CA1210529A - Tubular part wall thickness measuring device - Google Patents

Tubular part wall thickness measuring device

Info

Publication number
CA1210529A
CA1210529A CA000432734A CA432734A CA1210529A CA 1210529 A CA1210529 A CA 1210529A CA 000432734 A CA000432734 A CA 000432734A CA 432734 A CA432734 A CA 432734A CA 1210529 A CA1210529 A CA 1210529A
Authority
CA
Canada
Prior art keywords
radiation
tubular part
wall thickness
detector
collimator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000432734A
Other languages
French (fr)
Inventor
Kazuyuki Kaneko
Kiyoo Watanabe
Asao Monno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Fuji Facom Corp
Original Assignee
Fuji Electric Co Ltd
Fuji Facom Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Facom Corp filed Critical Fuji Electric Co Ltd
Priority to CA000432734A priority Critical patent/CA1210529A/en
Application granted granted Critical
Publication of CA1210529A publication Critical patent/CA1210529A/en
Expired legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

FO-7-32013M/KK/83.
ABSTRACT OF THE DISCLOSURE
A tubular part wall thickness measuring device includes a radiation source having a plurality of radia-tion sources disposed in a line. The radiation passes through a collimator to provide parallel radiation beams which pass transversely through a tubular part to a radi-ation detector. The length of the radiation source and the radiation detector are greater than the diameter of the tubular part to be measured so that the radiation passes through an entire section of the tubular part so that the average wall thickness of the tubular part can be determined from the amount of attenuation of radiation which is detected by the detector.

Description

lZ~3529 Scope of the Invention The present invention is directed to a tubular part wall thickness measuring device and more specifically to a device utilizing a radiation source and detector having a length larger than the outside diameter of the tubular part being measured whereby parallel radiation beams emitted from the radiation source go through the det.ector at least through the entire section of the tubular part so that the average wall thickness of the tubular part can be determined from the amount of attenuation of radiation which is detected by the detector, Brief Description o_ the Drawings Figure 1 is a schematic view showing a conventional measuring arrangement for measuring the wall thickness of a tubular part.
Figure 2 is a schematic view showing a detail of the measuring arrangement of Figure 1, Figures 3a and 3b are explanatory diagrams with respect to the principle of a wall thickness measuring device according to the present invention.
- Figure 4a.is a secontional view showing the arrangement: of one example of a line radiation source, and Figure 4b is a front view of a collimater, Figure 5a is a side elevation view of a line sellsor and Figure 5b is a front view of a collimator used with the line sensor, ~7~1()5~

1 Figure 6 is an explanatory diagram for descri~ing the functional relationship between the wall thickness of a pipe and its position.
Figure 7 is a graphical representation indicating wall thicknesses with radiation detection elements of the sensor.
Figure 8 is a perspective schematic view showing an example of a tubular part wall thickness measuring device according to the present invention.
Figures 9a and 9b are side and front views, respectiYely, of a two roll reducer.
Figure lOa and lOb are side and front views, respectively, of a three roll reducer.
Background of the Invention In general, in the manufacture of tubular pipes by conventional rolling operation in the steel industry the wall thickness of the tubular pipe must be measured with a high degree o accuracy, In order to increase pro-ductivity, it is essential to measure the wall thickness o~ the pipe on-line without stopping the flow of products.
Furthermore, since the rolling operations generally involve a - hot rolling step at very high temperatures, it is desirable that the wall thickness o the pipe be measured not only in a non-contact manner, but be measured at a distance as ~ar as possible from the tubular part, The arrangement of a conventional tubular part wall thickness measuring device is shown in Figure 1 wherein ~Z~529 1 y-ray sources 1, 2, and 3 emit radiation which is detected by radiation detecting units or sensors 4, 5, and 6, The y-ray sources 1 and 2 and the sensors 4 and 5 are mounted on a stationary frame 7 and the y-ray source 3 and sensor 6 are mounted on a movea~le frame 8. The tubular part 11, whose wall thickness is to be measured, is conveyed along a conveyor 9 in a direction transverse to the direction of the ~-rays, In this operation the relative positions of the y-rays sources and the sensors are important factors, The moveable frame 8 should be positioned in Figure 1 so that the vertices of the re~ular triangle ~FG, as sho~m in Figure 2, which is formed by the beams, are on the circumference of a circle whose diameter is the mean value of the nominal outside and inside diameters of the tubular part 11 (hereinafter referred to as "a middle diameter"~. The principle of measurement will not be described in the present application, since it has been disclosed in the specification of Japanese Patent Application Laid Open Numbe~ 46406/1981 and is not essential for understanding of the present invention.
As the tubular part 11 moves along the conveyor 9, the tubular part 11 is vibrated in the direction of the axes Zl ~ Z2 and Z3 - Z4 as shown in Figure 2, at all times.
Accordingly, even if a vibration pre~lenting roller ~not shown~ is added to the conveyor rollers 9, it is extremely difficult to precisely set the vertices of the regular triangle EFG formed by the three beams on the ~i~

