JP2966203B2 - Translucent ceramics and method of manufacturing the same - Google Patents
Translucent ceramics and method of manufacturing the sameInfo
- Publication number
- JP2966203B2 JP2966203B2 JP4199214A JP19921492A JP2966203B2 JP 2966203 B2 JP2966203 B2 JP 2966203B2 JP 4199214 A JP4199214 A JP 4199214A JP 19921492 A JP19921492 A JP 19921492A JP 2966203 B2 JP2966203 B2 JP 2966203B2
- Authority
- JP
- Japan
- Prior art keywords
- plzt
- lead
- present
- reduction
- transmittance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000919 ceramic Substances 0.000 title claims description 34
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 239000010936 titanium Substances 0.000 claims description 20
- 239000000203 mixture Substances 0.000 claims description 13
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 8
- 229910052746 lanthanum Inorganic materials 0.000 claims description 8
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 8
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 claims description 8
- 229910052719 titanium Inorganic materials 0.000 claims description 8
- 238000002834 transmittance Methods 0.000 description 17
- 239000007789 gas Substances 0.000 description 14
- 238000009413 insulation Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- 230000003287 optical effect Effects 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 238000005498 polishing Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007518 final polishing process Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- CPBQJMYROZQQJC-UHFFFAOYSA-N helium neon Chemical compound [He].[Ne] CPBQJMYROZQQJC-UHFFFAOYSA-N 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000001420 photoelectron spectroscopy Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Insulating Materials (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、光学用ディバイス等
に用いられる鉛(Pb)、ランタニウム(La)、ジル
コニウム(Zr)、チタニウム(Ti)の各酸化物を主
成分とする透光性セラミックスおよびその製造方法に係
り、特に透光性セラミックスの低波長領域での透過率を
高めるとともに、電気的な絶縁抵抗を低減させることに
よって特性の安定化を可能とした透光性セラミックスお
よびその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a translucent ceramic mainly containing oxides of lead (Pb), lanthanum (La), zirconium (Zr) and titanium (Ti) used for optical devices and the like. And a method of manufacturing the same, in particular, a translucent ceramic having improved transmittance in a low wavelength region of the translucent ceramic and capable of stabilizing characteristics by reducing electrical insulation resistance, and a method of manufacturing the same About.
【0002】[0002]
【従来の技術】光通信、光プリンター等に用いられる光
シャッターの他、種々の光学用ディバイスとして用いら
れる鉛(Pb)、ランタニウム(La)、ジルコニウム
(Zr)、チタニウム(Ti)の各酸化物を主成分とす
る透光性セラミックス(以下、PLZTという)は、該
セラミックスを通過する光の散乱あるいは吸収等を防止
するために透過率の向上が強く望まれている。2. Description of the Related Art Oxides of lead (Pb), lanthanum (La), zirconium (Zr), and titanium (Ti) used as various optical devices in addition to optical shutters used in optical communication and optical printers. There is a strong demand for a translucent ceramic (hereinafter, referred to as PLZT) containing, as a main component, an improvement in transmittance in order to prevent scattering or absorption of light passing through the ceramic.
【0003】PLZTの透過率の向上を達成する方法と
して、本願発明者は先に、PLZTの焼成を理論密度の
97%以上の密度まで真空中にて実施し、さらに熱間静
水圧プレス処理(以下、HIP処理という)を施す製造
方法(特開昭62−105955号)や、真空中での焼
成を完了した焼成体の厚さを1.5mm以下とした後H
IP処理を施す製造方法(特開平3−315360号)
等を提案した。これらの製造方法によって得られたPL
ZTは、従来のPLZTに比べその透過率が大きく向上
していることが確認できた。As a method for achieving an improvement in the transmittance of PLZT, the inventor of the present application first fired PLZT in a vacuum to a density of 97% or more of the theoretical density and further performed hot isostatic pressing ( After that, after the thickness of the fired body which has been fired in a vacuum is reduced to 1.5 mm or less, H
Manufacturing method of performing IP processing (JP-A-3-315360)
Etc. proposed. PL obtained by these manufacturing methods
It was confirmed that the transmittance of ZT was greatly improved as compared with the conventional PLZT.
【0004】[0004]
【発明が解決しようとする課題】上記の製造方法によっ
て得られるPLZTは、その厚さが0.5mmで該PL
ZTを通過する光の波長が633nmのヘリウム・ネオ
ンレーザー等の場合、透過率は70%程度(反射損失を
考慮するとほぼ100%)と極めて高い値を示し、光シ
ャッターの用途を大幅に拡大することができた。しか
し、上記のような所謂長波長領域の光でなく400nm
程度の低波長領域(通常、500nm以下)の光では、
光の吸収が大きく、透過率も25〜30%程度と低くな
ることが確認された。The PLZT obtained by the above manufacturing method has a thickness of 0.5 mm and
In the case of a helium-neon laser or the like whose light passing through the ZT has a wavelength of 633 nm, the transmittance shows a very high value of about 70% (approximately 100% in consideration of reflection loss), greatly expanding the use of an optical shutter. I was able to. However, instead of the light in the so-called long wavelength region as described above, 400 nm
For light in the low wavelength range (usually 500 nm or less),
It was confirmed that light absorption was large and the transmittance was as low as about 25 to 30%.
【0005】最近の光シャッターの用途は一層拡大する
傾向にあるが、上記低波長領域において高い透過率を有
するPLZTが提案されておらず、これらの用途拡大を
拒む一要因ともなっていた。[0005] Recently, the use of optical shutters tends to be further expanded, but PLZT having a high transmittance in the low wavelength region has not been proposed, which has been a factor that refused to expand these applications.
【0006】また、従来から使用されているPLZT
は、光シャッター等の用途における特性向上として、透
過率の向上を主眼に開発されてきたが、本発明者の知見
によれば、PLZTの電気的な絶縁性が光透過量の安定
性に影響を及ぼし、特性安定化の観点からは絶縁抵抗を
極力小さくすることが望ましいことが分かった。すなわ
ち、PLZTの絶縁抵抗が大きくなると、該PLZTに
所要の電圧を印加した状態で光を照射すると空間電界が
形成されPLZTの屈折率が変化する所謂屈折率の光誘
起効果(フォトリフラクティブ効果)が発生しやすく、
光シャッタを構成した場合、光透過量が不安定になると
いう欠点を有していた。[0006] In addition, the conventionally used PLZT
Has been developed with an emphasis on improving transmittance as a property improvement in applications such as optical shutters. According to the knowledge of the present inventors, the electrical insulation of PLZT affects the stability of light transmission. It was found that it is desirable to minimize the insulation resistance from the viewpoint of stabilizing the characteristics. In other words, when the insulation resistance of the PLZT is increased, when a light is applied while applying a required voltage to the PLZT, a spatial electric field is formed and the refractive index of the PLZT changes, so-called a photorefractive effect of a so-called refractive index (photorefractive effect). Easy to occur,
When the optical shutter is configured, there is a disadvantage that the light transmission amount becomes unstable.
【0007】最近の半導体技術の進歩等によって、光の
透過率が低くとも、光透過量が安定していればPLZT
を通過した光による信号を容易に精度よく増幅すること
も可能であり、また機械加工性精度も向上し非常に薄板
に加工できることから、用途によってはこのような特性
を有するPLZTの提供が望まれていた。Due to recent advances in semiconductor technology, etc., even if the light transmittance is low, the PLZT
It is also possible to easily and accurately amplify the signal due to the light that has passed through, and also to improve the machinability and process it into a very thin plate. Therefore, depending on the application, it is desired to provide a PLZT having such characteristics. I was
【0008】この発明は、以上に示すような現状に対処
すべく提案するもので、PLZTの用途を大幅に拡大す
ることを主目的とし、特に低波長領域において高い透過
率を有するPLZT、絶縁抵抗が小さなPLZT、これ
らの長所を併せ持つPLZT、およびその製造方法の提
案を目的とする。The present invention proposes to cope with the current situation as described above, and has as its main object to greatly expand the applications of PLZT. In particular, PLZT having a high transmittance in a low wavelength region, an insulation resistance The purpose of the present invention is to propose a PLZT having a small size, a PLZT having these advantages, and a method of manufacturing the same.
