JP2970198B2 - Surface defect detection method - Google Patents

Surface defect detection method

Info

Publication number
JP2970198B2
JP2970198B2 JP4093837A JP9383792A JP2970198B2 JP 2970198 B2 JP2970198 B2 JP 2970198B2 JP 4093837 A JP4093837 A JP 4093837A JP 9383792 A JP9383792 A JP 9383792A JP 2970198 B2 JP2970198 B2 JP 2970198B2
Authority
JP
Japan
Prior art keywords
surface defect
level
reflected echo
ultrasonic wave
echo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4093837A
Other languages
Japanese (ja)
Other versions
JPH05264513A (en
Inventor
繁俊 兵藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4093837A priority Critical patent/JP2970198B2/en
Publication of JPH05264513A publication Critical patent/JPH05264513A/en
Application granted granted Critical
Publication of JP2970198B2 publication Critical patent/JP2970198B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は超音波を用いて鋼材の表
面欠陥を検出する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting a surface defect of a steel material by using ultrasonic waves.

【0002】[0002]

【従来の技術】鋼材の表面の欠陥を検査する表面欠陥検
出方法としては、超音波を利用して表面の欠陥を検出す
る方法が知られている。この検出方法としては、特開昭
61-266907 号公報に開示された如き方法がある。この方
法は、検査対象の鋼材の表面に対して超音波を垂直に入
射させてその反射エコーを検出し、検出した反射エコー
のレベルの高さに基づいて鋼材の表面欠陥を検出するも
のであり、鋼材に表面欠陥(凹凸)が存在すると、その
部分に入射した超音波が散乱することにより、その反射
エコーのレベルが、平滑な表面の健全部での反射エコー
のレベルよりも低くなる特性を利用し、所定レベルより
も低いレベルの反射エコーが得られる鋼材の部分を表面
欠陥として検出するようになっていた。
2. Description of the Related Art As a surface defect detection method for inspecting a surface defect of a steel material, a method of detecting a surface defect using ultrasonic waves is known. This detection method is disclosed in
There is a method as disclosed in JP-A-61-266907. In this method, ultrasonic waves are perpendicularly incident on the surface of a steel material to be inspected, the reflected echo is detected, and a surface defect of the steel material is detected based on the level of the detected reflected echo. If there is a surface defect (irregularity) in the steel material, the level of the reflected echo will be lower than the level of the reflected echo in a healthy part of the smooth surface due to the scattering of the ultrasonic wave incident on that part. Utilizing such a technique, a portion of a steel material from which a reflection echo of a level lower than a predetermined level is obtained is detected as a surface defect.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前述の
如き従来の表面欠陥検出方法においては、検出すべき最
小表面欠陥と超音波の周波数との関係が確立されておら
ず、最小表面欠陥を変更する場合には、所定の検出精度
を維持しつつ迅速に対応するたことが難しいという問題
があった。
However, in the conventional surface defect detection method as described above, the relationship between the minimum surface defect to be detected and the frequency of the ultrasonic wave is not established, and the minimum surface defect is changed. In such a case, there is a problem that it is difficult to respond quickly while maintaining a predetermined detection accuracy.

【0004】本発明は斯かる事情に鑑みてなされたもの
であり、検出すべき最小表面欠陥の検出精度に合わせて
適正なしきい値及び超音波の周波数の選定を可能とした
表面欠陥検出方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and provides a surface defect detection method capable of selecting an appropriate threshold value and ultrasonic frequency in accordance with the detection accuracy of the minimum surface defect to be detected. The purpose is to provide.

【0005】[0005]

【課題を解決するための手段】本発明に係る表面欠陥検
出方法は、探触子から出力される超音波を被検査材の表
面へ集束させて垂直に入射させ、その表面での反射エコ
ーを受信し、受信した反射エコーのレベルに基づいて前
記被検査材の表面欠陥を検出する表面欠陥検出方法にお
いて、被検査材の健全部の表面からの反射エコーのレベ
ルに対する予め定めた割合を表面欠陥からの反射エコー
か否かを判別するしきい値とし、検出すべき最小表面欠
陥からの反射エコーのレベルが、前記しきい値を下まわ
るように、被検査材の健全部の表面からの反射エコーの
レベルに対する最小表面欠陥からの反射エコーのレベル
の低下率に基づいて超音波の周波数を選定し、定めた周
波数よりも高い周波数の正弦波よりなる超音波を前記探
触子から出力させて検出すべき最小表面欠陥の幅と略等
しくなるよう集束して被検査材の表面へ入射させ、その
反射エコーのレベルと、前記しきい値とを比較し、その
比較結果に基づいて被検査材の表面欠陥を検出すること
を特徴とする。
According to the present invention, there is provided a method for detecting a surface defect, comprising the steps of: focusing an ultrasonic wave output from a probe on a surface of a material to be inspected and vertically entering the surface; In the surface defect detection method for receiving and detecting a surface defect of the inspection target material based on the level of the received reflection echo, a predetermined ratio to a level of the reflection echo from the surface of the sound portion of the inspection target material is determined by the surface defect detection method. A threshold value for determining whether or not the reflected echo is from the surface, the level of the reflected echo from the smallest surface defect to be detected is lower than the threshold value, and the reflection from the surface of the sound portion of the inspection material is The ultrasonic frequency is selected based on the reduction rate of the level of the reflected echo from the minimum surface defect with respect to the level of the echo, and an ultrasonic wave composed of a sine wave having a frequency higher than the determined frequency is output from the probe. The light is focused so as to be substantially equal to the width of the minimum surface defect to be detected and made incident on the surface of the material to be inspected, and the level of the reflected echo is compared with the threshold value. Is characterized by detecting a surface defect.

【0006】[0006]

【作用】超音波を被検査材の表面へ集束させて垂直に入
射させる場合、その反射エコーのレベルは、表面欠陥の
位置が超音波入射点から遠ざかる(又は近づく)に従っ
て低くなる特性があり、このため、反射エコーのレベル
について表面欠陥を明確に検出できるしきい値を定め、
このしきい値と、反射エコーのレベルとを比較すれば、
前記しきい値よりも低いレベルの反射エコーが表面欠陥
を表すエコーであると判別することが可能である。ま
た、表面欠陥の深さ(高さ)の大小変化に伴う反射エコ
ーのレベル変化は超音波の周波数が高くなるほど大とな
る特性があり、超音波の周波数を高く設定すれば、反射
エコーのレベルの低下率が大きいことで表面欠陥の検出
精度を高め得る。従って、前述の夫々の特性に基づい
て、高い周波数を選択すれば良い。また、探触子から出
射させる超音波は、正弦波よりなる超音波とすることに
より超音波の周波数分布が狭帯域となるので、超音波の
周波数の変更が容易となる。
When the ultrasonic wave is focused on the surface of the material to be inspected and is incident vertically, the level of the reflected echo decreases as the position of the surface defect moves away (or approaches) from the ultrasonic wave incident point. For this reason, a threshold value for clearly detecting surface defects is set for the level of the reflected echo,
By comparing this threshold with the level of the reflected echo,
It is possible to determine that a reflected echo having a level lower than the threshold value is an echo representing a surface defect. In addition, the level change of the reflected echo accompanying the change in the depth (height) of the surface defect has a characteristic that the higher the frequency of the ultrasonic wave, the larger the change. The higher the frequency of the ultrasonic wave, the higher the level of the reflected echo. , The detection accuracy of surface defects can be increased. Therefore, a higher frequency may be selected based on each of the above characteristics. Further, since the ultrasonic wave emitted from the probe is an ultrasonic wave composed of a sine wave, the frequency distribution of the ultrasonic wave becomes narrower, so that the frequency of the ultrasonic wave can be easily changed.

【0007】[0007]

【実施例】以下本発明方法をその実施例を示す図面に基
づいて具体的に説明する。図1は本発明に係る表面欠陥
検出方法の実施に使用する表面欠陥検出装置の構成を示
すブロック図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. FIG. 1 is a block diagram showing a configuration of a surface defect detection device used for implementing a surface defect detection method according to the present invention.