~Z105Z9 1 circumerence of the circle having the middle diameter, Additional means, such as a vibration preventing roller, include very technical and very costly problems~ The conventional measuring device as shown in Figures 1 and 2 suffers from the drawback that its measurement theoretically includes an error due to vibration which is referred to as a "mis-alignment error". Accordingly, the utilization of a vibration preventing roller in conjunction with a conveying roller 9 to minimize the vibration of the tubular part 11 to minimize alignment error, has not been widely practised.
- -- Another method of measuring the wall thickness of a steel pipe by means of radiation is disclosed in Japanese Patent Application Laid Open Number 114263/1979~ In the conventional method, based on the fact that radiation applied to a steel pipe from outside is attenuated to the maximum when passed tangentially of the inner surface of thepipe and is attenuated to a minimum when passed tangentially of the outer surface of the pipe, each the maximum and minimum attenuati.on points are detected so that the wall thickness of the pipe can be determined from the distance between both, However, when a steel pipe having a wall thick-ness of 5 or 6 mm to 40 mm is measured according to the foregoing meth~d, even if the radiation source emplo~s a radioactive material of 30 curies, it takes at least 20 ms to 1 second for measurement because the amount of radiation from the radioactive source is generally fractured, Therefore, ~21~5Z9 1 during this period, the steel pipe must be held at rest, Accordingly, such a method cannot be used in measuring on-line the wall thickness of steel pipe which is vibrated while being conveyed, Furthermore, it can be understood that where the image of a radiation pro~ected steel pipe is taken with a television camera with the width of a slit for projecting radiation from the radiation source set at about
2 mm, the steel pipe wall thickness measurement accuracy according to the method is much lower than that of steel plate thickness gauge, several tens of micrometers, because - the resolution of the television-camera is only about 1 mm.
Summary of the Invention The present invention provides a new and improved tubular part wall thickness measuring device which is lS capable of achieving a high degree of accuracy even if the tubular part being conveyed undergoes vibration since no mis-alignment error is theoretically included in the wall thickness measurement.
The present invention provides a new and improved tubular wall thickness measuring device comprising a radiation source and detector which are arranged in such a manner as to confront each other with the tubular part to be measured disposed therebetween, said radiation source and detector having a length larger than the outside diameter of the tubular part being measured whereby parallel radiation means emitted from said radiation source reaching the detector pass through the entire section of the tubular part so that the average wall thickness of the tubular ,,~

1 part is determined from the amount of radiation attenuation which is determined by the detector~
The foregoing and other objects, features and advantages of the invention will be apparent Erom the following particular description of a preferred embodinlent o the invention as illustrated in the accompanying drawings.
Detailed Description of the Invention In order to understand the measurement principle according to the present invention, reference is made to Figures 3a and 3b~ As seen in Figure 3a, an array of y-ray sources, referred t~ as aline radiation source 21 and an assembly of sensors arranged in a line and referred to as line sensor 22, are located on opposite sides of a tubular part 11, The length ~ of the line radiation source 21 and the line sensor 22 is set to a value which is m~ch larger than the outside diameter of the pipe 11 and the amount of attenuation of y-rays from the source 21 is measured by the sensor 22 so that an average wall thickness of the pipe 11 in the section can be obtained~ As illustrated in Figure 3b, the total value of radiation detected by the line sensor 22 is designaked by the reference character No which is achieved when no pipe is present between the radiation source 21 and the sensor 22, The total count value of radiation is represented by the reference character Ns which is detected when the pipe 11 is interposed between the source 21 and the sensor 22~ The average wall thickness of the pipe 11 can be obtained from the two values No and s~g 1 Ns~ When the length ~ of the line radiation source 21 and the line sensor 22 is much larger than the outside diameter o~ the pipe 11, even when the pipe 11 is vibrated, the total count values are not changed. Thus, according to the present invention, the average wall thickness of the pipe can be measured without any misalignment error~
The line radiation source 21 may be formed as shown in Figure 4a. A radiation source holder 211 is set in a line source container having a recess 216. A plurali-ty 1~ of radiation source capsules 212, for instance, of cesium 137, are arranged in a line within the radiation source holder 211. A rotary shutter 213 is arranged in the recess 216 of the container 210~ The container 210 is coupled to a collimator 214 which has a number of collimator holes 215 arran~ed in a plurality of lines. The shutter 213 is turned by a rotating mechanism (not shown) in such a manner that the shutter plate 217 is held in parallel to the surface of the drawing to allow radiation from the capsules 212 to pass to thecollimator 214 during a measurement and is held perpendicular to the surface of the drawing to block out the radiation when a measurement is not being carried out, The radiation is emitted radially from the capsules 212, but is converted th~ough the collimator holes 215 of the collimator 214 into parallel radiation beams.
The line sensor 22 is shown in Figures 5a and 5b~
A collimator 220 has a rectangular collimator hole 224 and ~i~

1 a plasti.c scintillator 2~1 of polyvinyl toluene which is provided behind the collimator 220. A light guide 222 of acrylic is connected to the plastic scintillator 221~ A
photo-multiplier tu~e, 223, is coupled to light guide 222 and the outpu o~ the tube 223 is applied to an amplifier (not shown~. Radiation from the line radiation source 21 is formed into parallel beams by the collimator holes 215 of collimator 214 as described above. The parallel ~eams, after passing through the pipe, enter the collimator holes 224 in the collimator 220 of the line sensor. A collimator hole 224 is a single rectangular hole, but may be replaced by a number of collimator holes which are arranged in lines similar to the collimator holes 215 in the line radiation source 221, It is well known that the following fundamental equation is established for a radiation transmission-type thickness gauge:
N = No EXP ( - ~t) (1) where N is the d~tection output of the sensor when the radiation passes through an object having a thickness t, No is the detection output or reference output of the sensor when no ob~ect is provided (when the thickness t equals 0), and ~ is a constant or absorption coefficient.
As shown in Fi~ure 6, an x-axis and a y-axis are disposed relative to a section of pipe 11 in such a manner that the axes are perpendicular to each other, ~hus, a wall thickness ti of the pipe 11 in the direction of the y-axi.s can be expressed as a function of the x-distance lZ~5Æ9 1 xi as follows:
ti = ~(Xi) (2) therefoxe, the detection output Ns of the line sensor 22 as shown in Figure 3a is as follows:
Ns = rO No EXP ~ - ~ FtX)) dx ~3~
Figure 5 is a graphical representation indicating the wall thickness t at various x-distances with detection outputs NS therefore~
As is apparent from Figure 5, when a value Qn(Ns/No) on the y-axis is decreased to half, the amount S.of change in wall thickness (hereinafter referred to as "a half value layer") it is about 4.5 mm.
In general, if the half value layer is excessively large or small, the measurement becomes difficult. A half value layer for an ordinary flat plate which is measured by a transmission-type thickness gauge, which is extensively employed, i5 about 11 mm. As the aforementioned value 4~5 mm is about a half (1/2) of this value (11 ~m), the tubular part wall thickness measuring device according to the above-described principle has a measurement accuracy which can be expected to be substantially the same as that of the above-disclosed gauge, As is apparent from Figure 7, the attenuation characteristic curve is linear in the wall thickness range from 3 mm to 15 mm (.about 0,03 to 0~1 in the ratio (t/d of wall thickness (5) to diameter (D)) and correction, which is required when the curve is non-linear, is unnecessary;

lZ~L~SZ9 -la-1 that is, the average wall thickness of a tubular part can be determined directly ~rom the detection output of the line sensor, Using the measurement principle described above, a tu~ular part wall measuring device as shown in Figure 8 can be used to determine the wall thickness of a tubular part.
The rollers 9 are provided to convey the tubular part 11 transversely of the measuring device, The length ~ of a line radiation source 21 and a line sensor 22, is set to a value much higher than the outside diameter D of the pipe 11, Such a measuring device is a high speed response type wall thickness measuring device which can measure the wall thickness of a pipe in a non-contact manner while the pipe is online irrespective of the vibration of the pipe which is caused as the pipe is being conveyed. The wall thickness thus measured can be fed back to the work piece rolling means to facilitate the control of speed or temperature therein to thereby contribute to the quality control of the pipe, In the system according to the present inventio~, the half value layer is about one-half of that of a flat plate as previously described. This means that the variation in the quantity of radiation which is caused when a flat plate changes by 1 mm in thickness is equal to that in the quantity of radiation which is caused wnen a tubular pipe changes about 0,S mm in thickness~ Accordingly, the wall thickness of a pipe can be measured at least as finely as the thickness of a flat plate so that the dègree of accuracy is very high, .~
v~

~21~529 1 The tubular part ~all thickness measuring device according to the present invention is especially suitable for use with a stretch reducer, A stretch reducer is a mill which is used in the finishin~ rolling operation and is used in almost all the final finishing operations for small diameter seam pipes. It is also used in the finishing process for small diameter welded pipes because of its high degree of efficiency, In the stretch reducer, fourteen to twenty roll housings haviny two and three rolls are arranged successively along a pipe, and while the out-side diameter of the pipe is being rolled, the rolls of adjacent stands are made different in peripheral speeds so that the pipe is pulled longitudinally while being rolled and the wall thickness is controlled, Accordingly, if several kinds of pipes are provided then a variety of pipes different in diameter can be formed. A two roll reducer is sho~n in Figures lOa and lOb, In these Figures the rolls 31 are shown in con~unction with a pipe 32 which is being pulled. With such a stretch reducer, the wall thickness of a pipe.is changed by pulling it in the longitudinal directio~, Therefore, in order to improve the control for operation of the mill, it is essential to detect the average wall thickness of a pipe in the longitudinal direction rather than to detect an irregularity in wall thick-ness in the section of the pipe, especially in the case of awelded steel pipe which is manufactured from plate material having a uniform thickness.

~Z~5Z9 1 In the case where the speed of a multi-stage mill is changed to change the tension exerted on the pipe to control its wall thickness, it is preferable that the response speed of the wall thickness measuring device is high, When the wall thickness measuring device is applied to the stretch reducer it is generally located at the input or output side so that the pipe will be exposed to a considerable amount of vibration. However, there is no room for vibration~preventing pinch rollers in these locations Accordingly, the advantages of the present i~vention are that the measurements are not affected by the vibration of the pipe and the response speed of the device is very high While the average wall thickness in the pipe section can be measured by the prior art devices, the prior art devices are extremely expensive since at least three radiation sources and three detectors are required. On the other hand, t~e device according to the present invention has only a single radiation source and a single detector and therefore can be manufactured at much lower cost.
While the invention has been described with reference to a steel pipe, it should be noted that the technical concept of the present invention is extensively applicable to the measurement of the wall thickness of generally tubular pipes by using gamma rays, x-rays, beta-rays, ultra-violet rays, visible rays or infra-red rays separately, according to the pipe material such as metal, plastic glass, cement, etc.

. , ~.
~i ,~r`, lZl~S29 ? While the invention has been particularly shown and described with reference to a preferred embodiment thereof, it will be understood by those in the art that the foregoing and other changes in form and details may be made therein without departing from the spirit and scope of the invention~

.

Claims (2)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A device for measuring the wall thickness of a tubular part, comprising;
(a) radiation source means;
(b) radiation detector means disposed in spaced apart aligned relation with respect to said source means, to accommodate a tubular part therebetween, the length of said detector being larger than the width of a radiation beam from said radiation source means, and said width of said beam being substantially larger than a diameter of said tubular part, said tubular part being subject to vibration, and said radiation source means and radiation detector means providing a gap therebetween, said gap having a length in a transverse direction larger than said diameter of said tubular part in said transverse direction, and means for detecting attenuation of said radiation beam with reference to a predetermined curve, and for determining the average wall thickness of said tubular part from said attenuation of radiation detected by said detector.

2. A tubular part wall thickness measuring device as set forth in claim 1, wherein said radiation source means and said radiation detector means are each provided with collimator means for providing parallel radiation beams, a width of a radiation beam provided by said source
Claim 2 continued ...
and said collimator of said source side being larger than said diameter of said tubular part, to allow for vibration of said part, and a gap defined by said source, said detector, said collimator of said source side, and said collimator of said detector side having a length larger than at least said diameter of said tubular part, to allow for vibration in said transverse direction;
said collimator of said detector side being formed with an opening having a length larger than said width of said beam, the width of said detector being at least larger than the width of said opening of said detector collimator.
CA000432734A 1983-07-19 1983-07-19 Tubular part wall thickness measuring device Expired CA1210529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA000432734A CA1210529A (en) 1983-07-19 1983-07-19 Tubular part wall thickness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA000432734A CA1210529A (en) 1983-07-19 1983-07-19 Tubular part wall thickness measuring device

Publications (1)

Publication Number Publication Date
CA1210529A true CA1210529A (en) 1986-08-26

Family

ID=4125702

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000432734A Expired CA1210529A (en) 1983-07-19 1983-07-19 Tubular part wall thickness measuring device

Country Status (1)

Country Link
CA (1) CA1210529A (en)

Similar Documents

Publication Publication Date Title
US4695729A (en) Tubular part wall thickness measuring device
US5001353A (en) Method and apparatus to measure the thickness of coating films
US20040234027A1 (en) System and method for the measurement of the layer thickness of a multi-layer pipe
CN102269718B (en) X-ray ash content measurement device and method
CA1210529A (en) Tubular part wall thickness measuring device
JPH0311646B2 (en)
US4920265A (en) System for determining the basis weight of cord reinforced tire fabric
CA2122067A1 (en) Method and device for calibating a set of transverse profile thickness values in flat products
GB2146115A (en) Tube wall thickness
US4425505A (en) Dual head measuring techniques for radiation gaging of reinforcing bar
US4582993A (en) Void detection in cast metal
US2714669A (en) Non-contacting thickness gauge
DE3327267C2 (en)
JPS6190005A (en) Measuring method of curvature of tubular body
JPS6322525B2 (en)
JPH03162646A (en) Density detecting device for porous material
EP0428903B1 (en) Method and equipment to check and regulate the positioning of metallic backing strands into rubber sheets specifically for the construction of tires
US3440421A (en) Statistical sampling of a moving product using a gauging device with a variable sensing area functionally related to a variable product speed
JPS5815847Y2 (en) Housiya Senatsusa Sokutei Souchi
US3879614A (en) Method of measuring the windup weight of a moving stretchable material
JPH06347315A (en) Weight determination device of web material
JPH0316604B2 (en)
JPS58707A (en) Measuring device for sectional plate thickness and shape of plate material
JPS6073309A (en) Measurement of surface roughness pattern of running sheet material
JPS60106610A (en) Control method of camber of rolling material

Legal Events

Date Code Title Description
MKEX Expiry