【0009】[0009]
【課題を解決するための手段】本発明者は、上記の目的
を達成するために、種々の実験を繰り返した結果、当業
者と言えども従来から採用されているPLZTの製造方
法からは想到することのできない製造方法を採用するこ
とによって、実現したのである。すなわち、従来から採
用されているPLZTの製造方法においては、基本的に
PLZTを還元することは好ましくないとされていた
が、本発明者は所定範囲の組成からなるPLZTの焼成
体を還元することによって、焼成体中の鉛を所定量以下
の範囲で還元したときに、この発明の目的が達成できる
ことを知見し、提案するに至ったものである。As a result of repeating various experiments to achieve the above object, the present inventor has conceived from a method of manufacturing PLZT which has been conventionally employed by those skilled in the art. This has been achieved by employing a manufacturing method that cannot be performed. That is, in the conventional method for producing PLZT, it has been basically considered unfavorable to reduce PLZT. However, the present inventor has determined that reducing a fired body of PLZT having a composition within a predetermined range can be achieved. Accordingly, the present inventors have found that the object of the present invention can be achieved when lead in a fired body is reduced in a range of not more than a predetermined amount, and have come to propose.
【0010】この発明は、鉛(Pb)、ランタニウム
(La)、ジルコニウム(Zr)、チタニウム(Ti)
の各酸化物を主成分とする透光性セラミックス(PLZ
T)において、該透光性セラミックス中の全鉛(Pb)
のうち、10wt%以下を還元してなることを特徴とす
る透光性セラミックス(PLZT)である。The present invention relates to lead (Pb), lanthanum (La), zirconium (Zr), and titanium (Ti).
Translucent ceramics (PLZ) whose main components are oxides of
In T), all lead (Pb) in the translucent ceramics
Among them, a translucent ceramic (PLZT) characterized in that 10 wt% or less is reduced.
【0011】また、この発明は、鉛(Pb)、ランタニ
ウム(La)、ジルコニウム(Zr)、チタニウム(T
i)の各酸化物を主成分とする透光性セラミックス(P
LZT)の製造方法において、下記組成式からなる透光
性セラミックスの焼成体を還元処理することを特徴とす
る透光性セラミックス(PLZT)の製造方法を合わせ
て提案する。 (Pb1-xLax)(ZryTiz)1-x/4O3 但し、x=0.05〜0.25、y/z=0.05/
0.95〜0.95/0.05Further, the present invention relates to lead (Pb), lanthanum (La), zirconium (Zr), titanium (T
i) a translucent ceramic containing each oxide as a main component (P
The present invention also proposes a method for producing a light-transmitting ceramic (PLZT) in which a fired body of a light-transmitting ceramic having the following composition formula is subjected to reduction treatment. (Pb 1-x La x) (Zr y Ti z) 1-x / 4 O 3 where, x = 0.05~0.25, y / z = 0.05 /
0.95-0.95 / 0.05
【0012】[0012]
【作用】光シャッター等の光ディバイス用のPLZTの
組成としては以下の組成範囲で示されるものが知られて
いる。 (Pb1-xLax)(ZryTiz)1-x/4O3 但し、x=0.05〜0.25、y/z=0.05/
0.95〜0.95/0.05 この発明においては、上記組成範囲からなるPLZTの
焼成体に還元処理を施すことによって、目的とするPL
ZTを得ることができる。The composition of the PLZT for an optical device such as an optical shutter in the following composition range is known. (Pb 1-x La x) (Zr y Ti z) 1-x / 4 O 3 where, x = 0.05~0.25, y / z = 0.05 /
0.95 to 0.95 / 0.05 In the present invention, a PLZT fired body having the above composition range is subjected to a reduction treatment to obtain a desired PLZT.
ZT can be obtained.
【0013】上記組成範囲からなるPLZTの焼成体を
得る製造方法としては、公知のいずれの方法も採用でき
る。例えば、酸化アルミニウム、炭化けい素、グラファ
イト等で作成されたダイス中に、上記組成範囲になるよ
うに配合されたPLZT粉末を装入し、アルミナ製など
のパンチで押圧する、所謂ホットプレス法(米国特許
3,666,666 : 1972)等によって得る方
法や、PbO酸素雰囲気中で焼成する雰囲気焼成法、さ
らに真空中にて焼成する方法等種々の方法が採用でき、
また必要に応じて上記焼成後にHIP処理を施すことも
好ましい方法である。例えば、先に従来技術として紹介
した特開昭62−105955号、特開平3−3153
60号などの方法がある。As a method for producing a fired body of PLZT having the above composition range, any known method can be employed. For example, a so-called hot press method is used in which a PLZT powder blended so as to have the above composition range is charged into a die made of aluminum oxide, silicon carbide, graphite, or the like, and pressed by a punch made of alumina or the like ( Various methods such as a method obtained according to U.S. Pat. No. 3,666,666: 1972), an atmosphere firing method firing in a PbO oxygen atmosphere, and a firing method in a vacuum can be adopted.
It is also a preferable method to perform an HIP treatment after the above calcination if necessary. For example, Japanese Patent Application Laid-Open No. 62-105595 and Japanese Patent Application Laid-Open No. 3-3153, which were previously introduced as prior arts.
No. 60 or the like.
【0014】上記の如き方法によって得られたPLZT
の焼成体を還元処理する方法としても、公知の種々の方
法が採用できる。例えば、Arガス雰囲気中での熱処
理、N 2ガス雰囲気中での熱処理、H2ガス雰囲気中での
熱処理、さらにC、PVA(ポリビニルアルコール)等
の有機物を含む還元雰囲気中(Ar,N2,H2ガス雰囲
気又は真空中)での熱処理、Fe、Ni、Nd、Cu、
Sn等の金属粉末を含む還元雰囲気中(Ar,N2,H2
ガス雰囲気又は真空中)での熱処理等が採用できる。こ
の還元処理はPLZTの焼成体を得た後であれば、その
後のどの工程において実施してもこの発明の効果を得る
ことができるが、最終的な研磨工程の前工程において実
施するのが、作業性、取扱等の観点から好ましい。PLZT obtained by the method as described above
As a method for reducing the fired body of
Law can be adopted. For example, heat treatment in an Ar gas atmosphere
Reason, N TwoHeat treatment in gas atmosphere, HTwoIn a gas atmosphere
Heat treatment, C, PVA (polyvinyl alcohol), etc.
In a reducing atmosphere containing organic matter (Ar, NTwo, HTwoGas atmosphere
Heat treatment in air or vacuum), Fe, Ni, Nd, Cu,
In a reducing atmosphere containing metal powder such as Sn (Ar, NTwo, HTwo
Heat treatment in a gas atmosphere or in a vacuum) can be employed. This
If the reduction treatment is performed after obtaining a fired body of PLZT,
The effect of the present invention can be obtained in any subsequent steps.
Can be performed before the final polishing process.
It is preferable to perform the treatment from the viewpoints of workability, handling, and the like.
【0015】本願発明者の実験によればPLZTの焼成
体を還元処理すると、特にPLZT中の鉛(Pb)が優
先的に還元され、全鉛(Pb)のうち、該鉛(Pb)を
10wt%以下の範囲で還元した時に良好の特性が得ら
れることが確認できた。すなわち、PLZTの焼成体中
の鉛(Pb)が還元されない場合は、この発明の目的と
する効果を得ることができなく、また10wt%を越え
る還元が行われると、本来の基本的なセラミックス構造
がくずれ、PLZTとしての光透過機能が損なわれ、こ
の発明の目的を達成できなくなる。According to an experiment conducted by the inventor of the present invention, when a fired body of PLZT is subjected to reduction treatment, lead (Pb) in PLZT is reduced preferentially, and 10% of the total lead (Pb) is reduced to lead (Pb). %, It was confirmed that good characteristics could be obtained when the reduction was performed. That is, when the lead (Pb) in the PLZT fired body is not reduced, the intended effects of the present invention cannot be obtained, and when the reduction exceeds 10 wt%, the original basic ceramic structure is obtained. However, the light transmission function as PLZT is impaired, and the object of the present invention cannot be achieved.
【0016】また、この発明において、PLZTの焼成
体中のランタニウム(La)、ジルコニウム(Zr)、
チタニウム(Ti)等の還元を規制するものではなく、
特に鉛(Pb)が上記範囲内の還元量であれば良く実験
によれば、鉛(Pb)が上記範囲内の還元量であって
も、ランタニウム(La)、ジルコニウム(Zr)、チ
タニウム(Ti)のそれぞれの還元量はESCA(X線
光電子分光法)で測定できない程度であり、PLZTの
特性に直接影響を及ぼす程のものでないと推測される。Further, in the present invention, lanthanum (La), zirconium (Zr),
It does not regulate the reduction of titanium (Ti) etc.
Particularly, it is sufficient that lead (Pb) is in the reduction amount within the above range. According to experiments, even when lead (Pb) is in the reduction amount within the above range, lanthanum (La), zirconium (Zr), titanium (Ti) ) Are in such a degree that they cannot be measured by ESCA (X-ray photoelectron spectroscopy), and it is presumed that they do not directly affect the characteristics of PLZT.
【0017】さらに、PLZTの焼成体中の形状寸法
(厚さ)等によっては、焼成体中の鉛(Pb)を全体か
ら均一に還元することができず、焼成体表面のみにて還
元が実施される場合もあるが、このような構成のもので
も、この発明の範囲内である。Further, depending on the shape and size (thickness) of the PLZT in the fired body, lead (Pb) in the fired body cannot be uniformly reduced from the whole, and reduction is performed only on the surface of the fired body. However, such a configuration is also within the scope of the present invention.
【0018】特に、絶縁抵抗は還元量が増加するともに
小さくなる傾向を示すが、必要以上の絶縁抵抗の低下
は、光シャッターを構成した際に、該PLZTへの電流
印加による温度上昇等を招く懸念がある。また、透過率
は、所定範囲内の還元量においては向上するが、必要以
上に還元量が増加すると低下する傾向を示す。本願発明
者の実験によれば、その還元量は上記理由から10wt
%以下である必要があるが、汎用性の高い用途には2w
t%以下が望ましいことを確認した。したがって、還元
処理の方法もPLZTの焼成体の組成や形状寸法等に応
じて、雰囲気の種類、温度、時間等の処理条件を選定す
ることが望ましい。また、焼成体の組成も前記組成式に
おいてx=0.087〜0.093、y/z=0.66
/0.34〜0.64/0.36の場合が特に好まし
い。In particular, the insulation resistance tends to decrease as the amount of reduction increases, but an excessive decrease in insulation resistance causes an increase in temperature due to current application to the PLZT when an optical shutter is constructed. There are concerns. In addition, the transmittance increases when the amount of reduction is within a predetermined range, but tends to decrease when the amount of reduction increases more than necessary. According to the experiment of the present inventor, the amount of reduction was 10 wt.
% Or less, but 2 w
It was confirmed that t% or less was desirable. Therefore, it is desirable to select the processing conditions such as the type of atmosphere, the temperature, and the time in accordance with the composition, the shape, and the size of the fired body of PLZT also in the method of the reduction treatment. In addition, the composition of the fired body was x = 0.087 to 0.093 and y / z = 0.66 in the above composition formula.
The case of /0.34 to 0.64 / 0.36 is particularly preferred.
【0019】[0019]
比較例 (Pb1-xLax)(ZryTiz)1-x/4O3の組成式にお
けるそれぞれx、y、zを、x=0.09、y=0.6
5、z=0.35の数値としたPLZT粉末を、1.5
ton/cm2、の加圧力にて外径50mm×高さ10
mmの複数個の成形体を得た。これらの成形体を、1×
10-3Torrの真空中で1200°C×1hrの条件
で焼成を行った。このようにして得られた成形体を厚み
0.7mmの薄板に加工したのち、平均粒径300μm
の溶融型酸化ジルコニウム粉末を密に充填したアルミナ
製耐熱容器内に埋入して、高温高圧炉に装入した。つい
で、Arガスを圧力媒体とした該炉にて、処理温度11
25°C、圧力600kg/cm2、1時間の条件で、
HIP処理を施した。さらに、HIP処理後の薄板の両
面に鏡面研磨を施し、この発明の比較例となる厚さ0.
5mmの透光性セラミックスを得た。Comparative Example (Pb 1-x La x) (Zr y Ti z) 1-x / 4 O 3 of each in the composition formula x, y, and z, x = 0.09, y = 0.6
5, PLZT powder having a numerical value of z = 0.35 was converted to 1.5
ton / cm 2 , outer diameter 50mm × height 10
mm were obtained. These compacts are 1 ×
The firing was performed at 1200 ° C. × 1 hr in a vacuum of 10 −3 Torr. After processing the thus obtained molded body into a thin plate having a thickness of 0.7 mm, the average particle diameter is 300 μm.
Was immersed in an alumina heat-resistant container tightly packed with the molten zirconium oxide powder, and charged into a high-temperature high-pressure furnace. Then, in the furnace using Ar gas as a pressure medium, the treatment temperature 11
Under conditions of 25 ° C., pressure 600 kg / cm 2 and 1 hour,
HIP processing was performed. Further, both surfaces of the thin plate after the HIP treatment are mirror-polished to a thickness of 0.1 mm as a comparative example of the present invention.
A translucent ceramic of 5 mm was obtained.
【0020】実施例1 上記比較例1に示す鏡面研磨工程前のHIP処理品に、
それぞれArガス雰囲気中(Arガス圧力 : 1at
m)で500°C×2時間、600°C×2時間、70
0°C×2時間、800°C×2時間、の還元処理を施
し、さらに薄板の両面に鏡面研磨を施して、この発明の
一実施例となる厚さ0.5mmの透光性セラミックスを
得た。Example 1 The HIP-treated product before the mirror polishing step shown in Comparative Example 1 was
Each in an Ar gas atmosphere (Ar gas pressure: 1 at
m) at 500 ° C. × 2 hours, 600 ° C. × 2 hours, 70
A reduction treatment of 0 ° C. × 2 hours and 800 ° C. × 2 hours is performed, and mirror polishing is performed on both surfaces of the thin plate to obtain a 0.5 mm thick translucent ceramic according to an embodiment of the present invention. Obtained.
【0021】実施例2 上記比較例1に示す鏡面研磨工程前のHIP処理品に、
それぞれN2ガス雰囲気中(N2ガス圧力 : 1at
m)で500°C×2時間、600°C×2時間、70
0°C×2時間、800°C×2時間、の還元処理を施
し、さらに薄板の両面に鏡面研磨を施して、この発明の
一実施例となる厚さ0.5mmの透光性セラミックスを
得た。Example 2 The HIP-treated product before the mirror polishing step shown in Comparative Example 1 was
Each in an N 2 gas atmosphere (N 2 gas pressure: 1 at
m) at 500 ° C. × 2 hours, 600 ° C. × 2 hours, 70
A reduction treatment of 0 ° C. × 2 hours and 800 ° C. × 2 hours is performed, and mirror polishing is performed on both surfaces of the thin plate to obtain a 0.5 mm thick translucent ceramic according to an embodiment of the present invention. Obtained.
【0022】実施例3 上記比較例1に示す鏡面研磨工程前のHIP処理品に、
それぞれH2ガス雰囲気中(H2ガス圧力 : 1at
m)で500°C×2時間、600°C×2時間、70
0°C×2時間、800°C×2時間、の還元処理を施
し、さらに薄板の両面に鏡面研磨を施して、この発明の
一実施例となる厚さ0.5mmの透光性セラミックスを
得た。以上の比較例1、実施例1、実施例2、実施例3
によって得られた各々透光性セラミックスの透過率、絶
縁抵抗、鉛(Pb)の還元量を測定し、それらの測定結
果を第1表に示す。透光性セラミックスの絶縁抵抗は、
電界7kV/cmで測定した結果である。さらに、透光
性セラミックス中の鉛(Pb)の還元量はESCA(X
線光電子分光法)にて測定した結果である。いずれの測
定結果からも、この発明による透光性セラミックスは、
比較例1の透光性セラミックスに対して、絶縁抵抗が低
いことが分かる。また、この発明による方法において
は、所要の条件下で比較例1の透光性セラミックスの透
過率よりも高い透過率を有する透光性セラミックスが得
られることが分かる。例えば、実施例1においては熱処
理条件が500℃〜700℃の範囲においては、また実
施例2においては熱処理条件が500℃〜700℃のの
範囲においては、さらに実施例3熱処理条件が500℃
の範囲においては、いずれも比較例1の透光性セラミッ
クスの透過率よりも高い透過率を有するとともに、その
絶縁抵抗が低いことが分かる。Example 3 The HIP-treated product before the mirror polishing step shown in Comparative Example 1 was
Each in an H 2 gas atmosphere (H 2 gas pressure: 1 at
m) at 500 ° C. × 2 hours, 600 ° C. × 2 hours, 70
A reduction treatment of 0 ° C. × 2 hours and 800 ° C. × 2 hours is performed, and mirror polishing is performed on both surfaces of the thin plate to obtain a 0.5 mm thick translucent ceramic according to an embodiment of the present invention. Obtained. Comparative Example 1, Example 1, Example 2, and Example 3 above
The transmittance, insulation resistance, and reduction amount of lead (Pb) of each translucent ceramic obtained as described above were measured, and the measurement results are shown in Table 1. The insulation resistance of translucent ceramics is
It is a result measured at an electric field of 7 kV / cm. Furthermore, the amount of reduction of lead (Pb) in the translucent ceramics is ESCA (X
Line photoelectron spectroscopy). From any of the measurement results, the translucent ceramics according to the present invention is:
It can be seen that the insulation resistance is lower than that of the translucent ceramic of Comparative Example 1. Further, it can be seen that in the method according to the present invention, a translucent ceramic having a transmittance higher than that of the translucent ceramic of Comparative Example 1 under required conditions can be obtained. For example, in Example 1, when the heat treatment condition is in the range of 500 ° C. to 700 ° C., in Example 2, when the heat treatment condition is in the range of 500 ° C. to 700 ° C., and in Example 3, the heat treatment condition is 500 ° C.
It can be seen that in each of the ranges, the transmittance is higher than that of the translucent ceramic of Comparative Example 1 and the insulation resistance is low.
【0023】実施例4 (Pb1-xLax)(ZryTiz)1-x/4O3の組成式にお
けるそれぞれx、y、zを、x=0.15、y=0.
7、z=0.3の数値としたPLZT粉末を、1.5t
on/cm2、の加圧力にて外径50mm×高さ10m
mの複数個の成形体を得た。その後、上記比較例1に示
す条件と同一の焼成、HIP処理を施し、さらに、それ
ぞれArガス雰囲気中(Arガス圧力1atm)で50
0℃〜1000℃×2時間の還元処理を施し、最終的に
薄板の両面に鏡面研磨を施して、この発明の一実施例と
なる厚さ0.5mmの透光性セラミックスを得た。これ
らの各々透光性セラミックスの透過率、絶縁抵抗、鉛
(Pb)の還元量を測定し、それらの測定結果を第2表
に示す。(測定条件は上記実施例1、2、3の場合と同
様である。)[0023] Example 4 (Pb 1-x La x ) (Zr y Ti z) 1-x / 4 O 3 of each in the composition formula x, y, and z, x = 0.15, y = 0.
7, z = 0.3 PLZT powder, 1.5t
On / cm 2 , external pressure 50mm × height 10m
m were obtained. Thereafter, the same sintering and HIP treatment as the conditions shown in the comparative example 1 are performed, and further, each is performed in an Ar gas atmosphere (Ar gas pressure 1 atm).
A reduction treatment at 0 ° C. to 1000 ° C. × 2 hours was performed, and finally, both surfaces of the thin plate were mirror-polished to obtain a 0.5 mm-thick translucent ceramic according to one embodiment of the present invention. The transmittance, insulation resistance, and reduction amount of lead (Pb) of each of these translucent ceramics were measured, and the measurement results are shown in Table 2. (Measurement conditions are the same as those in Examples 1, 2, and 3 above.)
【0024】以上の結果より、透光性セラミックス中の
鉛(Pb)還元量の増加ともに絶縁抵抗が低下し、特に
還元量が10wt%を越えると絶縁抵抗も著しく低下す
るとともに、透過率もほとんど零に近くなることから光
シャッター等の用途には適さないことが分かる。From the above results, the insulation resistance decreases as the amount of lead (Pb) reduced in the translucent ceramics increases. In particular, when the amount of reduction exceeds 10 wt%, the insulation resistance decreases remarkably, and the transmittance is almost reduced. Since it is close to zero, it is understood that it is not suitable for applications such as an optical shutter.
【0025】[0025]
【表1】 [Table 1]
【0026】[0026]
【表2】 [Table 2]
【0027】[0027]
【発明の効果】この発明は、以上に示すようにPLZT
(透光性セラミックス)中の鉛(Pb)を所定量還元す
ることによって、PLZTの低波長領域における透過率
を向上させる効果、絶縁抵抗を低下させる効果を有し、
PLZTの用途を大幅に拡大することができる。As described above, the present invention provides a PLZT
By reducing the lead (Pb) in the (translucent ceramics) by a predetermined amount, PLZT has an effect of improving the transmittance in a low wavelength region and an effect of reducing insulation resistance,
The use of PLZT can be greatly expanded.
Claims (2)
ルコニウム(Zr)、チタニウム(Ti)の各酸化物を
主成分とする透光性セラミックスにおいて、該透光性セ
ラミックス中の全鉛(Pb)のうち、10wt%以下を
還元してなることを特徴とする透光性セラミックス。1. A translucent ceramic mainly composed of oxides of lead (Pb), lanthanum (La), zirconium (Zr), and titanium (Ti), wherein all the lead (Pb) in the translucent ceramic is used. ), Wherein 10% by weight or less is reduced.
ルコニウム(Zr)、チタニウム(Ti)の各酸化物を
主成分とする透光性セラミックスの製造方法において、
下記組成式からなる透光性セラミックスの焼成体を還元
処理することを特徴とする透光性セラミックスの製造方
法。 (Pb1-xLax)(ZryTiz)1-x/4O3 但し、x=0.05〜0.25、y/z=0.05/
0.95〜0.95/0.052. A method for producing a translucent ceramic mainly containing oxides of lead (Pb), lanthanum (La), zirconium (Zr) and titanium (Ti).
A method for producing a light-transmitting ceramic, comprising reducing a fired body of a light-transmitting ceramic having the following composition formula. (Pb 1-x La x) (Zr y Ti z) 1-x / 4 O 3 where, x = 0.05~0.25, y / z = 0.05 /
0.95-0.95 / 0.05
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4199214A JP2966203B2 (en) | 1992-07-01 | 1992-07-01 | Translucent ceramics and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4199214A JP2966203B2 (en) | 1992-07-01 | 1992-07-01 | Translucent ceramics and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0624843A JPH0624843A (en) | 1994-02-01 |
JP2966203B2 true JP2966203B2 (en) | 1999-10-25 |
Family
ID=16404036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4199214A Expired - Fee Related JP2966203B2 (en) | 1992-07-01 | 1992-07-01 | Translucent ceramics and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2966203B2 (en) |
-
1992
- 1992-07-01 JP JP4199214A patent/JP2966203B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0624843A (en) | 1994-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0555465B2 (en) | ||
JP2966203B2 (en) | Translucent ceramics and method of manufacturing the same | |
JP3121400B2 (en) | Manufacturing method of tungsten sintered body | |
JPH07157362A (en) | Aluminum oxide-based ceramic having high strength and high toughness | |
JPH0680475A (en) | Production of light-screening sintered compact of aluminum nitride | |
JP3271342B2 (en) | Manufacturing method of aluminum nitride sintered body | |
JPS6110073A (en) | Aluminum nitride sintered body | |
JP3202670B2 (en) | Manufacturing method of multilayer ceramics | |
JPH09278526A (en) | Setter for ceramic firing | |
JPS62252388A (en) | Silicon nitride sintered body | |
JP2632508B2 (en) | Transparent high density porcelain | |
JPS6149270B2 (en) | ||
JPS60255677A (en) | Manufacture of aluminum nitride sintered body | |
JP3232134B2 (en) | Lithium zirconate sintered body and method for producing the same | |
JPH06181102A (en) | Manufacture of ptc resistor | |
JP2720201B2 (en) | Method for producing silicon nitride sintered body | |
JPH0754137A (en) | Sputtering sintered target material excellent in thermal shock resistance | |
JPS61174169A (en) | Manufacture of high strength partially stabilized zirconia sintered body | |
JP2890849B2 (en) | Method for producing silicon nitride sintered body | |
JPH01242466A (en) | Production of high-density sintered body of silicon nitride | |
JPH022824B2 (en) | ||
JPS6049152B2 (en) | Manufacturing method of low loss dielectric material | |
JPH09165676A (en) | Production of sputtering sintered target material for forming (a, b)o3 type oxide dielectric thin film low in content of residual carbon | |
JPH03252365A (en) | Production of high-strength sintered silicon nitride compact | |
JPH09255412A (en) | Ceramic sintered compact and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080813 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080813 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090813 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090813 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100813 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |