).
Was set, and the results were also satisfactory. However, for reference, the results of Reference a and Reference b where α was set to the upper and lower limits thereof are also shown in Table 1 as a comparative example. In the example of adoption, the dislocation is remarkably reduced only by increasing the thickness of the material wafer by 270 μm as compared with the reference (a), and the required dislocation density is “300
cm 2 or less ”can be sufficiently satisfied. Reference (b) is a case where the thickness of the material wafer is increased by 330 μm from the adopted example. Although the standard is sufficiently satisfied,
Dislocations are scarcely observed under a microscope, and can be said to be a special case adopted when an Xi layer close to a perfect crystal is required, but are not adopted in [Example 1] because other purposes directly lead to an increase in cost. . Regarding the setting of the α value, in the case of a new product specification that cannot be estimated from past results or the like, in addition to Xj (diffusion depth), the ingot manufacturing method (F
(Z method or CZ method), aperture, resistivity, conductivity type (N type or P type), etc., have been confirmed to be more subtly affected, and it is the most robust method to check in advance. .

【0013】[実施例2]デスクリート用基板としては
口径が 125φのウエハの実施例で、設計仕様はFZ法、
N型、〈111〉、50〜65Ω・cm、Xj= 180μm、
Xi=70μmで転位密度として1000個/cm2 ±15%の
範囲で要求される例を示す。尚、前記と同様に素材ウエ
ハ(拡散前)はもともと転位の発生を抑制するといわれ
る加工歪みを有する面仕上げ、即ちラップ加工仕上げし
たウエハを使用している。又、[実施例1]と同じく、
本発明のαの値を敢えてその上・下限値に設定した例を
比較用に参考(a)及び参考(b)として表−1に併記
する。採用例では参考(a)に比して素材ウエハの厚さ
を 250μm増大させるだけで、転位が著しく減少し、要
求されている転位密度「1000個/cm2 ±15%」を十分
満足させていること及び、参考(b)は採用例より素材
ウエハ厚さにして 350μm増大させた場合であり、規格
は十分満足しているものの、転位は顕微鏡下ではほとん
ど観察されず、完全結晶に近いXi層を要求される時に
採用される特殊例といえ、それ以外の目的ではコストア
ップにもつながり、採用しない理由は前記[実施例1]
と同じである。
[Embodiment 2] An embodiment of a wafer having a diameter of 125φ as a substrate for discrete use is designed by the FZ method.
N-type, <111>, 50-65Ω · cm, Xj = 180 μm,
An example is shown in which Xi = 70 μm and the dislocation density is required in the range of 1000 / cm 2 ± 15%. In the same manner as described above, the material wafer (before diffusion) originally uses a wafer which has been subjected to a surface finishing having a processing distortion which is said to suppress generation of dislocation, ie, a lapping finished wafer. Also, as in [Example 1],
Examples in which the value of α of the present invention is intentionally set to the upper and lower limits are also shown in Table 1 for reference (a) and reference (b) for comparison. In the adoption example, dislocations are remarkably reduced only by increasing the thickness of the material wafer by 250 μm as compared to the reference (a), and the required dislocation density of “1000 / cm 2 ± 15%” is sufficiently satisfied. And reference (b) shows the case where the thickness of the material wafer was increased by 350 μm from the adopted example. Although the specification was sufficiently satisfied, dislocations were hardly observed under a microscope, and Xi was close to a perfect crystal. It can be said that this is a special case that is adopted when a layer is required, but the cost is increased for other purposes.
Is the same as

【0014】[0014]

【表1】 [Table 1]

【0015】[実施例1]、[実施例2]からも判るよ
うに素材ウエハの厚さを一定範囲内で変化させることに
より極めて効果的にデスクリート用基板の(未拡散層表
面にて計測される)転位密度を制御することができてい
る。
As can be seen from [Example 1] and [Example 2], by changing the thickness of the material wafer within a certain range, it is possible to extremely effectively measure the discrete substrate (measured on the surface of the non-diffusion layer). Dislocation density) can be controlled.

【0016】[0016]

【発明の効果】本発明に係るデスクリート用基板の製造
方法は請求項1、2に記載の構成により、比較的低いレ
ベルの転位密度5000個/cm2 を要求されるデスクリー
ト用基板を対象に、その低転位の極限とも考えられる従
来の方法では到達出来なかった無欠陥に近いレベルまで
もカバーすると共に、要求される転位のレベルに応じ
て、その素材ウエハの厚さを一定範囲内で変化させるだ
けで容易に要求される転位密度のレベルに自在に合わせ
込みを可能とし、最終的素子となった時の求められてい
る特性を十分に発揮させることができる。
The method of manufacturing a discrete substrate according to the present invention is directed to a discrete substrate requiring a relatively low level of dislocation density of 5,000 / cm 2 by the structure described in claims 1 and 2. In addition, the conventional method, which is considered to be the limit of the low dislocation, covers a level close to defect-free, which cannot be reached by the conventional method, and the thickness of the material wafer is limited within a certain range according to the required dislocation level. It is possible to freely adjust to the level of dislocation density that is easily required only by changing it, and it is possible to sufficiently exhibit the required characteristics when the final element is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 拡散前素材ウエハ厚さとその時発生する転位
密度との関係を示す概念図である。
FIG. 1 is a conceptual diagram showing a relationship between a thickness of a material wafer before diffusion and a dislocation density generated at that time.

【図2】 拡散終了後のウエハ断面図である。FIG. 2 is a sectional view of a wafer after diffusion is completed.

【符号の説明】[Explanation of symbols]

Xj…拡散層の厚さ Xi…未拡散層の厚さ α…調整代 T…素材ウエハの厚さ Xj: thickness of diffusion layer Xi: thickness of non-diffusion layer α: adjustment allowance T: thickness of material wafer

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一方の面が拡散層(Xj)で他方の面の表
面が研磨仕上げされている未拡散層(Xi)よりなる中
間製品であるデスクリート用基板を拡散法にて製造する
際に、その未拡散層の表面で計数される転位密度が50
00個/cm2以下のデスクリート用基板を製造する方
法において、 拡散前の基材ウエハの厚さ(T)(単位 μm)を次式
(1)とし、 T=2Xj+Xi+α …(1) この(1)式中のαの値を 330≦α≦ 930の範囲内で決
定し、拡散前素材ウエハ厚さを予め調整することにより
拡散後に目標としていた転位密度を得ることを特徴とす
るデスクリート用基板の製造方法。
1. A method for manufacturing a discrete substrate, which is an intermediate product comprising an undiffused layer (Xi), one surface of which is a diffusion layer (Xj) and the other surface of which is polished, is manufactured by a diffusion method. The dislocation density counted on the surface of the undiffused layer is 50
In the method of manufacturing a discrete substrate of not more than 00 / cm 2, the thickness (T) (unit μm) of the base wafer before diffusion is represented by the following formula (1), and T = 2Xj + Xi + α (1) 1) The value of α in the expression is determined within the range of 330 ≦ α ≦ 930, and the target dislocation density after diffusion is obtained by adjusting the thickness of the material wafer before diffusion in advance. Substrate manufacturing method.
【請求項2】上記拡散層(Xj)の値が 120μm≦Xj
≦ 450μm、未拡散層(Xi)の値が20μm≦Xiであ
ることを特徴とする請求項1に記載のデスクリート用基
板の製造方法。
2. The diffusion layer (Xj) has a value of 120 μm ≦ Xj.
2. The method of claim 1, wherein ≦ 450 μm and the value of the non-diffusion layer (Xi) is 20 μm ≦ Xi.
JP9133794A 1997-05-23 1997-05-23 Method of manufacturing discrete substrate Expired - Lifetime JP2975910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9133794A JP2975910B2 (en) 1997-05-23 1997-05-23 Method of manufacturing discrete substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9133794A JP2975910B2 (en) 1997-05-23 1997-05-23 Method of manufacturing discrete substrate

Publications (2)

Publication Number Publication Date
JPH10326753A JPH10326753A (en) 1998-12-08
JP2975910B2 true JP2975910B2 (en) 1999-11-10

Family

ID=15113182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9133794A Expired - Lifetime JP2975910B2 (en) 1997-05-23 1997-05-23 Method of manufacturing discrete substrate

Country Status (1)

Country Link
JP (1) JP2975910B2 (en)

Also Published As

Publication number Publication date
JPH10326753A (en) 1998-12-08

Similar Documents

Publication Publication Date Title
KR101729474B1 (en) Method for producing bonded soi wafer and bonded soi wafer
US5738942A (en) Semiconductor silicon wafer and process for producing it
US7442992B2 (en) Bonded SOI substrate, and method for manufacturing the same
US8449675B2 (en) Semiconductor wafer with an epitaxially deposited layer, and process for producing the semiconductor wafer
JP3197803B2 (en) Semiconductor manufacturing method with few dislocation defects
WO2006070556A1 (en) Epitaxial wafer manufacturing method and epitaxial wafer
JP3454033B2 (en) Silicon wafer and manufacturing method thereof
JP2975910B2 (en) Method of manufacturing discrete substrate
EP0702401B1 (en) Method for producing a semiconductor substrate suitable for IGBTs
US5970365A (en) Silicon wafer including amorphous silicon layer formed by PCVD and method of manufacturing wafer
JP4826373B2 (en) Manufacturing method of single crystal wafer
EP0552366B1 (en) Semiconductor device manufacturing process
JP7424274B2 (en) Bonded wafer and method for manufacturing bonded wafer
JP4791694B2 (en) Manufacturing method of semiconductor epitaxial wafer
JPH10270455A (en) Manufacture of semiconductor substrate
JP2888294B1 (en) Method of manufacturing discrete substrate
JP2010263160A (en) Method of manufacturing soi wafer
JP2796657B2 (en) Manufacturing method of semiconductor wafer
JPS6312376B2 (en)
KR100386230B1 (en) Silicon Wafer for Deposition of an Epitaxial Layer and an Epitaxial Wafer and a Method for Manufacturing the Same
KR20230065175A (en) Silicon wafer and epitaxial silicon wafer
JP2978318B2 (en) Method of forming epitaxial layer
KR20190017147A (en) Epitaxial wafer and method for manufacturing the same
KR20230065174A (en) Silicon wafer and epitaxial silicon wafer
JP2004335771A (en) Diffusion wafer and method for manufacturing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term