JPS6322525B2 - - Google Patents

Info

Publication number
JPS6322525B2
JPS6322525B2 JP57040180A JP4018082A JPS6322525B2 JP S6322525 B2 JPS6322525 B2 JP S6322525B2 JP 57040180 A JP57040180 A JP 57040180A JP 4018082 A JP4018082 A JP 4018082A JP S6322525 B2 JPS6322525 B2 JP S6322525B2
Authority
JP
Japan
Prior art keywords
tubular material
wall thickness
radiation
radiation source
collimator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57040180A
Other languages
Japanese (ja)
Other versions
JPS58158510A (en
Inventor
Asao Monno
Kyoo Watanabe
Kazuyuki Kaneko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Fuji Electric Co Ltd
Fuji Facom Corp
Original Assignee
Fuji Electric Co Ltd
Fuji Facom Corp
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Facom Corp, Kawasaki Steel Corp filed Critical Fuji Electric Co Ltd
Priority to JP57040180A priority Critical patent/JPS58158510A/en
Publication of JPS58158510A publication Critical patent/JPS58158510A/en
Publication of JPS6322525B2 publication Critical patent/JPS6322525B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/02Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring thickness
    • G01B15/025Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring thickness by measuring absorption

Description

【発明の詳細な説明】 本発明は、管状材の平均肉厚寸法を非接触で測
定することのできる管状材の肉厚測定装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a wall thickness measuring device for a tubular material that can measure the average wall thickness of a tubular material in a non-contact manner.

一般に鉄鋼業における管状材の製造(圧延)工
程において、その肉厚寸法を管理する際、高精度
の肉厚寸法測定が要求される。また生産性を高め
るためには、製造の流れ工程を止めることなく、
オンラインで肉厚寸法を測定できることが大切で
あると共に、管状材が高温になる熱間工程にあつ
ては、非接触で測定可能であるだけでなく、管状
材から出来る限り離れた位置から測定可能である
ことが望まれる。
Generally, in the manufacturing (rolling) process of tubular materials in the steel industry, when controlling the wall thickness, highly accurate wall thickness measurement is required. In addition, in order to increase productivity, without stopping the manufacturing flow process,
It is important to be able to measure wall thickness online, and in hot processes where tubular materials reach high temperatures, it is not only possible to measure without contact, but also from a position as far away from the tubular material as possible. It is desired that

第1図に、かかる条件を満足する従来の管状材
肉厚測定装置の構成概要を示す。同図において、
1,2および3はそれぞれ放射線を発するγ線
源、4乃至6はそれぞれ放射線の検出装置(以
下、センサとも云う)、7は固定フレーム、8は
可動フレーム、9は管状材11の搬送ローラ、1
0は可動フレーム駆動装置である。
FIG. 1 shows an outline of the configuration of a conventional tubular material thickness measuring device that satisfies these conditions. In the same figure,
1, 2, and 3 are γ-ray sources that each emit radiation; 4 to 6 are radiation detection devices (hereinafter also referred to as sensors); 7 is a fixed frame; 8 is a movable frame; 9 is a conveyor roller for the tubular material 11; 1
0 is a movable frame drive device.

第1図に示した測定装置では、固定フレーム7
上に設置されたγ線源1,2およびセンサ4,5
と可動フレーム8上に設置されたγ線源3および
センサ6とにより、搬送ローラ9に乗つて運搬さ
れてくる管状材11の肉厚寸法を測定するもので
あるが、この際、γ線源とセンサと管状材の相対
的位置関係が重要な意味をもつている。
In the measuring device shown in FIG.
γ-ray sources 1, 2 and sensors 4, 5 installed above
The gamma ray source 3 and sensor 6 installed on the movable frame 8 measure the wall thickness of the tubular material 11 carried on the conveying rollers 9. The relative positional relationship between the sensor and the tubular material has an important meaning.

すなわち第2図に見られるように、γ線源1か
ら発してセンサ4に入射するビームと、同じく線
源2から発してセンサ5に入射するビームと、同
じく線源3から発してセンサ6に入射するビーム
とにより構成される正三角形EFGの各頂点が、
管状材11の公称外径と内径の平均値(以下、中
央径と呼ぶ)を直径とする円の円周上にくるよう
に、第1図において可動フレーム8を位置決めす
る必要がある(なお、測定原理の詳細は、特開昭
56−46406号公報において開示されており、また
本発明の理解のために必須なものでもないので、
その説明は省略する)。
That is, as shown in FIG. 2, a beam emitted from the gamma ray source 1 and incident on the sensor 4, a beam also emitted from the source 2 and incident on the sensor 5, and a beam emitted from the source 3 and incident on the sensor 6. Each vertex of the equilateral triangle EFG formed by the incident beam is
It is necessary to position the movable frame 8 in FIG. 1 so that it is on the circumference of a circle whose diameter is the average value of the nominal outer diameter and inner diameter (hereinafter referred to as the center diameter) of the tubular material 11 (in addition, For details on the measurement principle, please refer to JP-A-Sho.
56-46406, and is not essential for understanding the present invention,
(The explanation is omitted.)

所が、管状材11は搬送ローラ9により運搬さ
れているため、第2図において、Z1−Z2軸、Z3
Z4軸の各方向に常時振動しており、3本の放射線
ビームにより形成される正三角形EFGの各頂点
を管状材の11の中央径の円周上に正確に維持す
ることは、たとえ搬送ローラ9に防振ローラ(図
示せず)を付加するなどの手段を講じたとして
も、相当に困難である。またかかる防振ローラ等
の付加設備自体も技術的ならびにコスト的に問題
を含んでいるが、搬送ローラの防振対策を充分に
施さない限り、第1図、第2図に示した従来の測
定装置は測定原理的に振動による誤差(心振れ誤
差という)を生じるという欠点がある。このた
め、実際問題としては、図示せざる防振ローラを
搬送ローラ9に併せ用いることにより管状材11
の心振れを極力おさえ、心振れ誤差の発生を極力
最小にする試みがなされている。
However, since the tubular material 11 is transported by the transport rollers 9 , in FIG .
It constantly vibrates in each direction of the 4 Z axes, and it is difficult to accurately maintain each vertex of the equilateral triangle EFG formed by the three radiation beams on the circumference of the 11 center diameter of the tubular material, even if it is transported. Even if measures such as adding an anti-vibration roller (not shown) to the roller 9 are taken, it is quite difficult. Additionally, additional equipment such as anti-vibration rollers itself has technical and cost problems, but unless sufficient anti-vibration measures are taken for the transport rollers, the conventional measurements shown in Figs. The device has a drawback in that an error due to vibration (referred to as a run-out error) occurs due to the principle of measurement. Therefore, as a practical matter, by using a vibration-proof roller (not shown) in conjunction with the conveying roller 9, the tubular material 11
Attempts are being made to suppress the run-out of the machine as much as possible and to minimize the occurrence of run-out errors as much as possible.

更に、従来提案された他の放射線による鋼管の
肉厚測定方法として、特開昭54−114263号公報に
記載のものがある。
Furthermore, another previously proposed method for measuring the wall thickness of steel pipes using radiation is described in Japanese Patent Application Laid-Open No. 114263/1983.

この方法は、鋼管の外方から該鋼管に照射され
た放射線は、鋼管の内面に接して透過したとき減
衰量が最大となり、外面に接して透過したときに
減衰量が最小となることから、減衰量の最大点と
最小点を検知し、両者の間隔から鋼管の肉厚を測
定する方法である。
This method is based on the fact that radiation irradiated from the outside of a steel pipe has the maximum amount of attenuation when it comes into contact with the inner surface of the steel pipe and passes through it, and has the minimum amount of attenuation when it comes into contact with the outside surface and passes through it. This method detects the maximum and minimum points of attenuation and measures the wall thickness of the steel pipe from the distance between the two.

しかしこの方法の場合、放射線源として30Ci
(キユーリ)程度の放射性物質を用いたとしても、
数mm〜40mm程度の肉厚の鋼管を測定する場合、放
射性物質からの放射線量の統計的なゆらぎ現象を
考慮すると、どうしても測定に20mm秒〜1秒程度
の時間を要し、この間、測定対象の鋼管は静止し
ていることを要求される。このため、上述の測定
方法は、振動を伴つて搬送されてくる鋼管のオン
ラインでの肉厚寸法測定には使用できないという
欠点がある。そればかりではなく、放射線源から
放射線を投射するためのスリツトの幅寸法を2mm
程度とし、放射線の鋼管透過像をテレビカメラで
撮影するとすると、テレビカメラの分解能として
は1mm程度しか期待できないので、結局、本方法
による鋼管肉厚寸法の測定精度は、鋼板用厚み計
の数10μmという測定精度に比し、著るしく劣つ
た精度にならざるを得ないことが理解される。
However, in this method, 30C i is used as the radiation source.
Even if we use a radioactive substance as small as Kyuri,
When measuring a steel pipe with a wall thickness of several mm to 40 mm, taking into account statistical fluctuations in the radiation dose from radioactive materials, the measurement inevitably takes about 20 mm seconds to 1 second. steel pipes are required to remain stationary. For this reason, the above-mentioned measuring method has the disadvantage that it cannot be used for online wall thickness measurement of steel pipes that are transported with vibrations. Not only that, but the width of the slit for projecting radiation from the radiation source is 2 mm.
If we use a TV camera to take images of radiation transmitted through steel pipes, the resolution of the TV camera can only be expected to be about 1 mm, so in the end, the accuracy of measuring the wall thickness of steel pipes using this method is about 10 μm compared to that of a steel plate thickness meter. It is understood that the measurement accuracy must be significantly inferior to that of the above measurement accuracy.

本発明は、上述の如き従来の技術的事情にかん
がみなされたものであり、従つて本発明の目的
は、搬送中の管状材に心振れが起きても、肉厚測
定結果に心振れ誤差が原理的に生じることなく、
しかも測定精度の高い管状材肉厚測定装置を提供
することにある。
The present invention has been made in view of the conventional technical circumstances as described above, and therefore, an object of the present invention is to eliminate the run-out error in the wall thickness measurement results even if run-out occurs in the tubular material during transportation. without occurring in principle,
Moreover, it is an object of the present invention to provide a tubular material wall thickness measuring device with high measurement accuracy.

次に本発明の測定原理を説明する。 Next, the measurement principle of the present invention will be explained.

第3図イ,ロは本発明による肉厚測定装置の測
定原理の説明図である。第3図イにおいて、21
はγ線源のラインアレイ(以後、ライン状線源と
呼ぶ)であり、22はライン状に配置された多数
のセンサの集合(以後、ライン状センサと呼ぶ)
であり、11は管状材である。
3A and 3B are explanatory diagrams of the measurement principle of the wall thickness measuring device according to the present invention. In Figure 3 A, 21
is a line array of γ-ray sources (hereinafter referred to as a line-shaped source), and 22 is a collection of many sensors arranged in a line (hereinafter referred to as a line-shaped sensor).
and 11 is a tubular material.

すなわち、第3図イにおいて、管状材11をは
さんで対置されたライン状線源21およびライン
状センサ22の長さ寸法lを管状材11の外径寸
法より充分大にした状態で、センサ22により線
源21から放射されたγ線の減衰量を測定すれ
ば、これにより管状材11の当該断面における平
均肉厚寸法を求めることができる。第3図ロにお
いて、N0は、管状材11が存在しない場合に、
センサ22が検出する放射線(γ線)のカウント
総数を表わし、NSは管状材11が存在する場合
にセンサ22が検出する放射線(γ線)のカウン
ト総数を表わしている。このN0とNSの値から管
状材11の平均肉厚寸法を求めることができる。
しかも、ライン状線源21とセンサ22の長さ寸
法lを管状材11の外径寸法より充分大にしてお
けば、管状材11が心振れを起こしたとしても、
上記カウント総数N3の値は変化しないから、心
振れによる誤差を発生させることなしに管状材1
1の平均肉厚寸法を求めることができる。
That is, in FIG. 3A, the length l of the linear radiation source 21 and the linear sensor 22, which are placed opposite to each other with the tubular material 11 in between, is made sufficiently larger than the outer diameter of the tubular material 11, and the sensor 22 measures the amount of attenuation of the γ-rays emitted from the radiation source 21, thereby determining the average wall thickness of the tubular material 11 in the cross section. In FIG. 3B, N 0 is when the tubular material 11 is not present.
It represents the total number of counts of radiation (gamma rays) detected by the sensor 22, and N S represents the total number of counts of radiation (gamma rays) detected by the sensor 22 when the tubular material 11 is present. The average wall thickness of the tubular material 11 can be determined from the values of N 0 and N S .
Moreover, if the length l of the linear radiation source 21 and the sensor 22 is made sufficiently larger than the outer diameter of the tubular material 11, even if the tubular material 11 is caused to run out,
Since the value of the total number of counts N3 does not change, the tubular material 1 can be
The average wall thickness dimension of 1 can be determined.

なお、ライン状線源21は、本発明の一実施例
においては、第3A図に示すように構成すること
ができる。ここで第3A図イ,ロはライン状線源
の一例を示す断面構成図およびコリメータの正面
図である。
Note that, in one embodiment of the present invention, the linear radiation source 21 can be configured as shown in FIG. 3A. Here, FIGS. 3A and 3A are a cross-sectional configuration diagram showing an example of a linear radiation source and a front view of a collimator.

すなわち、空所216を有する線源容器210
内に線源ホルダー211が配置される。この線源
ホルダー211には複数個のたとえばセシウム1
37等から成る線源カプセル212が列状(ライ
ン状)に配設されている。そして、線源容器21
0の空所216内には回転式シヤツタ213が配
置され、かつ線源210にはコリメータ214が
取付けられている。このコリメータ214は千鳥
足状にあけられた多数のコリメータ穴215を有
している。回転式シヤツタ213は図示されてい
ない回転駆動機構によつて回転駆動され、シヤツ
タ板217は測定を行う際には図において紙面に
平行にされて線源カプセル212から放出された
放射線をコリメータ214に導き、測定を行なわ
ないときには図において紙面に直角にされてその
放射線を遮断する。各線源カプセル212からは
放射線は放射状に放出されるが、測定時にはコリ
メータ215のコリメータ穴214を通ることに
より、平行ビームに形成される。コリメータにお
いて、コリメータ穴を千鳥足状に配置すれば、斜
めビームの混在を防止し得て放射線散乱の影響を
除去でき、精度向上に役立つことは良く知られた
所である。
That is, a radiation source container 210 having a cavity 216
A radiation source holder 211 is placed inside. This radiation source holder 211 has a plurality of cesium 1
37 radiation source capsules 212 are arranged in a row (line shape). And the radiation source container 21
A rotary shutter 213 is disposed in the empty space 216 at 0, and a collimator 214 is attached to the radiation source 210. This collimator 214 has a large number of collimator holes 215 formed in a staggered manner. The rotary shutter 213 is rotationally driven by a rotation drive mechanism (not shown), and the shutter plate 217 is made parallel to the plane of the paper in the figure when performing measurements, and directs the radiation emitted from the source capsule 212 to the collimator 214. When not making measurements, it is perpendicular to the plane of the paper in the figure to block that radiation. Radiation is emitted radially from each source capsule 212, but during measurement, it is formed into a parallel beam by passing through the collimator hole 214 of the collimator 215. It is well known that in a collimator, if the collimator holes are arranged in a staggered manner, it is possible to prevent the mixture of oblique beams and eliminate the influence of radiation scattering, which is useful for improving accuracy.

なおまた、第3図イにおけるライン状センサ2
2は本発明の一実施例においては第3B図に示す
ように構成することができる。ここで第3B図
イ,ロはライン状センサの一例を示す概略側面図
およびコリメータの正面図である。
Furthermore, the line-shaped sensor 2 in FIG.
2 can be constructed as shown in FIG. 3B in one embodiment of the present invention. Here, FIGS. 3B and 3B are a schematic side view and a front view of a collimator, respectively, showing an example of a line-shaped sensor.

すなわち、1つの長方形状のコリメータ穴22
4を有するコリメータ220が配置され、このコ
リメータ220の後にポリビニールトルエン等の
プラスチツクシンチレータ221が取付けられ、
このプラスチツクシンチレータ221の後にアク
リル等のライトガイド222が取付けられる。ラ
イトガイド222には光電子増倍管223が設け
られ、その出力は図示されていない増幅器に導か
れる。ライン状線源21のコリメータ214のコ
リメータ穴215を通ることにより平行ビームに
なされた放射線は管状材を透過した後、ライン状
センサ22のコリメータ220のコリメータ穴2
24に入射する。このコリメータ穴224は1つ
の長方形状のものについて示したが、ライン状線
源21のコリメータ214のコリメータ穴215
のように多数のコリメータ穴が千鳥足状に配設さ
れたものとするのが測定精度を高める上で都合が
良い。
That is, one rectangular collimator hole 22
4, a plastic scintillator 221 made of polyvinyl toluene or the like is attached after this collimator 220,
A light guide 222 made of acrylic or the like is attached after the plastic scintillator 221. The light guide 222 is provided with a photomultiplier tube 223, the output of which is guided to an amplifier (not shown). The radiation made into a parallel beam by passing through the collimator hole 215 of the collimator 214 of the linear radiation source 21 passes through the tubular material, and then passes through the collimator hole 2 of the collimator 220 of the linear sensor 22.
24. Although this collimator hole 224 is shown for one rectangular one, the collimator hole 215 of the collimator 214 of the line-shaped radiation source 21
In order to improve measurement accuracy, it is convenient to arrange a large number of collimator holes in a staggered manner as shown in FIG.

次に放射線減衰量の測定により管状材の肉厚寸
法を求める測定法の原理を説明しておく。
Next, the principle of a measurement method for determining the wall thickness of a tubular material by measuring radiation attenuation will be explained.

一般に厚み寸法tの被測定物を透過してくる放
射線のセンサによる検出々力をNとすると、放射
線透過形厚さ計の基本式として次の式が成立する
ことが知られている。
In general, it is known that the following equation holds true as a basic equation for a radiation transmission type thickness meter, where N is the detection force of a sensor for radiation that passes through an object to be measured having a thickness dimension t.

N=N0EXP(−μt) …(1) 但しN0は、被測定物が存在しない(厚み寸法
t=0)場合にセンサにより検出される出力(基
準出力)を表わし、μは吸収係数と称される定数
である。
N=N 0 EXP (-μt) ...(1) However, N 0 represents the output (reference output) detected by the sensor when there is no object to be measured (thickness dimension t = 0), and μ is the absorption coefficient It is a constant called .

今、第4図に示す如く、管状材11の断面に対
し、互いに直交するx軸とy軸を定めれば、y軸
方向に沿つた管状材11の肉厚寸法tiをx座標xi
の関数として次のように表わすことができる。
Now, as shown in FIG. 4, if we define the x-axis and the y-axis that are orthogonal to each other in the cross section of the tubular material 11, the wall thickness dimension t i of the tubular material 11 along the y-axis direction can be determined by the x coordinate x i
It can be expressed as a function of

t=f(x) …(2) 従つて第3図イにおけるライン状センサ22に
よる検出々力Nsは次式で与えられる。
t=f(x)...(2) Therefore, the force Ns detected by the linear sensor 22 in FIG. 3A is given by the following equation.

NS=∫l 0N0EXP(−μ・f(x))dx …(3) 上記(3)式から各x座標における肉厚寸法tを算
出し、それと検出々力NSの関係を求めグラフに
したのが第5図である。
N S =∫ l 0 N 0 EXP (-μ・f(x)) dx …(3) Calculate the wall thickness dimension t at each x-coordinate from the above equation (3), and calculate the relationship between it and the detected force N S. Figure 5 shows the obtained graph.

第5図に示すグラフによれば、縦軸にとつた値
lo(NS/N0)が或る値からこの値の半分にまで減
少するときの肉厚寸法の変化量S(これを半価層
という)は約4.5mmであることが判る。
According to the graph shown in Figure 5, the value taken on the vertical axis
It can be seen that when l o (N S /N 0 ) decreases from a certain value to half of this value, the amount of change S in the wall thickness dimension (this is called the half-value layer) is about 4.5 mm.

一般に半価層が大きすぎても小さすぎても測定
は困難になるが、すでに広く用いられている平板
用透過形厚さ計の測定対象である通常の平板材の
半価層は約11mmであるから、この数値に比較して
上記の4.5mmという数値は、その約1/2であるか
ら、上述に述べた原理に基づく管状材の肉厚測定
装置が充分実用化可能であり、前記の厚さ計と同
程度の測定精度を期待できるものであることが判
る。
In general, measurement becomes difficult if the half-value layer is too large or too small, but the half-value layer of a normal flat plate, which is measured by the already widely used transmission type thickness gauge for flat plates, is approximately 11 mm. Compared to this value, the above-mentioned value of 4.5 mm is about 1/2 of that value, so the wall thickness measuring device for tubular materials based on the above-mentioned principle can be fully put into practical use. It can be seen that measurement accuracy comparable to that of a thickness gauge can be expected.

また第5図に見られるように、常用管において
計測を要求される肉厚3mm〜15mm(肉厚tと直径
Dの比(t/D)で見ると約0.03〜0.1)の範囲
では、減衰特性を表わすカーブが線形をなしてい
るので、それが非線形である場合に必要な補正も
不要となり、ライン状センサの検出々力から直ち
に管状材の平均肉厚寸法を求めることができる。
In addition, as shown in Figure 5, in the range of wall thickness 3 mm to 15 mm (approximately 0.03 to 0.1 in terms of the ratio of wall thickness t to diameter D (t/D)), which requires measurement for ordinary pipes, the attenuation Since the curve representing the characteristic is linear, there is no need for correction that would be required if the curve were nonlinear, and the average wall thickness of the tubular material can be immediately determined from the detection force of the linear sensor.

なお、本発明の方式では半価層は、平板の約1/
2であることを先に説明した。この事は、平板1
mm当りの厚さ変化による放射線量の変化とパイプ
約0.5mm当りの厚さ変化による放射線量の変化と
が等しい事を意味しており、従つて本方式では、
厚さ変化を平板の約2倍のきめ細かさで測定でき
る事になり、それだけ測定精度が高いと云える。
In addition, in the method of the present invention, the half-value layer is about 1/1 of the flat plate.
I explained earlier that it is 2. This thing is flat plate 1
This means that the change in radiation dose due to a change in thickness per mm is equal to the change in radiation dose due to a change in thickness per approximately 0.5 mm of the pipe. Therefore, in this method,
Thickness changes can be measured with approximately twice the fineness of a flat plate, and it can be said that the measurement accuracy is that much higher.

本発明による管状材の肉厚測定装置はストレツ
チレジユーサに用いる場合、特に好適であると云
える。ストレツチレジユーサとは、圧延仕上げ工
程に用いられるミルで、以下にその概要を説明す
る。
It can be said that the apparatus for measuring the wall thickness of a tubular material according to the present invention is particularly suitable when used in a stretch reducer. A stretch reducer is a mill used in the rolling finishing process, and its outline will be explained below.

ストレツチレジユーサは、小径継目管の最終仕
上工程のほとんどに使用されているが、その能率
的に優れた性能のため小径溶鍛接管の仕上工程に
用いられることも少なくない。ストレツチレジユ
ーサは、2ロールまたは3ロールのロールハウジ
ングを管に沿つて連続的に14〜20台配列し、管の
外径を順次圧延しながら、相隣るスタンドのロー
ル周速に差を与え、圧延中に管の長手方向に引張
力を加えることによつて、その肉厚を制御する。
この為、数種類の素管を準備すれば、種々の寸法
の管に仕上げる事が可能である。
Stretch reducers are used in most of the final finishing processes for small-diameter joint pipes, and because of their excellent efficiency, they are often used in the finishing process for small-diameter welded pipes. A stretch reducer consists of 14 to 20 roll housings of two or three rolls arranged continuously along a pipe, and while rolling the outside diameter of the pipe sequentially, the difference in the circumferential speed of the rolls of adjacent stands is applied. The wall thickness is controlled by applying tensile force in the longitudinal direction of the tube during rolling.
Therefore, by preparing several types of raw pipes, it is possible to finish pipes of various sizes.

第6図イ,ロは、上述の2ロールレジユーサの
側面図および正面図であり、第7図イ,ロは3ロ
ールレジユーサの側面図および正面図である。こ
れらの図において、31はロールを、32は圧延
中のパイプをそれぞれ示す。
6A and 6B are a side view and a front view of the above-mentioned two-roll reducer, and FIGS. 7A and 7B are a side view and a front view of the three-roll reducer. In these figures, 31 indicates a roll, and 32 indicates a pipe during rolling.

さて、上述の如きストレツチレジユーサでは、
パイプを長手方向に引張る事により肉厚を変える
訳であるから、ミルの制御あるいは運転方式の改
善を行なう為には、パイプ断面内の偏肉状況を知
るよりもむしろパイプ長手方向の平均肉厚を知る
必要がある。このことは均等の厚さの板材から製
管される溶接鋼管の場合は特に顕著である。
Now, with the stretch reducer as mentioned above,
Since the wall thickness is changed by pulling the pipe in the longitudinal direction, in order to control the mill or improve the operation method, it is necessary to find out the average wall thickness in the longitudinal direction of the pipe rather than knowing the uneven thickness within the pipe cross section. need to know. This is particularly noticeable in the case of welded steel pipes made from plate materials of uniform thickness.

また多段ミルの回転数を変える事によりパイプ
に対する張力を変え、これによつて肉厚の制御を
行なおうとする場合は、肉厚測定装置の応答は速
ければ速い程よい。更に、肉厚測定装置をストレ
ツチレジユーサに適用する際は、同ミルの入口側
または出口側に設置する事になるのであるが、こ
の部分のパイプの振動は非常に大きいのが一般で
あり、加えて防振用のピンチローラを設置しよう
としても、そのための場所もない。この様に、ス
トレツチレジユーサに本発明による肉厚測定装置
を適用した場合、心振れの影響を全く受けないと
いう利点並びに高速応答性を期待できるという利
点は特に大なる効果を発揮する。また長手方向の
肉厚むら即ち断面の平均肉厚の測定は、従来技術
によつても可能であるが、線源と検出器を各々3
個必要(最低でも)とするので高価になるが、本
装置では、線源、検出器が各1個ですむのでコス
トが低廉になるという利点がある。
Furthermore, when attempting to control the wall thickness by changing the tension on the pipe by changing the rotational speed of the multi-stage mill, the faster the response of the wall thickness measuring device, the better. Furthermore, when applying a wall thickness measurement device to a stretch reducer, it must be installed on the inlet or outlet side of the mill, and the vibration of the pipe in this area is generally very large. In addition, even if you try to install a pinch roller for vibration isolation, there is no place for it. As described above, when the wall thickness measuring device according to the present invention is applied to a stretch reducer, the advantages of being completely unaffected by runout and the ability to expect high-speed response are particularly effective. Although it is possible to measure the thickness unevenness in the longitudinal direction, that is, the average thickness of the cross section, using conventional techniques,
However, this device requires only one radiation source and one detector, so the cost is low.

本発明は鋼管のみならず、各種金属、プラスチ
ツク、ガラス、セメント、その他材質に応じてγ
線、X線、β線、紫外線、可視光線、赤外線等を
用いることにより、一般の管状材の肉厚測定に幅
広く用いる事ができる。
The present invention is applicable not only to steel pipes, but also to various metals, plastics, glass, cement, and other materials.
By using rays, X-rays, β-rays, ultraviolet rays, visible light, infrared rays, etc., it can be widely used to measure the wall thickness of general tubular materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の管状材肉厚測定装置の構成を示
す概要図、第2図は同装置の原理説明図、第3図
イ,ロは本発明による肉厚測定装置の原理説明
図、第3A図イ,ロは本発明の一実施例における
ライン状線源を示す断面構成図およびコリメータ
の正面図、第3B図イ,ロは本発明の一実施例に
おけるライン状センサを示す概略側面図およびコ
リメータの正面図、第4図は管状材の肉厚寸法と
位置の関数関係の説明図、第5図は肉厚寸法とセ
ンサによる放射線検出々力との関係を示すグラ
フ、第6図イ,ロは2ロールレジユーサの側面図
および正面図、第7図イ,ロは3ロールレジユー
サの側面図および正面図、である。 符号説明、1〜3……γ線源、4〜6……セン
サ、7……固定フレーム、8……可動フレーム、
9……搬送ローラ、10……可動フレーム駆動装
置、11……管状材、21……γ線源のラインア
レイ、22……ライン状に配置されたセンサ、3
1……ロール、32……圧延中のパイプ。
FIG. 1 is a schematic diagram showing the configuration of a conventional tubular material thickness measuring device, FIG. 2 is a diagram explaining the principle of the same device, and FIGS. 3A A and B are a cross-sectional configuration diagram showing a linear radiation source and a front view of a collimator in an embodiment of the present invention, and FIGS. 3B A and B are schematic side views showing a linear sensor in an embodiment of the present invention. and a front view of the collimator, Figure 4 is an explanatory diagram of the functional relationship between the wall thickness and position of the tubular material, Figure 5 is a graph showing the relationship between the wall thickness and the radiation detection force of the sensor, and Figure 6 is , B are a side view and a front view of a two-roll reducer, and FIGS. 7A and 7B are a side view and a front view of a three-roll reducer. Explanation of symbols, 1 to 3...γ-ray source, 4 to 6...sensor, 7...fixed frame, 8...movable frame,
9... Conveyance roller, 10... Movable frame drive device, 11... Tubular material, 21... Line array of γ-ray sources, 22... Sensors arranged in a line, 3
1...Roll, 32...Pipe being rolled.

Claims (1)

【特許請求の範囲】 1 管状材をはさんで対置され、かつ該管状材の
外径寸法を超える長さ寸法をそれぞれ有する放射
線源及び放射線検出器から成り、前記放射線源か
ら放射されたビームが前記管状材の少なくとも全
断面をよぎつて前記検出器に入射され、この検出
器において検出された放射線減衰量から前記管状
材の平均肉厚寸法を測定する装置において、 前記放射線源側と検出器側のそれぞれに、前記
管状材の外径寸法方向において千鳥足状にコリメ
ータ穴を配置されたコリメータ板部材を配置し、
前記放射線源から放射されたビームは放射線源側
コリメータ板部材を介して放射され検出器側コリ
メータ板部材を介して検出器に入射されるように
したことを特徴とする管状材の肉厚測定装置。
[Scope of Claims] 1. Consists of a radiation source and a radiation detector that are placed opposite to each other with a tubular material in between and have lengths exceeding the outer diameter of the tubular material, and the beam emitted from the radiation source is In an apparatus for measuring an average wall thickness dimension of the tubular material from the amount of radiation attenuation that is incident on the detector after passing through at least the entire cross section of the tubular material and detected by the detector, the radiation source side and the detector side a collimator plate member having collimator holes arranged in a staggered manner in the outer diameter dimension direction of the tubular material,
A wall thickness measuring device for a tubular material, characterized in that the beam emitted from the radiation source is emitted through a collimator plate member on the radiation source side and is incident on a detector through a collimator plate member on the detector side. .
JP57040180A 1982-03-16 1982-03-16 Device for measuring thickness of pipe shaped material Granted JPS58158510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57040180A JPS58158510A (en) 1982-03-16 1982-03-16 Device for measuring thickness of pipe shaped material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57040180A JPS58158510A (en) 1982-03-16 1982-03-16 Device for measuring thickness of pipe shaped material

Publications (2)

Publication Number Publication Date
JPS58158510A JPS58158510A (en) 1983-09-20
JPS6322525B2 true JPS6322525B2 (en) 1988-05-12

Family

ID=12573576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57040180A Granted JPS58158510A (en) 1982-03-16 1982-03-16 Device for measuring thickness of pipe shaped material

Country Status (1)

Country Link
JP (1) JPS58158510A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60104710U (en) * 1983-12-21 1985-07-17 川崎製鉄株式会社 Radiographic wall thickness measuring device for tubular materials
JPS62194447A (en) * 1986-02-21 1987-08-26 Furukawa Electric Co Ltd:The Method for non-destructive measurement of article to be measured by x-rays

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543499A (en) * 1978-09-20 1980-03-27 Philips Nv Method of and apparatus for measuring dimmensions of hollow body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543499A (en) * 1978-09-20 1980-03-27 Philips Nv Method of and apparatus for measuring dimmensions of hollow body

Also Published As

Publication number Publication date
JPS58158510A (en) 1983-09-20

Similar Documents

Publication Publication Date Title
US4695729A (en) Tubular part wall thickness measuring device
EP0664437B1 (en) Method and apparatus for obtaining non-destructive measurements for regularly-shaped objects
JP5540767B2 (en) Method and apparatus for measuring length of hot long material
US20040234027A1 (en) System and method for the measurement of the layer thickness of a multi-layer pipe
JPH0311646B2 (en)
JPS6322525B2 (en)
CA1210529A (en) Tubular part wall thickness measuring device
GB2146115A (en) Tube wall thickness
US3609368A (en) Apparatus and method for checking the diameter of elongated structures
JPS63242375A (en) Method for measuring thickness of coated film
JP4483809B2 (en) Radiographic tubular material wall thickness measuring device
JPS5916527B2 (en) How to correct meandering strips
CN214702165U (en) Device for transversely detecting size of circular tube by using X-ray
JPS6255549A (en) Beta rays absorption type continuous floating dust measuring apparatus
JP3129503B2 (en) Dimension inspection method for ring-shaped seal members
JP4483810B2 (en) Radiographic tubular material wall thickness measuring device
JPH08271241A (en) Method and device for defecting eccentricity and wall thickness distribution of tubular material
US3440421A (en) Statistical sampling of a moving product using a gauging device with a variable sensing area functionally related to a variable product speed
JPH01308907A (en) System for measuring shape of steel pipe using gamma-ray
JP2016217996A (en) Radioactivity concentration measuring device
JPH0316604B2 (en)
JP2014041057A (en) Piping axial direction scan type thickness reduction inspection device and method of heat insulator piping using radioactive isotope which is authentification apparatus with display
JPS61161481A (en) Measuring device of radioactivity
JPS6253043B2 (en)
JPH0587325B2 (en)