【0008】図中1は被検査材たる鋼管であり、超音波
の発信及び受信を行う探触子2は、前記鋼管1の表面と
の間に水8を介在させた状態で鋼管1の表面に対し垂直
に設定される。前記探触子2には探触子2を励振する発
振器3の出力が入力されており、探触子2は、前記励振
により、後述する如く定めた所定周波数の正弦波(sin
波)よりなる超音波を、鋼管1の表面に垂直入射させ
る。前記発振器3の励振によって探触子2から発生する
超音波は、前述の如く所定周波数の正弦波よりなる超音
波であり、前記発振器3の励振周波数を調節することに
よって、その周波数を任意に変更することが可能となっ
ている。探触子2には、音響レンズ20が備えられてお
り、該音響レンズ20によって前記超音波は、鋼管1の健
全部の表面を焦点位置とし、この焦点位置において最小
のビーム径に集束させられて鋼管1の表面に入射するよ
うになっている。
In the drawing, reference numeral 1 denotes a steel pipe as a material to be inspected. A probe 2 for transmitting and receiving ultrasonic waves is provided on a surface of the steel pipe 1 with water 8 interposed between the probe 2 and the surface of the steel pipe 1. Is set perpendicular to. The output of the oscillator 3 that excites the probe 2 is input to the probe 2, and the probe 2 generates a sine wave (sin wave) having a predetermined frequency determined as described later by the excitation.
The ultrasonic wave composed of the wave (wave) is vertically incident on the surface of the steel pipe 1. The ultrasonic wave generated from the probe 2 by the excitation of the oscillator 3 is an ultrasonic wave composed of a sine wave having a predetermined frequency as described above, and the frequency is arbitrarily changed by adjusting the excitation frequency of the oscillator 3. It is possible to do. The probe 2 is provided with an acoustic lens 20. The acoustic lens 20 focuses the ultrasonic wave on the surface of the sound portion of the steel tube 1 at the focal position, and focuses the ultrasonic wave at the focal position to the minimum beam diameter. And enters the surface of the steel pipe 1.

【0009】そして、鋼管1の表面での前記超音波の反
射によって生じる反射エコーは、探触子2によって受信
され、この探傷信号は増幅器4へ入力される。増幅器4
に入力された探傷信号は増幅されて検波器5へ出力され
る。
[0009] The reflected echo generated by the reflection of the ultrasonic wave on the surface of the steel pipe 1 is received by the probe 2, and the flaw detection signal is input to the amplifier 4. Amplifier 4
Is amplified and output to the detector 5.

【0010】検波器5は前記探傷信号を所定の信号に整
形し、整形した探傷信号をゲート回路6へ出力する。ま
た、ゲート回路6には、前記探傷信号の他に表面欠陥を
判別するための探傷信号のレベルに関するしきい値の情
報が与えられている。ゲート回路6は予備探傷により、
人工的に設けた表面欠陥が検出し得る時間軸上の位置に
ゲートが設定されており、反射エコーのうちその信号レ
ベルが、前記しきい値以下の信号を、表面欠陥を表す欠
陥信号として認識し、警報を出力するようになってい
る。なお、7はゲート回路6に入力された探傷信号とゲ
ート位置とを画像表示する表示器である。
The detector 5 shapes the flaw detection signal into a predetermined signal, and outputs the shaped flaw detection signal to the gate circuit 6. In addition to the flaw detection signal, the gate circuit 6 is provided with threshold value information regarding the level of the flaw detection signal for determining a surface defect. The gate circuit 6 performs preliminary flaw detection.
A gate is set at a position on the time axis at which an artificially provided surface defect can be detected, and a signal whose signal level is equal to or less than the threshold value among the reflected echoes is recognized as a defect signal representing the surface defect. Then, an alarm is output. Reference numeral 7 denotes a display for displaying the flaw detection signal input to the gate circuit 6 and the gate position in an image.

【0011】次に前述の如き表面欠陥検出装置の動作に
より実施される表面欠陥検出方法の基本原理について説
明する。図2は前述の装置における探触子2から超音波
の反射位置までの距離と反射エコーのレベルと超音波の
周波数との相関関係を示すグラフであり、縦軸に反射エ
コーのレベル、横軸に探触子2から超音波の反射位置ま
での距離(超音波を集束するための音響レンズ20はそ
の焦点が鋼材の健全部の表面と一致するよう初期設定さ
れるから焦点位置を中心にしてそれよりも遠い側を+、
近い側を−で示してある。)を夫々とってある。また、
グラフ中には、超音波の周波数が、低周波数である場合
は実線、高周波数である場合は破線で示してある。
Next, the basic principle of a surface defect detection method implemented by the operation of the above-described surface defect detection device will be described. FIG. 2 is a graph showing the correlation between the distance from the probe 2 to the ultrasonic reflection position, the level of the reflected echo, and the frequency of the ultrasonic wave in the above-described apparatus. (The distance from the probe 2 to the ultrasonic wave reflection position (the acoustic lens 20 for focusing the ultrasonic wave is initially set so that the focal point coincides with the surface of the healthy part of the steel material, so the focal point position is centered) + On the farther side,
The near side is indicated by-. ). Also,
In the graph, the ultrasonic frequency is indicated by a solid line when the frequency is low, and is indicated by a broken line when the frequency is high.

【0012】図2のグラフから明らかな如く、反射エコ
ーのレベルは、焦点位置からの反射エコーのレベルが最
も大きく、距離が長く(又は短く)なるに従って、曲線
的に減少する特性がある。また、前記距離が長く(又は
短く)なるに伴って生じる反射エコーのレベル低下率
は、超音波の周波数が高くなるに従って大きくなる特性
があることが解る。
As is apparent from the graph of FIG. 2, the level of the reflected echo from the focal position is the largest, and has a characteristic of decreasing in a curve as the distance becomes longer (or shorter). Also, it can be seen that the rate of decrease in the level of the reflected echo, which occurs as the distance becomes longer (or shorter), increases as the frequency of the ultrasonic wave increases.

【0013】このため、反射エコーのレベルが焦点から
の距離に応じて低下するという特性を利用すると、前記
図2に示す焦点位置での反射エコーのレベルが所定レベ
ル以下となる反射エコーが、前記焦点位置(鋼管1の健
全部の表面)から所定距離だけ遠い位置(又は近い位
置)で反射したエコーであるので、その反射エコーは表
面欠陥で反射したエコーであるとみなすことができる。
For this reason, utilizing the characteristic that the level of the reflected echo decreases with the distance from the focal point, the reflected echo at the focal point position shown in FIG. Since the echo is reflected at a position distant (or close) by a predetermined distance from the focal position (the surface of the healthy part of the steel pipe 1), the reflected echo can be regarded as an echo reflected by a surface defect.

【0014】具体的には、検査対象の鋼管1において検
出しようとする表面欠陥のうちで、その高さ又は深さが
最も小さい表面欠陥(以下最小表面欠陥という)からの
反射エコーのレベルが、前記健全部の表面である焦点位
置からの反射エコーのレベルと明確に区別できる値(例
えば、健全部の表面の焦点位置からの反射エコーのレベ
ルの70%)として予め定めたしきい値S(図2参照)以
下となるような、例えば図2における一点鎖線で示す周
波数を予め求めておき、この周波数又はこれよりも高い
周波数の超音波を探触子2から発生させる。
Specifically, among the surface defects to be detected in the steel pipe 1 to be inspected, the level of the reflected echo from the surface defect having the smallest height or depth (hereinafter referred to as the minimum surface defect) is: A predetermined threshold value S (as a value that can be clearly distinguished from the level of the reflected echo from the focal position on the surface of the healthy part (eg, 70% of the level of the reflected echo from the focal position on the surface of the healthy part)) The following frequency, for example, indicated by a dashed line in FIG. 2 is obtained in advance, and the probe 2 generates an ultrasonic wave having this frequency or a frequency higher than this frequency.

【0015】このようにすれば、その高さ又は深さが前
記最小表面欠陥の高さ又は深さよりも大である表面欠陥
からの反射エコーのレベルは前記しきい値Sよりも小と
なるから、前記しきい値S以下の反射エコーが得られた
場合は、その反射エコーは表面欠陥で反射したエコーで
あるとみることができる。また、前述の如く求めた周波
数よりも高い周波数を探触子2から発生させるようにす
れば、高さ又は深さがより小である表面欠陥が検出でき
る。
According to this configuration, the level of a reflected echo from a surface defect whose height or depth is greater than the height or depth of the minimum surface defect is smaller than the threshold value S. When a reflected echo equal to or less than the threshold value S is obtained, the reflected echo can be regarded as an echo reflected by a surface defect. If the probe 2 generates a frequency higher than the frequency obtained as described above, a surface defect having a smaller height or depth can be detected.

【0016】また、前記超音波は、音響レンズ20によっ
て、鋼管1の表面にて所定径に集束させられるが、この
超音波のビーム径は、検出しようとする表面欠陥の幅に
応じて変更すればよいが、その幅が最小である表面欠陥
の頂部及び底部においてその欠陥の幅とほぼ同等の径と
することが必要である。
The ultrasonic waves are focused on the surface of the steel pipe 1 to a predetermined diameter by the acoustic lens 20, and the beam diameter of the ultrasonic waves is changed according to the width of the surface defect to be detected. However, it is necessary to make the diameter at the top and bottom of the surface defect having the minimum width substantially equal to the width of the defect.

【0017】これは、以下に示す理由によるためであ
る。図3は探触子2から発生する超音波の鋼管1表面に
おける入射状態を示す模式図である。前述の如く鋼管1
の表面で反射する超音波Uは、鋼管1の健全部で反射す
る場合はそのエネルギの大部分が正反射するためレベル
の高い反射エコーが得られるが、鋼管1に表面欠陥が存
在する場合は、超音波Uのビーム径が表面欠陥Aの幅W
より大きくなると、表面欠陥Aの周辺の健全部で反射す
る反射エコーが多くなり、表面欠陥Aからの反射エコー
が少なくなって表面欠陥Aが検出できなくなるため、可
能な限りその全てのエネルギを表面欠陥Aに入射するよ
うにしなければならない。これを実現するためには、超
音波Uのビーム径Rを、検出しようとする表面欠陥のう
ちで、その幅が最小である表面欠陥Aの頂部又は底部に
おいて、その部分よりもビーム径Rが拡がらないように
することが必要であるので、超音波Uのビーム径Rは、
前記頂部又は底部においてその表面欠陥Aの幅Wとほぼ
同等の径とすることが必要となる。
This is for the following reason. FIG. 3 is a schematic diagram showing an incident state of ultrasonic waves generated from the probe 2 on the surface of the steel pipe 1. Steel pipe 1 as described above
When the ultrasonic wave U reflected on the surface of the steel tube 1 is reflected on a sound portion of the steel pipe 1, most of the energy is specularly reflected, so that a high-level reflected echo can be obtained. The beam diameter of the ultrasonic wave U is equal to the width W of the surface defect A.
When it becomes larger, the number of reflected echoes reflected at a sound portion around the surface defect A increases, and the number of reflected echoes from the surface defect A decreases, so that the surface defect A cannot be detected. It must be incident on defect A. To realize this, the beam diameter R of the ultrasonic wave U is set such that the beam diameter R is smaller at the top or bottom of the surface defect A whose width is minimum among the surface defects to be detected. Since it is necessary not to spread, the beam diameter R of the ultrasonic wave U is
It is necessary that the diameter at the top or bottom is substantially equal to the width W of the surface defect A.

【0018】以上説明した如き原理に基づいて、前述の
表面欠陥検出装置は、鋼管1の表面欠陥を検出する。即
ち、発振器3は前述の如く定められる周波数の正弦波よ
りなる超音波を発生させるべく探触子2を励振し、これ
により探触子2から正弦波よりなる超音波を鋼管1の表
面に入射させ、その反射エコーが探触子2にて受信さ
れ、受信した反射エコーを表す探傷信号が増幅器4,検
波器5を介してゲート回路6に与えられ、ゲート回路6
において、前述の如きしきい値S以下である反射エコー
の探傷信号が判別された場合は、表面欠陥が存在するこ
とを表す警報が出力されるようになっている。
On the basis of the principle as described above, the above-described surface defect detection device detects a surface defect of the steel pipe 1. That is, the oscillator 3 excites the probe 2 to generate an ultrasonic wave having a sine wave having the frequency determined as described above, and thereby the ultrasonic wave having the sine wave is incident on the surface of the steel pipe 1 from the probe 2. Then, the reflected echo is received by the probe 2, and a flaw detection signal representing the received reflected echo is given to the gate circuit 6 via the amplifier 4 and the detector 5, and the gate circuit 6
In the above, when a flaw detection signal of a reflected echo that is equal to or smaller than the threshold value S as described above is determined, an alarm indicating that a surface defect exists is output.

【0019】以上の如き表面欠陥検出方法では、鋼管1
に表面欠陥が存在すると、音響レンズ20により鋼管1表
面で集束させられる超音波による、表面欠陥の頂部又は
底部での反射エコーのレベルが、鋼管1の健全部の表面
での反射エコーのレベルよりも低くなる特性を利用して
表面欠陥を検出するため、表面欠陥を、その形状の如何
に関わらず検出できる。
In the surface defect detection method as described above, the steel pipe 1
If there is a surface defect, the level of the reflected echo at the top or bottom of the surface defect due to the ultrasonic waves focused on the surface of the steel tube 1 by the acoustic lens 20 is higher than the level of the reflected echo at the surface of the sound portion of the steel tube 1 Since the surface defect is detected by utilizing the characteristic of lowering the surface defect, the surface defect can be detected irrespective of its shape.

【0020】[0020]

【発明の効果】以上詳述した如く本発明に係る表面欠陥
検出方法においては、反射エコーに対する欠陥か否かの
判断基準となるしきい値と、健全部での反射エコーのレ
ベルに対する欠陥部での反射エコーのレベルの低下率と
を配慮して超音波の周波数を選定することで最小表面欠
陥を適宜に設定することが出来、表面欠陥の検出精度が
向上する等本発明は優れた効果を奏する。
As described above in detail, in the surface defect detection method according to the present invention, the threshold value used as a criterion for judging whether or not the defect is a reflection echo, and the defect portion relative to the level of the reflection echo in the sound portion are determined. By selecting the frequency of the ultrasonic wave in consideration of the rate of decrease in the level of the reflected echo, the minimum surface defect can be appropriately set, and the detection accuracy of the surface defect is improved. Play.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る表面欠陥検出方法の実施に使用す
る表面欠陥検出装置の構成を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of a surface defect detection device used for implementing a surface defect detection method according to the present invention.

【図2】表面欠陥検出装置における探触子から超音波の
反射位置までの距離と反射エコーのレベルと超音波の周
波数との相関関係の特性を示すグラフである。
FIG. 2 is a graph showing a characteristic of a correlation between a distance from a probe to an ultrasonic reflection position, a level of a reflected echo, and an ultrasonic frequency in the surface defect detection device.

【図3】探触子から発生する超音波の鋼管表面における
入射状態を示す模式図である。
FIG. 3 is a schematic diagram showing an incident state of ultrasonic waves generated from a probe on a surface of a steel pipe.

【符号の説明】[Explanation of symbols]

1 鋼管 2 探触子 6 ゲート回路 20 音響レンズ Reference Signs List 1 steel pipe 2 probe 6 gate circuit 20 acoustic lens

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 探触子から出力される超音波を被検査材
の表面へ集束させて垂直に入射させ、その表面での反射
エコーを受信し、受信した反射エコーのレベルに基づい
て前記被検査材の表面欠陥を検出する表面欠陥検出方法
において、 被検査材の健全部の表面からの反射エコーのレベルに対
する予め定めた割合を表面欠陥からの反射エコーか否か
を判別するしきい値とし、検出すべき最小表面欠陥から
の反射エコーのレベルが、前記しきい値を下まわるよう
に、被検査材の健全部の表面からの反射エコーのレベル
に対する最小表面欠陥からの反射エコーのレベルの低下
率に基づいて超音波の周波数を選定し、定めた周波数よ
りも高い周波数の正弦波よりなる超音波を前記探触子か
ら出力させて検出すべき最小表面欠陥の幅と略等しくな
るよう集束して被検査材の表面へ入射させ、その反射エ
コーのレベルと、前記しきい値とを比較し、その比較結
果に基づいて被検査材の表面欠陥を検出することを特徴
とする表面欠陥検出方法。
An ultrasonic wave output from a probe is focused on a surface of a material to be inspected and vertically incident thereon, a reflected echo on the surface is received, and the ultrasonic wave is received based on a level of the received reflected echo. In a surface defect detection method for detecting a surface defect of an inspection material, a predetermined ratio to a level of a reflection echo from a surface of a healthy part of the inspection material is set as a threshold value for determining whether or not the reflection echo is from a surface defect. The level of the reflected echo from the minimum surface defect with respect to the level of the reflected echo from the surface of the sound portion of the inspection material is set such that the level of the reflected echo from the minimum surface defect to be detected falls below the threshold value. The frequency of the ultrasonic wave is selected based on the drop rate, and the width of the minimum surface defect to be detected by outputting the ultrasonic wave composed of a sine wave having a frequency higher than the determined frequency from the probe is detected. A surface defect of the material to be inspected which is detected by comparing the level of the reflected echo with the threshold value and detecting the surface defect based on the comparison result. Detection method.
JP4093837A 1992-03-18 1992-03-18 Surface defect detection method Expired - Fee Related JP2970198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4093837A JP2970198B2 (en) 1992-03-18 1992-03-18 Surface defect detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4093837A JP2970198B2 (en) 1992-03-18 1992-03-18 Surface defect detection method

Publications (2)

Publication Number Publication Date
JPH05264513A JPH05264513A (en) 1993-10-12
JP2970198B2 true JP2970198B2 (en) 1999-11-02

Family

ID=14093507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4093837A Expired - Fee Related JP2970198B2 (en) 1992-03-18 1992-03-18 Surface defect detection method

Country Status (1)

Country Link
JP (1) JP2970198B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6518205B2 (en) * 2016-03-07 2019-05-22 株式会社日立パワーソリューションズ Ultrasonic inspection method and ultrasonic inspection apparatus

Also Published As

Publication number Publication date
JPH05264513A (en) 1993-10-12

Similar Documents

Publication Publication Date Title
CA2496370C (en) Ultrasonic flaw detecting method and ultrasonic flaw detector
JP2004361321A (en) Defect evaluating apparatus of underground structure, defect evaluating method and program for making computer execute the same
KR101949875B1 (en) Apparatus and method for detecting defects of structures
JP2011141211A (en) Apparatus, method, and program for evaluating defect of underground structure
JP2970198B2 (en) Surface defect detection method
RU2592044C1 (en) Method for ultrasonic measurement and ultrasonic measuring device
JPH09171005A (en) Method for discriminating kind of defect by ultrasonic flaw detection
JP2000352563A (en) Ultrasonic flaw detector for cladding tube
JPS58213248A (en) Method and apparatus for discriminating defect by ultrasonic wave
RU2662464C1 (en) Method for ultrasonic inspection
RU2191376C2 (en) Method measuring sizes of defects in process of ultrasonic inspection of articles
JPH09138222A (en) Ultrasonic inspection method for cast piece or rolled steel material
JPH08211028A (en) Ultrasonic flaw detecting method and apparatus
JPS6342744B2 (en)
JPH11287790A (en) Ultrasonic flaw detection method
JP4552230B2 (en) Ultrasonic flaw detection method and apparatus
JP2001004602A (en) Ultrasonic flaw detecting method and apparatus
JP2513013B2 (en) Ultrasonic flaw detection method
JPH0679016B2 (en) Method and apparatus for ultrasonic inspection of concave corners
JP3531019B2 (en) Defect identification method by ultrasonic flaw detection
JPH05172789A (en) Ultrasonic flaw detector
JPH05264514A (en) Surface defect detection method
JPS60190855A (en) Dual-probe ultrasonic flaw detection apparatus
JPH0778491B2 (en) Ultrasonic inspection method and device
JPS61151458A (en) C-scanning ultrasonic flaw detection method and apparatus thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees