JP2972511B2 - Method for measuring thickness of foamed polyethylene sheet by laser - Google Patents

Method for measuring thickness of foamed polyethylene sheet by laser

Info

Publication number
JP2972511B2
JP2972511B2 JP5297347A JP29734793A JP2972511B2 JP 2972511 B2 JP2972511 B2 JP 2972511B2 JP 5297347 A JP5297347 A JP 5297347A JP 29734793 A JP29734793 A JP 29734793A JP 2972511 B2 JP2972511 B2 JP 2972511B2
Authority
JP
Japan
Prior art keywords
polyethylene sheet
foamed polyethylene
thickness
transmitted light
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5297347A
Other languages
Japanese (ja)
Other versions
JPH07128023A (en
Inventor
正絋 上田
仁 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP5297347A priority Critical patent/JP2972511B2/en
Publication of JPH07128023A publication Critical patent/JPH07128023A/en
Application granted granted Critical
Publication of JP2972511B2 publication Critical patent/JP2972511B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はレーザーによる非接触に
て被測定物に損傷を与えずに高精度に厚さを測定する様
にしたレーザーによる発泡ポリエチレンシートの厚さ測
定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the thickness of a foamed polyethylene sheet by means of a laser in which the thickness is measured with high accuracy without causing damage to an object to be measured without contact with the laser. .

【0002】[0002]

【従来の技術】従来、電化製品や精密機器の梱包、自動
車の内張り、建築物の結露防止シート、風呂マット等の
発泡ポリエチレンシートはインフレーション方式、Tダ
イ方式等によって押出成形され、数m/秒の高速で搬送
させて巻取ロールにて巻き取りするものであり、然しな
がら押出成形時に種々の要因によって厚さ方向に偏肉が
発生するため、作業者が厚さ計測用の挾持ゲージを、瞬
時に発泡ポリエチレンシートにおける幅方向のいずれか
側方に挟み込んで測定しているも、かかる測定手段にあ
っては、挾持ゲージの挟み込み時の力の入れ具合によっ
て誤差が非常に大きくなったり、又発泡ポリエチレンシ
ートの両側は測定可能であるも幅方向の中央寄りは測定
出来なかったり、しかも測定時に挾持ゲージが引っかか
って発泡ポリエチレンシート自体に損傷を与えてしまう
欠点を有していた。
2. Description of the Related Art Conventionally, foamed polyethylene sheets such as packing of electric appliances and precision equipment, lining of automobiles, dew-prevention sheets for buildings, bath mats and the like are extruded by an inflation method, a T-die method, etc., and are several meters / second. It is transported at a high speed and taken up by a take-up roll.However, uneven thickness occurs in the thickness direction due to various factors during extrusion molding. The measurement is carried out by sandwiching the foamed polyethylene sheet on either side in the width direction.However, in such a measuring means, the error becomes extremely large due to the force applied when the clamping gauge is clamped, or It is possible to measure both sides of the polyethylene sheet, but it is not possible to measure near the center in the width direction. It had a disadvantage that damage the Nshito itself.

【0003】[0003]

【発明が解決しようとする課題】本発明は透過光強度が
発泡ポリエチレンシートの厚さに比例して減衰すること
を利用して、その厚さを自動的に非接触で測定し、省力
化を図ると共に、さらにその減衰を瞬時に多数回測定す
ることによって測定精度の向上を図り、しかも測定され
た変化を押出機にフィードバックさせることにより、厚
さ調整の自動化を可能にするレーザーによる発泡ポリエ
チレンシートの厚さ測定方法とその調整の両者を提供せ
んとするものである。
The present invention utilizes the fact that the intensity of transmitted light attenuates in proportion to the thickness of a foamed polyethylene sheet, automatically measures the thickness in a non-contact manner, and saves labor. In addition, the measurement accuracy is improved by instantaneously measuring the attenuation many times, and the measured change is fed back to the extruder, which enables the automation of thickness adjustment by a foamed polyethylene sheet by laser. It is intended to provide both a method for measuring the thickness of a thin film and its adjustment.

【0004】[0004]

【課題を解決するための手段】本発明は上記従来技術に
基づく測定誤差、損傷等の課題に鑑み、押出成形後、高
速搬送される発泡ポリエチレンシートに、固定したレー
ザー発振器からレーザー光を照射し、透過した透過光を
レンズを介して集光し、この透過光の透過光強度を光検
出器によって検出するに際し、検出部位を搬送方向に順
次変位する様に所定のサンプリング周期にて周期的に多
数回測定し、このデータを平均化処理した平均値と、レ
ーザー光の入射光強度とを比較演算することにより、発
泡ポリエチレンシートの厚さを測定することを要旨とす
るレーザーによる発泡ポリエチレンシートの厚さ測定方
法を提供して上記欠点を解消せんとしたものである。
SUMMARY OF THE INVENTION In view of the above-mentioned problems of measurement errors and damages based on the prior art, the present invention applies a laser beam from a fixed laser oscillator to a foamed polyethylene sheet conveyed at a high speed after extrusion molding. When the transmitted light is condensed through a lens and the transmitted light intensity of the transmitted light is detected by a photodetector, the detected portion is periodically shifted at a predetermined sampling cycle so as to sequentially displace the detection portion in the transport direction. By measuring a number of times, and averaging this data and comparing and calculating the incident light intensity of the laser light, the thickness of the expanded polyethylene sheet is measured by measuring the thickness of the expanded polyethylene sheet. It is an object of the present invention to provide a method of measuring a thickness to eliminate the above-mentioned drawbacks.

【0005】[0005]

【実施例】以下本発明の一実施例を図面に基づいて説明
すると、図3、4に示す様に、1は本発明に係る発泡ポ
リエチレンシートWの厚さ測定装置であり、該厚さ測定
装置1は発泡ポリエチレンシートWをインフレーション
方式、Tダイ方式等によって連続押出成形する押出機2
と、発泡ポリエチレンシートWをロール状に巻き取る巻
取ロール3との間の搬送工程中に設けるものにして、発
泡ポリエチレンシートWの上方側に配設するレーザー発
振器4と下方側に配設する受光部5より構成している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings . As shown in FIGS. 3 and 4, reference numeral 1 denotes a thickness measuring device for a foamed polyethylene sheet W according to the present invention. An apparatus 1 is an extruder 2 for continuously extruding a foamed polyethylene sheet W by an inflation method, a T-die method, or the like.
And a take-up roll 3 that winds the foamed polyethylene sheet W into a roll, and provided during a transport process, and is provided below the laser oscillator 4 provided above the foamed polyethylene sheet W and below. It comprises a light receiving section 5.

【0006】尚、発泡ポリエチレンシートWは幅寸法が
数m、厚さdが1〜10mmのものを、数m/秒の搬送
速度で巻き取る。
[0006] The foamed polyethylene sheet W having a width of several meters and a thickness d of 1 to 10 mm is wound at a transport speed of several meters per second.

【0007】又、レーザー発振器4としては発泡ポリエ
チレンシートWに損傷を与えない様に比較的低出力にし
て且つ、レーザー光の直径が1〜2mm程度の半導体レ
ーザーを使用する。
As the laser oscillator 4, a semiconductor laser having a relatively low output so as not to damage the foamed polyethylene sheet W and having a laser beam diameter of about 1 to 2 mm is used.

【0008】又、上下対に配設するレーザー発振器4と
受光部5は発泡ポリエチレンシートWの幅方向に複数個
配列させて発泡ポリエチレンシートWの幅方向における
厚さdの偏りを測定可能となしている。
Further, a plurality of laser oscillators 4 and light-receiving portions 5 arranged in an upper and lower pair are arranged in the width direction of the foamed polyethylene sheet W, and it is impossible to measure the deviation of the thickness d in the width direction of the foamed polyethylene sheet W. ing.

【0009】又、図1に示す様に、受光部5はレーザー
発振器4からのレーザー光が発泡ポリエチレンシートW
を通過する際に、内部の複雑な小さなセル構造によって
複雑な散乱を受けるため本来の指向性が失なわれ、発泡
ポリエチレンシートWを通過する際に点光源からの光と
同じ様に散乱し、このためCCDセンサー、ホトダイオ
ード等の光検出器6の受光面に散乱したレーザー光を集
光するレンズ7を配設して構成している。
Further, as shown in FIG. 1, the light receiving section 5 receives the laser light from the laser
When passing through, the original directivity is lost because it is complicatedly scattered by the internal complicated small cell structure, and when passing through the foamed polyethylene sheet W, it is scattered in the same manner as light from a point light source, For this purpose, a lens 7 for collecting the scattered laser light on the light receiving surface of the photodetector 6 such as a CCD sensor or a photodiode is provided.

【0010】又、光検出器6からの透過光強度Ioのデ
ータは逐次演算処理等を行うコンピューター(図示せ
ず)に入力され、レーザー発振器4からのレーザー光の
入射光強度Iiと、所定のサンプリング周期Tにて周期
的に発泡ポリエチレンシートWを透過した透過光強度I
oを多数回平均化した平均値とを比較演算して厚さdと
して求め、かかる求められた厚さdの変化量によって押
出機2における厚さ調整用のダイ駆動部、ノズル(図示
せず)に対して所定の入力信号を与えている。
The data of the transmitted light intensity Io from the photodetector 6 is input to a computer (not shown) for performing a sequential calculation process and the like, and the incident light intensity Ii of the laser light from the laser oscillator 4 and a predetermined value. Transmitted light intensity I transmitted periodically through foamed polyethylene sheet W at sampling period T
The average value obtained by averaging o many times is compared to obtain a thickness d, and a die driving unit and a nozzle (not shown) for adjusting the thickness in the extruder 2 are obtained based on the obtained change in the thickness d. ) Is given a predetermined input signal.

【0011】又、図5に示す様に、8は発泡ポリエチレ
ンシートWの搬送工程中における厚さ方向への上下のブ
レを規制するガイド機構であり、該ガイド機構8は発泡
ポリエチレンシートWの直上および直下に夫々レーザー
光の減衰がない透明アクリル材からなるガイドローラ
9、9aを、発泡ポリエチレンシートWの正規肉厚より
5mm程度広げた間隔にて配設している。
Further , as shown in FIG. 5, reference numeral 8 denotes a guide mechanism for restricting vertical movement of the foamed polyethylene sheet W in the thickness direction during the conveying process. The guide rollers 9 and 9a made of a transparent acrylic material having no laser light attenuation are disposed immediately below and at an interval approximately 5 mm wider than the regular thickness of the foamed polyethylene sheet W.

【0012】又、ガイド機構8の他の実施例としては、
図6に示す様に、レーザー発振器4と受光部5との光通
路以外で、発泡ポリエチレンシートWを吸引して上下の
位置ズレを規制する吸引ガイド10を設けたり、又この
逆に圧縮エアArを噴出して、その力で浮き上がりを防
止したりするものであれば良い。
Another embodiment of the guide mechanism 8 is as follows.
As shown in FIG. 6, a suction guide 10 for sucking the foamed polyethylene sheet W and restricting the vertical displacement is provided other than in the optical path between the laser oscillator 4 and the light receiving section 5, or vice versa. It is sufficient if it blows out and prevents lifting by its force.

【0013】次に本発明に係るレーザーによる発泡ポリ
エチレンシートの厚さ測定方法について説明すると、押
出機2より成形された発泡ポリエチレンシートWは、数
m/秒のスピードで搬送されて巻取ロール3にて巻き取
るものにして、かかる巻き取り搬送中の発泡ポリエチレ
ンシートWに対してレーザー発振器4より所定のビーム
直径を有し、且つ一定の入射光強度Iiのレーザ光を照
射すると、発泡ポリエチレンシートW内の複雑な小さな
セル構造によって散乱しながら発泡ポリエチレンシート
Wを透過する(図2参照)
Next, a method for measuring the thickness of the foamed polyethylene sheet by the laser according to the present invention will be described. The foamed polyethylene sheet W formed by the extruder 2 is conveyed at a speed of several meters / second and taken up by the winding roll 3. When a laser beam having a predetermined beam diameter and a constant incident light intensity Ii is irradiated from the laser oscillator 4 to the foamed polyethylene sheet W being wound and conveyed, the foamed polyethylene sheet W The light passes through the foamed polyethylene sheet W while being scattered by the complicated small cell structure in the W (see FIG. 2) .

【0014】次に、発泡ポリエチレンシートWを透過し
た透過光は発泡ポリエチレンシートWの下方に配設する
レンズ7によって集光され、光検出器6の受光面に入射
されると、該光検出器6によって電気信号に変換された
データを透過光強度Ioとして測定する。
Next, the transmitted light transmitted through the foamed polyethylene sheet W is condensed by a lens 7 disposed below the foamed polyethylene sheet W, and is incident on a light receiving surface of a photodetector 6. The data converted into the electric signal by 6 is measured as the transmitted light intensity Io.

【0015】そして、透過光強度Ioの測定個所を、発
泡ポリエチレンシートWの搬送方向に位置をズラして多
数回測定するため、透過光強度Ioを所定のサンプリン
グ周期Tにて多数回測定し、かかるデータをコンピュー
ターにより平均化した平均値と、入射光強度Iiのデー
タとを比較演算して厚さdとして求める。
In order to measure the transmitted light intensity Io many times by shifting the position in the transport direction of the foamed polyethylene sheet W, the transmitted light intensity Io is measured many times at a predetermined sampling period T. An average value obtained by averaging such data by a computer is compared with data of the incident light intensity Ii to obtain a thickness d.

【0016】又、上記サンプリング周期Tはレーザー光
のビーム直径をR、発泡ポリエチレンシートWの搬送速
度をVとすれば、各測定領域が重なり合わないという必
要から、T≧R/Vの条件を満たせば良く、且つ多数回
の平均をできるだけ狭い領域で行う必要からT≒(1〜
5)×(R/V)に設定することが好ましい。
If the beam diameter of the laser beam is R and the conveying speed of the foamed polyethylene sheet W is V, the sampling period T needs to satisfy the condition of T ≧ R / V because the measurement areas do not overlap. T ≒ (1 to 1)
5) It is preferable to set to (R / V).

【0017】例えば、R=2mm、V=1m/秒とすれ
ば、T≧2m秒となり、40回平均を一つの測定値とし
て測定する場合における発泡ポリエチレンシートWの搬
送方向長さである最小測定領域は80mm、またそれに
必要な最小時間は80m秒となる。
For example, if R = 2 mm and V = 1 m / sec, T ≧ 2 msec, and the minimum measurement which is the length in the transport direction of the foamed polyethylene sheet W when the average of 40 measurements is measured as one measurement value. The area is 80 mm and the minimum time required for it is 80 ms.

【0018】又、透過光強度Ioの検出個所を、発泡ポ
リエチレンシートWの幅方向の複数個所にて行うことに
より、幅方向の厚さdの偏りが測定できる。
By detecting the transmitted light intensity Io at a plurality of locations in the width direction of the foamed polyethylene sheet W, the deviation of the thickness d in the width direction can be measured.

【0019】この透過光強度Ioは、入射光強度Iiの
変動によって変化し測定誤差の要因となるため、かかる
影響を無くす様に入射光強度Iiで規格化、即ちIo1
Io/Iiで規定する。
The transmitted light intensity Io changes due to the fluctuation of the incident light intensity Ii and causes a measurement error. Therefore, the transmitted light intensity Io is normalized by the incident light intensity Ii so as to eliminate such an influence, that is, Io 1 =
Defined by Io / Ii.

【0020】ただし入射光強度Iiが常に一定であれば
何ら規格化しなくても良い。
However, if the incident light intensity Ii is always constant, there is no need to normalize at all.

【0021】しかし上記のように規格化しても、発泡ポ
リエチレンシートWの内部は複雑な小さなセル構造によ
って形成されているため、レーザー光はそこで複雑な散
乱を受けて減衰するため、単一場所の測定であっては、
同一厚みに対しても規格化した透過光強度Io1は図7に
示す様に全くランダムに非常に大きな変動幅を有してい
るため、その影響を取り除くために多数回の平均化が必
要である。
However, even if standardized as described above, since the inside of the foamed polyethylene sheet W is formed by a complicated small cell structure, the laser light is attenuated due to complicated scattering there, so that In the measurement,
As shown in FIG. 7, the transmitted light intensity Io 1 standardized for the same thickness has a very large fluctuation range at all at random, so it is necessary to perform averaging a number of times to remove the influence. is there.

【0022】ここで、図7は発泡ポリエチレンシートW
の2種の厚さd、●印はd1=2.76mm、×印はd2
=5.58mmに対する各任意な測定点における実験デー
タに基づく透過光規格強度分布図であり、縦軸は上記透
過光規格強度Io1を、横軸は各任意測定点位置Piを示
す番号(i=1、2、3…N)を示し、ただし実際の測
定は200点での位置に対して行っているが、ここでは
夫々の厚さに対して任意に抽出した40点の測定点を示
している。
FIG. 7 shows a foamed polyethylene sheet W
The two types of thickness d, the mark ● is d1 = 2.76 mm, and the mark × is d2
= The transmitted light standard intensity distribution diagram based on the experimental data at each arbitrary measurement point for 5.58Mm, the vertical axis represents the transmitted light standard intensity Io 1, the horizontal axis is the number indicating each arbitrary measurement point position Pi (i = 1, 2, 3,... N), but the actual measurement is performed at the position of 200 points. Here, 40 measurement points arbitrarily extracted for each thickness are shown. ing.

【0023】又、図中の横実線はd1=2.76mmに対
する規格化した透過光規格強度Io1の平均値Av1=0.0
325を、横点線はd2=5.58mmに対する規格化し
た透過光規格強度Io1の平均値Av2=0.0030を示し
ている。
[0023] The horizontal solid line d1 = average value of the transmitted light standard intensity Io 1 normalized with respect to 2.76mm in FIG Av1 = 0.0
325, the horizontal dotted line indicates an average value Av2 = 0.0030 of the transmitted light standard intensity Io 1 normalized with respect to d2 = 5.58mm.

【0024】そして、上記200点の個々の測定点にお
ける透過光規格強度Io1の測定値からそれらの平均値を
引いた差の2乗の和を平均し、さらにそれを平方に開い
た標本標準偏差Sは厚さd1、d2に対して夫々、S1
=0.0092、S2=0.0006となった。
Then, the sum of the squares of the differences obtained by subtracting the average value from the measured values of the transmitted light standard intensity Io 1 at the above-mentioned 200 individual measurement points is averaged, and the average is further squared. The deviation S is S1 for the thicknesses d1 and d2, respectively.
= 0.0092 and S2 = 0.0006.

【0025】又、この標本標準偏差Sを透過光規格強度
Io1の上記平均値Av1、Av2で規格化した透過光規格強
度Io1の平均変動率ε=S/Av1又はAv2は、厚さd
1、d2に対して夫々、ε1=0.28、ε2=0.20と
なり、特に厚さdが小さいときにはかなり大きい値であ
ることから、平均化が厚さの高精度測定には不可欠であ
ることが判明した。
[0025] Further, the average value Av1, Av2 average variation rate epsilon = S / Av1 or Av2 of the transmitted light standard intensity Io 1 normalized by the transmitted light standard intensity Io 1 The sample standard deviation S, the thickness d
Ε1 = 0.28 and ε2 = 0.20 for 1 and d2, respectively, which are considerably large values especially when the thickness d is small. Therefore, averaging is indispensable for accurate measurement of the thickness. It has been found.

【0026】次に、発泡ポリエチレンシートWの厚さd
が1〜8mmまでの6種の発泡ポリエチレンシートWに
対する各任意な測定点における40点の透過光規格強度
Io1の平均値を求めた処、図8に示す様に略直線とな
り、これは発泡ポリエチレンシートW内でのレーザー光
の減衰がランバートの法則に従っていることが認められ
た。
Next, the thickness d of the expanded polyethylene sheet W
There processing of obtaining the average value of the transmitted light standard intensity Io 1 of 40 points in each arbitrary measurement point for six foamed polyethylene sheet W up to 1 to 8 mm, becomes substantially linear as shown in FIG. 8, which foam It was found that the attenuation of the laser light in the polyethylene sheet W followed Lambert's law.

【0027】この結果、ランバートの法則より、入射光
強度をIi、透過光強度をIo、表面での透過率Tとす
ると、 Io=TIi EXP( ーαd ) またはLOG(Io/ Ii) =( ーαLOG e)d+LOG Tと
なり、LOG(Io/ Ii) で定義される上記吸光度は発泡
ポリエチレンシートWの厚さdに比例することとなる。
As a result, according to Lambert's law, if the incident light intensity is Ii, the transmitted light intensity is Io, and the transmittance at the surface is T, Io = TIi EXP (-αd) or LOG (Io / Ii) = (- αLOG e) d + LOG T, and the absorbance defined by LOG (Io / Ii) is proportional to the thickness d of the foamed polyethylene sheet W.

【0028】尚、( ーαLOG e) は発泡ポリエチレンシ
ートWの内部のセル構造によって決まる定数であり、最
小2乗法によって求めると、ー0.38mm-1となった。
Here, (-αLOG e) is a constant determined by the cell structure inside the foamed polyethylene sheet W, and is found to be -0.38 mm -1 when determined by the method of least squares.

【0029】又、上記平均化の回数による透過光規格強
度Io1の変動割合については、図9に示す様に、発泡ポ
リエチレンシートWの2種の厚さd、●印はd1=2.7
6mm、×印はd2=5.58mmに対する10回の平均
で約7%以内、20回の平均で約5%以内、40回の平
均で約4%以内、100回の平均で約1%以内となっ
た。
[0029] Also, the percentage change of the transmitted light standard intensity Io 1 by the number of the averaging, as shown in FIG. 9, the two thickness d of the foamed polyethylene sheet W, ● mark d1 = 2.7
6mm, x mark is within about 7% for 10 times for d2 = 5.58mm, about 5% for 20 times, about 4% for 40 times, and about 1% for 100 times It became.

【0030】ここで図9は、厚さd1=2.76mm、d
2=5.58mmの発泡ポリエチレンシートWに対する規
格化した透過光規格強度Io1の平均値Av の変動割合と
標本点数Nとの関係を示し、縦軸は透過光規格強度Io1
の測定値の全標本(N=200)から任意にn個の標本
を取り出し、その平均値Av N=n と、全標本の平均値A
v N=200 との差の絶対値を、真の値に近い全標本の平均
値Av N=200 で規格化した透過光強度の変動割合である
|Av N=n ーAv N=200 |/Av N=200 を示し、又横軸
は1/N1/2 の値を示している。
Here, FIG. 9 shows that the thickness d1 = 2.76 mm, d
The relationship between the variation ratio of the average value Av of the standardized transmitted light intensity Io 1 and the number N of sample points for the foamed polyethylene sheet W of 2 = 5.58 mm and the number N of sample points are shown, and the vertical axis indicates the transmitted light standard intensity Io 1.
N samples are arbitrarily taken out of all the samples (N = 200) of the measured values, and the average value Av N = n and the average value A of all the samples
The absolute value of the difference from v N = 200 is the variation ratio of the transmitted light intensity normalized by the average value Av N = 200 of all the samples close to the true value | Av N = n −Av N = 200 | / Av N = 200 , and the horizontal axis shows a value of 1 / N 1/2 .

【0031】そして、これらの関係は図示する様に略直
線となり、即ち透過光の変動割合は1/N1/2 に比例
し、したがってガウス分布にしたがうランダム誤差であ
ることが判り、ここでは厚さdを変えた2種類のサンプ
ルに対して例示しているが、最小2乗法から求めたそれ
ぞれの回帰直線は図上では区別できないくらい一致して
いる。
These relations are substantially linear as shown in the drawing, that is, the variation ratio of the transmitted light is proportional to 1 / N 1/2 , and is therefore a random error according to a Gaussian distribution. Although the example is shown for two types of samples having different values of d, the regression lines obtained by the least squares method are indistinguishable from each other on the figure.

【0032】次に、微小な透過光強度ΔIoと、それに
ともなう厚さΔdとの関係は、上記ランバートの法則よ
り第1次近似を考えれば、ΔIo/Io≒−α×Δdと
なり、これより厚さd1=2.76mm、d2=5.58m
mの発泡ポリエチレンシートWの厚さ変動割合Δd/d
を求めた処、以下の結果が得られた。
Next, the relationship between the small transmitted light intensity ΔIo and the thickness Δd accompanying it is ΔIo / Io ≒ −α × Δd, considering the first-order approximation from the above-mentioned Lambert's law. D1 = 2.76mm, d2 = 5.58m
m, the thickness variation ratio Δd / d of the expanded polyethylene sheet W.
, The following results were obtained.

【0033】 [0033]

【0034】又、発泡ポリエチレンシートWは高速で搬
送されるため、レーザー光の光軸方向に上下動すると、
レンズ7に入射する光量、即ち光検出器6に入射する光
量が変化することにより、厚さ測定における測定誤差で
ある厚さ変動割合Δd/dに影響を与えることが考えら
れるも、本発明による一つの平均値を求めるに必要な測
定時間は、R=2mm、V=1m/秒とすれば、T≧2
m秒となり、40回平均で80m秒、200回平均でも
400m秒の様に極めて短時間で測定され、しかも発泡
ポリエチレンシートWの上下動の振動は一般的に数秒程
度であることにより、平均化処理する間では、発泡ポリ
エチレンシートWは一定位置で上下いずれかに固定され
た状態で測定可能となるため、上記測定誤差には何ら影
響されない。
Further, since the foamed polyethylene sheet W is conveyed at a high speed, when it moves up and down in the optical axis direction of the laser beam,
It is conceivable that a change in the amount of light incident on the lens 7, that is, the amount of light incident on the photodetector 6, affects the thickness variation ratio Δd / d, which is a measurement error in thickness measurement. The measurement time required for obtaining one average value is T ≧ 2 if R = 2 mm and V = 1 m / sec.
m seconds, and the measurement was performed in a very short time, such as 80 msec for an average of 40 times and 400 msec for an average of 200 times, and the vertical vibration of the foamed polyethylene sheet W was generally about several seconds. During the processing, the measurement can be performed in a state where the foamed polyethylene sheet W is fixed at one of the upper and lower positions at a fixed position, and thus the measurement error is not affected at all.

【0035】又、発泡ポリエチレンシートWがレーザー
光の光軸方向に上下動した時の光量変動については、図
10に示す様に透過光の射出口Zからレンズ7を望む立
体角Ωは、レンズ7までの距離をa、レンズ7の直径を
Dとすれば、 Ω=(D/a)2 /16 となり、これより透過光が点光源とすると、Z=0の点
光源からのレンズ7へのを光量をE(0)、Z=Δaか
らの光量をE(Δa)とすれば、 E(Δa)/E(0)=(1ーΔa/a)-2≒(1+2
Δa/a) または〔E(Δa)ーE(0)〕/E(0)=2Δa/
aとなり、光源がレンズ7にΔaだけ近づくと光量は近
似的に元の値より2Δa/a倍だけ上昇し、逆に離れる
と同量だけ減少する。
As for the fluctuation of the light quantity when the foamed polyethylene sheet W moves up and down in the optical axis direction of the laser beam, as shown in FIG. the distance to 7 a, if the diameter of the lens 7 and D, Ω = (D / a ) 2/16 next, when from the transmitted light which is a point light source, the lens 7 from a point source of Z = 0 Let E (0) be the light amount and E (Δa) be the light amount from Z = Δa: E (Δa) / E (0) = (1−Δa / a) −2 ≒ (1 + 2)
Δa / a) or [E (Δa) −E (0)] / E (0) = 2Δa /
When the light source approaches the lens 7 by Δa, the light amount approximately increases by 2Δa / a times the original value, and decreases by the same amount when the light source moves away from the lens 7.

【0036】然しながら、本実施例においては発泡ポリ
エチレンシートWの上下動はガイド機構8におけるガイ
ドローラ9、9aの間隔を発泡ポリエチレンシートWの正
規厚さより5mm程度広げて規制しているため、Δaの
変動量は最大値で5mm程度に抑えることができ、この
ため透過光規格強度Io1の変動割合である40回の平均
で約3%と同等な変動幅とするには、上記式よりaを1
50mmに設定すれば良い。
However, in this embodiment, the vertical movement of the foamed polyethylene sheet W is restricted by increasing the distance between the guide rollers 9 and 9a in the guide mechanism 8 by about 5 mm from the regular thickness of the foamed polyethylene sheet W. variation can be suppressed to about 5mm at the maximum value, in order to approximately 3% and equivalent range of fluctuation average of 40 times a fluctuation ratio of the transmitted light standard intensity Io 1 for this, a from the above formula 1
It may be set to 50 mm.

【0037】これによって、厚さ測定の誤差は透過光規
格強度Io1の変動割合と、レーザー光の光軸方向に発泡
ポリエチレンシートWが上下動した時の光量変動割合と
の和になるも、40回の平均で最大誤差が(0.03+0.
03)=0.06で測定出来る。
Thus, the error in the thickness measurement is the sum of the variation ratio of the transmitted light standard intensity Io 1 and the variation ratio of the light amount when the foamed polyethylene sheet W moves up and down in the optical axis direction of the laser beam. The maximum error is (0.03 + 0.0.
03) = 0.06.

【0038】尚、発泡ポリエチレンシートWの上下動を
規制するガイド機構8におけるその他の構造、吸引ガイ
ド10および圧縮エアAr等であれば、上記Δaの変動量
を小さくすることが出来るため、さらに測定精度が向上
する。
If the other structure of the guide mechanism 8 for regulating the vertical movement of the foamed polyethylene sheet W, the suction guide 10, the compressed air Ar, and the like can reduce the variation of Δa, the measurement is further performed. The accuracy is improved.

【0039】[0039]

【発明の効果】要するに本発明は、押出機2により成形
され、透過光を散乱させる発泡ポリエチレンシートW
厚さ測定方法であって、レーザー発振器4からのレーザ
ー光を搬送中の発泡ポリエチレンシートWに照射し、該
発泡ポリエチレンシートWを透過する透過光を、レンズ
7で集光して光検出器6に入力し、該光検出器6にて検
出される透過光強度Ioを周期的に多数回測定し、この
多数回のデータの平均値を演算し、かかる平均値とレー
ザー光の入射光強度Iiとを対比演算して発泡ポリエチ
レンシートWの厚さdを測定するので、本来単一位置の
測定では、発泡ポリエチレンシートWの構造上、測定誤
差が非常に大きいのにかかわらず、平均化することによ
り発泡ポリエチレンシートW内の吸光度LOG(Io/
Ii)を、その厚さdに比例させることが出来る。 又、
被測定シートが透過光を散乱させる発泡ポリエチレンシ
ートWであっても、点光源のレーザー光で散乱光、外乱
光の影響を排除して測定することが出来、且つ、レーザ
ー光の指向性を阻害する散乱状態に対して、レンズ7を
介して集光していることにより、発泡ポリエチレンシー
トWにより散乱して透過した透過光強度Ioを全て光検
出器6に集光することが出来、従って透過光強度Ioと
入射光強度Iiとより求める厚さdの測定精度を約6%
以内の高い精度にて測定することが出来る。
In short, the present invention relates to a foamed polyethylene sheet W formed by an extruder 2 and scattering transmitted light .
In the thickness measuring method, a laser beam from a laser oscillator 4 is irradiated on a foamed polyethylene sheet W being conveyed, and transmitted light transmitted through the foamed polyethylene sheet W is condensed by a lens 7 so as to form a photodetector 6. And the transmitted light intensity Io detected by the photodetector 6 is periodically measured a number of times, and the average value of the data is calculated. The average value and the incident light intensity Ii of the laser beam are calculated. The thickness d of the foamed polyethylene sheet W is measured by comparing with the above. Therefore, in the measurement of a single position, averaging should be performed irrespective of a very large measurement error due to the structure of the foamed polyethylene sheet W. Absorbance LOG (Io /
The Ii), Ru can be made proportional to the thickness d. or,
The sheet to be measured scatters transmitted light.
Scattered light and disturbance due to laser light from a point light source
Laser can be measured without the influence of light, and laser
-Condensed through the lens 7 for the scattering state that hinders the directivity of light, so that the transmitted light intensity Io scattered and transmitted by the foamed polyethylene sheet W is all collected on the photodetector 6. Therefore, the measurement accuracy of the thickness d obtained from the transmitted light intensity Io and the incident light intensity Ii is about 6%.
It can be measured with high accuracy within.

【0040】よって、発泡ポリエチレンシートWを非接
触にて、しかも連続的にその厚み変化を精度良く測定す
ることが出来るため、従来に比し厚み測定そのものの省
力化が出来るだけでなく、測定された変化を表わす電気
信号を処理して押出機2にフィードバックすることによ
り、厚み調整を人手に頼っていたことを自動化出来る。
Therefore, the thickness change of the foamed polyethylene sheet W can be measured in a non-contact and continuous manner with high accuracy, so that not only the thickness measurement itself can be saved, but also the thickness measurement can be performed. By processing the electrical signal indicating the change and feeding it back to the extruder 2, it can be automated that the thickness adjustment is manually performed.

【0041】又、透過光強度Ioの検出個所を発泡ポリ
エチレンシートWの幅方向の複数個所にて行うので、上
記効果に加えて発泡ポリエチレンシートWの幅方向の中
央部位測定することが出来る等その実用的効果甚だ大な
るものである。
Since the transmitted light intensity Io is detected at a plurality of locations in the width direction of the foamed polyethylene sheet W, in addition to the above-described effects, it is possible to measure the central portion of the foamed polyethylene sheet W in the width direction. The practical effect is enormous.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る発泡ポリエチレンシートの厚さ測
定方法のための厚さ測定装置の概略図である。
FIG. 1 is a schematic view of a thickness measuring device for a method for measuring the thickness of a foamed polyethylene sheet according to the present invention.

【図2】発泡ポリエチレンシートの内部構造の概略図で
ある。
FIG. 2 is a schematic view of the internal structure of a foamed polyethylene sheet.

【図3】同上厚さ測定装置の配置位置を示す概略斜視図
である。
FIG. 3 is a schematic perspective view showing an arrangement position of the same thickness measuring device.

【図4】発泡ポリエチレンシートの製造装置の概略図で
ある。
FIG. 4 is a schematic view of an apparatus for producing a foamed polyethylene sheet.

【図5】厚さ測定装置におけるガイド機構の正面図であ
る。
FIG. 5 is a front view of a guide mechanism in the thickness measuring device.

【図6】同上他の実施例を示す正面図である。FIG. 6 is a front view showing another embodiment of the present invention.

【図7】各測定点における透過光強度の分布図である。FIG. 7 is a distribution diagram of transmitted light intensity at each measurement point.

【図8】40回平均した透過光規格強度と、発泡ポリエ
チレンシートの厚さとの関係を示すグラフである。
FIG. 8 is a graph showing the relationship between the transmitted light standard intensity averaged 40 times and the thickness of the foamed polyethylene sheet.

【図9】透過光規格強度の平均値の変動割合と標本点数
との関係を示すグラフである。
FIG. 9 is a graph showing the relationship between the variation rate of the average value of the transmitted light standard intensity and the number of sample points.

【図10】発泡ポリエチレンシートの上下変位に対する
光量変動の概念図である。
FIG. 10 is a conceptual diagram of a light quantity fluctuation with respect to a vertical displacement of a foamed polyethylene sheet.

【符号の説明】[Explanation of symbols]

2 押出機 4 レーザー発振器 6 光検出器 7 レンズ 2 Extruder 4 Laser oscillator 6 Photodetector 7 Lens

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 押出機により成形され、透過光を散乱さ
せる発泡ポリエチレンシートの厚さ測定方法であって、
レーザー発振器からのレーザー光を搬送中の発泡ポリエ
チレンシートに照射し、該発泡ポリエチレンシートを透
過する透過光を、レンズで集光して光検出器に入力し、
該光検出器にて検出される透過光強度を周期的に多数回
測定し、この多数回のデータの平均値を演算し、かかる
平均値とレーザー光の入射光強度とを対比演算して発泡
ポリエチレンシートの厚さを測定することを特徴とする
レーザーによる発泡ポリエチレンシートの厚さ測定方
法。
Claims: 1. An extruder , which is formed by an extruder to scatter transmitted light.
A method for measuring the thickness of a foamed polyethylene sheet to be
Irradiate the laser beam from the laser oscillator to the foamed polyethylene sheet being conveyed, the transmitted light passing through the foamed polyethylene sheet is condensed by a lens and input to the photodetector,
The transmitted light intensity detected by the photodetector is periodically measured a number of times, the average value of the data is calculated, and the average value is compared with the incident light intensity of the laser light to form a bubble. A method for measuring the thickness of a foamed polyethylene sheet using a laser, comprising measuring the thickness of the polyethylene sheet.
【請求項2】 透過光強度の検出個所を発泡ポリエチレ
ンシートの幅方向の複数個所にて行うことを特徴とする
請求項1記載のレーザーによる発泡ポリエチレンシート
の厚さ測定方法。
2. The method for measuring the thickness of a foamed polyethylene sheet according to claim 1, wherein the transmitted light intensity is detected at a plurality of locations in the width direction of the foamed polyethylene sheet.
JP5297347A 1993-11-01 1993-11-01 Method for measuring thickness of foamed polyethylene sheet by laser Expired - Fee Related JP2972511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5297347A JP2972511B2 (en) 1993-11-01 1993-11-01 Method for measuring thickness of foamed polyethylene sheet by laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5297347A JP2972511B2 (en) 1993-11-01 1993-11-01 Method for measuring thickness of foamed polyethylene sheet by laser

Publications (2)

Publication Number Publication Date
JPH07128023A JPH07128023A (en) 1995-05-19
JP2972511B2 true JP2972511B2 (en) 1999-11-08

Family

ID=17845340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5297347A Expired - Fee Related JP2972511B2 (en) 1993-11-01 1993-11-01 Method for measuring thickness of foamed polyethylene sheet by laser

Country Status (1)

Country Link
JP (1) JP2972511B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104634265A (en) * 2015-02-15 2015-05-20 中南大学 Soft measurement method for thickness of mineral floating foam layer based on multivariate image feature fusion
KR20150138007A (en) * 2014-05-30 2015-12-09 (주)쎄미시스코 Method, apparatus and the system for detecting thickness of an object

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249798A (en) * 2009-03-23 2010-11-04 Ngk Insulators Ltd Inspection device of plugged honeycomb structure and inspection method of plugged honeycomb structure
TWI569015B (en) * 2011-12-22 2017-02-01 羅門哈斯公司 Method for measuring polymer foam expansion and apparatus for use therein
CN116295051B (en) * 2023-03-20 2024-01-05 河北日泰新型管材有限公司 Cross-linked polyethylene pipe wall thickness measuring method based on special frequency illumination recognition technology

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150138007A (en) * 2014-05-30 2015-12-09 (주)쎄미시스코 Method, apparatus and the system for detecting thickness of an object
KR102402386B1 (en) * 2014-05-30 2022-05-26 (주)에디슨이브이 Method, apparatus and the system for detecting thickness of an object
CN104634265A (en) * 2015-02-15 2015-05-20 中南大学 Soft measurement method for thickness of mineral floating foam layer based on multivariate image feature fusion
CN104634265B (en) * 2015-02-15 2017-06-20 中南大学 A kind of mineral floating froth bed soft measurement method of thickness based on multiplex images Fusion Features

Also Published As

Publication number Publication date
JPH07128023A (en) 1995-05-19

Similar Documents

Publication Publication Date Title
US5341824A (en) Method and apparatus for inspecting and controlling tipping paper perforation
US4088411A (en) Length measurement apparatus for continuously advancing articles
US4695729A (en) Tubular part wall thickness measuring device
JP2972511B2 (en) Method for measuring thickness of foamed polyethylene sheet by laser
US4549453A (en) Apparatus for cutting out an edge portion of a coating sheet
JPH01152306A (en) Method and apparatus for measuring shape
JP2000131025A (en) Method for measuring thickness profile of material
US3803414A (en) Standardization of infrared measuring system
JP2000131024A (en) Device for measuring thickness profile of material
US5506407A (en) High resolution high speed film measuring apparatus and method
JP2000131020A (en) Method for processing data measured by interference method
JP4089057B2 (en) Film edge thickness measuring apparatus and film edge thickness measuring method
US4204224A (en) Process and apparatus for measuring the length of moving shaped articles particularly red-hot semifinished articles
KR920016827A (en) On-line nondestructive measuring method and device for the characteristics of continuously manufactured products
CN111157043B (en) Aerogel felt detection system and detection method
CN219776673U (en) Novel sheet plane vision detection and thickness detection system
JPH0438418A (en) Apparatus for measuring height
JPS5763408A (en) Flatness detector
JPH06337214A (en) Measuring method for thickness of flame-sprayed film
JPS63201514A (en) Method for measuring plastic sheet width
CN116734791A (en) Novel sheet plane vision detection and thickness detection system
JPS5918413A (en) Method and apparatus for measuring thickness of film sheet
JPH04155208A (en) Discrimination on acceptability of platelike work
JP2002200666A (en) Method and device for inspecting extrusion-molded article
CA1210529A (en) Tubular part wall thickness measuring device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees