JP2965670B2 - Manufacturing method of multilayer thin film capacitor - Google Patents

Manufacturing method of multilayer thin film capacitor

Info

Publication number
JP2965670B2
JP2965670B2 JP30745390A JP30745390A JP2965670B2 JP 2965670 B2 JP2965670 B2 JP 2965670B2 JP 30745390 A JP30745390 A JP 30745390A JP 30745390 A JP30745390 A JP 30745390A JP 2965670 B2 JP2965670 B2 JP 2965670B2
Authority
JP
Japan
Prior art keywords
thin film
dielectric
electrode
film capacitor
multilayer thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30745390A
Other languages
Japanese (ja)
Other versions
JPH04177809A (en
Inventor
淳司 小島
善一 吉田
幹夫 羽賀
正行 飯島
善和 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Panasonic Holdings Corp
Original Assignee
Nihon Shinku Gijutsu KK
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Shinku Gijutsu KK, Matsushita Electric Industrial Co Ltd filed Critical Nihon Shinku Gijutsu KK
Priority to JP30745390A priority Critical patent/JP2965670B2/en
Publication of JPH04177809A publication Critical patent/JPH04177809A/en
Application granted granted Critical
Publication of JP2965670B2 publication Critical patent/JP2965670B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、有機薄膜誘電体を用いた多層薄膜コンデン
サの製造法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a multilayer thin film capacitor using an organic thin film dielectric.

従来の技術 近年の電子機器の小型化、軽量化指向による面実装技
術を用いた電子部品の高密度実装に伴い、電子部品に対
するチップ化,小型化の要望が強くなっている。その中
にってコンデンサにおいても小型化への種々の取組みが
行われ、その中の一つに誘電体の薄膜化への取組みがあ
り、その応用製品として有機薄膜誘電体を用いた多層薄
膜コンデンサが生産されている。
2. Description of the Related Art With the recent trend toward miniaturization and weight reduction of electronic devices and the high-density mounting of electronic components using surface mounting technology, there has been a strong demand for electronic components to be made smaller and smaller. Along with this, various efforts have been made for miniaturization of capacitors, one of which is to reduce the thickness of dielectrics, and a multilayer thin film capacitor using organic thin film dielectrics as an applied product. Is being produced.

第2図に有機薄膜誘導体の内部構造を示す。図におい
て、1は絶縁基板、2は内部電極、3は有機薄膜誘電
体、4は保護膜、5は外部電極である。
FIG. 2 shows the internal structure of the organic thin film derivative. In the figure, 1 is an insulating substrate, 2 is an internal electrode, 3 is an organic thin film dielectric, 4 is a protective film, and 5 is an external electrode.

このような多層薄膜コンデンサの素子部の形成は従来
第3図に示す工程により行われていた。第3図(A)に
おいて、1は絶縁基板を示し、同図(B)で基板1の上
に内部電極2が形成され、同図(C)で内部電極2と基
板1に跨がるように有機薄膜誘電体3が形成され、同図
(D)において誘電体3の上に同図(B)で形成された
内部電極2とは極性の異なる内部電極2が形成され、同
図(E)でさらに内部電極2の上に誘電体3が形成され
る。このような積層の形成が繰返されて多層薄膜コンデ
ンサの素子が形成される。有機薄膜の形成手段としては
熱分解重合,蒸着重合,プラズマ重合等があり、電極の
形成は種々の熱源を用い金属を蒸着して行う。なお、こ
れら有機薄膜および電極の形成を行う時には、それらの
定められた形状に形成するため板状のマスクを使用す
る。
The formation of the element portion of such a multilayer thin film capacitor has conventionally been performed by the steps shown in FIG. In FIG. 3 (A), reference numeral 1 denotes an insulating substrate, and in FIG. 3 (B), an internal electrode 2 is formed on the substrate 1, and in FIG. 3 (C), it extends over the internal electrode 2 and the substrate 1. An organic thin film dielectric 3 is formed on the dielectric 3 and an internal electrode 2 having a polarity different from that of the internal electrode 2 formed on the dielectric 3 in FIG. 4), a dielectric 3 is further formed on the internal electrode 2. The formation of such a laminate is repeated to form the element of the multilayer thin film capacitor. Means for forming the organic thin film include thermal decomposition polymerization, vapor deposition polymerization, plasma polymerization, and the like. The formation of the electrodes is performed by depositing a metal using various heat sources. When forming these organic thin films and electrodes, a plate-shaped mask is used to form them into a predetermined shape.

このようにして製造した多層薄膜コンデンサの素子は
耐環境性特に耐湿性を高めるために保護膜による封止を
行い、外部電極を設けて多層薄膜コンデンサとして完成
する。
The element of the multilayer thin film capacitor manufactured as described above is sealed with a protective film in order to enhance environmental resistance, particularly moisture resistance, and external electrodes are provided to complete the multilayer thin film capacitor.

発明が解決しようとする課題 しかしながら上記構成の多層薄膜コンデンサを上記の
工程で製造すると、この製造過程における基板の搬送
時、または板状マスクの隙間からの有機材料の漏れによ
って、コンデンサ素子のパターン外の不必要な場所にモ
ノマー成分や不完全重合成分や誘電体成分そのものが付
着するという問題があった。第3図では6がパターン外
に付着した上記有機物を示している。
However, when the multilayer thin film capacitor having the above-described configuration is manufactured in the above-described process, when the substrate is transported in this manufacturing process or when the organic material leaks from the gap of the plate-like mask, the capacitor element may be out of the pattern. However, there has been a problem that the monomer component, the incompletely polymerized component, and the dielectric component itself adhere to unnecessary places. In FIG. 3, reference numeral 6 denotes the above-mentioned organic substance attached outside the pattern.

必要パターン以外の場所へのモノマー成分や不完全重
合物や誘電体成分そのものの付着は、特に熱分解重合ま
た蒸着重合を用いた場合に顕著にあらわれ、基板の成膜
室への搬送時に発生する。これは連続成膜を行うため、
蒸発源をシャッターで開閉する構造をとらざるをないの
で、遊離した有機物が成膜室内に存在し、基板に付着し
てしまうためである。またパターン形成は、より効率良
く連続成膜するためには、板状マスクを用いるのが最も
有効である。しかしながら板状マスクでは、基板との微
小な隙間から上記成分が漏れるため、どの成膜方式を用
いてもパターン以外の場所に上記有機成分が付着してし
まう。
Adhesion of monomer components, incompletely polymerized substances, or dielectric components themselves to places other than the required pattern is particularly noticeable when using thermal decomposition polymerization or vapor deposition polymerization, and occurs when the substrate is transported to the film formation chamber. . This is to form a continuous film,
This is because a structure in which the evaporation source is opened and closed by a shutter is unavoidable, so that the released organic matter exists in the film formation chamber and adheres to the substrate. For pattern formation, it is most effective to use a plate-shaped mask in order to more efficiently form a continuous film. However, in the case of a plate-shaped mask, the above components leak from small gaps between the substrate and the substrate, so that the organic components adhere to places other than the pattern regardless of the film formation method.

本発明はこれらのパターン以外の場所へ付着したモノ
マー成分や不完全重合物や誘電体成分そのものを簡単に
除去し、耐環境性を大幅に改善する近来性の高い多層薄
膜コンデンサの製造法を確立することを目的とする。
The present invention establishes a highly accessible multi-layer thin film capacitor manufacturing method that easily removes monomer components, incompletely polymerized substances, and dielectric components themselves that have adhered to places other than these patterns and significantly improves environmental resistance. The purpose is to do.

課題を解決するための手段 上記目的を達成するために本発明では、有機薄膜誘電
体の成膜後に絶縁基板全面にプラズマ照射を行うように
したものである。
Means for Solving the Problems In order to achieve the above object, according to the present invention, the entire surface of the insulating substrate is irradiated with plasma after the organic thin film dielectric is formed.

作用 上記手段によれば、このプラズマ照射を行うことによ
り、誘電体そのものを薄く切り除くとともに、必要パタ
ーン以外の場所に付着したモノマー成分や不完全重合成
分や誘電体成分そのものを除去することができ、電極の
腐食防止あるいは保護膜の封止性を向上させ、耐環境性
特に耐湿性の向上を実現することができる。
According to the above means, by performing the plasma irradiation, the dielectric itself can be sliced and the monomer component, the incompletely polymerized component and the dielectric component adhering to places other than the required pattern can be removed. In addition, it is possible to prevent the corrosion of the electrode or to improve the sealing property of the protective film, and to improve the environmental resistance, particularly the moisture resistance.

実施例 以下、本発明の実施例について図面を参照して説明す
る。第1図にプラズマ照射を実施しながら行う積層成膜
の工程を示す。第1図(A)において、1は絶縁基板で
ある。そして同図(B)で基板1の上に内部電極2が形
成され、同図(C)で内部電極2と基板1に跨がるよう
に有機薄膜誘電体3が形成される。しかし、上述したよ
うに第1図(C)の工程における有機薄膜誘電体3を形
成したときに、パターン外にモノマー成分や不完全重合
物や誘導体成分そのもの(以下単に有機物という)が付
着する。パターン以外に付着した有機物を同図において
6で示している。これに対し第1図(D)プラズマ7の
照射を行う。その結果(E)に示すように有機薄膜誘電
体3の部分も厚みをわずかに失うが、パターン外に付着
した有機物6は除去されている。同図(F)では同図
(B)における内部電極2とは異なる極性の内部電極2
が形成され、同図(G)では次の有機薄膜誘電体3の形
成、同図(H)では次のプラズマ7の照射が行われ、同
図(I)のように2度目の有機薄膜誘電体3の形成時に
パターン外に付着した有機物が完全に除去される。
Embodiment Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a step of forming a laminated film while performing plasma irradiation. In FIG. 1A, reference numeral 1 denotes an insulating substrate. In FIG. 1B, an internal electrode 2 is formed on the substrate 1, and in FIG. 1C, an organic thin film dielectric 3 is formed so as to extend over the internal electrode 2 and the substrate 1. However, as described above, when the organic thin film dielectric 3 is formed in the step of FIG. 1C, a monomer component, an incompletely polymerized product, or a derivative component itself (hereinafter, simply referred to as an organic material) adheres to the outside of the pattern. The organic matter adhering to portions other than the pattern is indicated by 6 in FIG. In response to this, irradiation of the plasma 7 shown in FIG. 1 (D) is performed. As a result, as shown in (E), the thickness of the organic thin film dielectric 3 is slightly lost, but the organic substance 6 attached to the outside of the pattern is removed. In FIG. 6F, the internal electrodes 2 having a different polarity from the internal electrodes 2 in FIG.
In the same figure (G), the next organic thin film dielectric 3 is formed, and in the same figure (H), the next plasma 7 irradiation is performed, and as shown in the same figure (I), the second organic thin film dielectric 3 is formed. Organic substances attached outside the pattern during formation of the body 3 are completely removed.

多層薄膜コンデンサは第1図(A)から(I)に示す
工程を繰返して素子が製造され、保護膜による封止と外
部電極の取付けが行われて完成する。
The multilayer thin film capacitor is manufactured by repeating the steps shown in FIGS. 1A to 1I, and is completed by sealing with a protective film and attaching external electrodes.

以下、照射するプラズマ周波数,パワー,プラズマ発
生ガスの種類と圧力,誘電体の種類,処理時間を変えな
がら11種類の実施例について試験を行い、さらに従来法
による6種類の比較例について試験を行い、特性の経時
変化について比較し、本発明の実施例の効果を確認し
た。
In the following, tests were performed on 11 examples while changing the plasma frequency, power, type and pressure of plasma generating gas, type of dielectric, and processing time, and further, on 6 types of comparative examples by the conventional method. And the characteristics over time were compared to confirm the effect of the example of the present invention.

以下、11種類の実施例と6種類の比較例について述べ
る。
Hereinafter, 11 examples and 6 comparative examples will be described.

(実施例1) 第2図のように構成された多層薄膜コンデンサの素子
部を第1図に示す工程で作成した。電極はアルミニウム
1000ÅをEB蒸着(エレクトロンビーム蒸発源による蒸
着)にて形成し、誘電体ポリユリア4000Åを蒸着重合法
で形成した。プラズマ照射はプラズマ発生ガス窒素,そ
の圧力100mTorr,周波数13.56MHz,パワー200W(電極から
の距離70mm),処理時間2分の条件で行った。
Example 1 An element portion of a multilayer thin film capacitor configured as shown in FIG. 2 was prepared in the steps shown in FIG. The electrode is aluminum
1000Å was formed by EB evaporation (evaporation using an electron beam evaporation source), and 4000Å of dielectric polyurea was formed by evaporation polymerization. The plasma irradiation was performed under the conditions of plasma generating gas nitrogen, a pressure of 100 mTorr, a frequency of 13.56 MHz, a power of 200 W (a distance from the electrode of 70 mm) and a processing time of 2 minutes.

(実施例2) 第2図のように構成された多層薄膜コンデンサの素子
部を第1図の工程で作成した。電極はアルミニウム1000
ÅをEB蒸着にて形成し、誘電体はポリユリア4000Åを蒸
着重合法で形成した。プラズマ照射はプラズマ発生ガス
酸素、その圧力100mTorr,周波数13.56MHz,パワー200W
(電極からの距離70mm),処理時間1分の条件で行っ
た。
Example 2 An element portion of a multilayer thin film capacitor configured as shown in FIG. 2 was prepared in the steps shown in FIG. Electrode is aluminum 1000
Å was formed by EB vapor deposition, and the dielectric was formed by polyurea 4000 Å by vapor deposition polymerization. Plasma irradiation is plasma generating gas oxygen, its pressure 100mTorr, frequency 13.56MHz, power 200W
(The distance from the electrode was 70 mm) and the processing time was 1 minute.

(実施例3) 第2図のように構成された多層薄膜コンデンサの素子
部を第1図の工程で作成した。電極はアルミニウム1000
ÅをEB蒸着にて形成し、誘電体はポリユリア4000Åを蒸
着重合法で作成した。プラズマ照射はプラズマ発生ガス
窒素,その圧力300mTorr,周波数400KHz,パワー200W(電
極からの距離70mm),処理時間2分の条件で行った。
Example 3 An element portion of a multilayer thin film capacitor configured as shown in FIG. 2 was formed in the steps shown in FIG. Electrode is aluminum 1000
Å was formed by EB vapor deposition, and the dielectric was 4000 Å of polyurea prepared by vapor deposition polymerization. The plasma irradiation was performed under the conditions of a plasma generating gas nitrogen, a pressure of 300 mTorr, a frequency of 400 KHz, a power of 200 W (a distance from the electrode of 70 mm) and a processing time of 2 minutes.

(実施例4) 第2図のように構成された多層薄膜コンデンサの素子
部を第1図の工程で作成した。電極はアルミニウム1000
ÅをEB蒸着にて形成し、誘電体はポリユリア4000Åを蒸
着重合法で作成した。プラズマ照射はプラズマ発生ガス
窒素,その圧力100mTorr,周波数2.45MHz,パワー100W
(電極からの距離70mm),処理時間3分の条件で行っ
た。
Example 4 An element portion of a multilayer thin film capacitor configured as shown in FIG. 2 was prepared in the process shown in FIG. Electrode is aluminum 1000
Å was formed by EB vapor deposition, and the dielectric was 4000 Å of polyurea prepared by vapor deposition polymerization. Plasma irradiation is plasma generating gas nitrogen, pressure 100mTorr, frequency 2.45MHz, power 100W
(The distance from the electrode was 70 mm) and the processing time was 3 minutes.

(実施例5) 第2図のように構成された多層薄膜コンデンサの素子
部を第1図の工程で作成した。電極はアルミニウム1000
ÅをEB蒸着にて形成し、誘電体はポリユリア4000Åを蒸
着重合法で形成した。プラズマ照射はプラズマ発生ガス
アルゴン,その圧力100mTorr,周波数13.56MHz,パワー10
0W(電極からの距離70mm),処理時間1分の条件で行っ
た。
Example 5 An element portion of a multilayer thin film capacitor configured as shown in FIG. 2 was prepared in the steps shown in FIG. Electrode is aluminum 1000
Å was formed by EB vapor deposition, and the dielectric was formed by polyurea 4000 Å by vapor deposition polymerization. Plasma irradiation is plasma generation gas argon, its pressure is 100mTorr, frequency is 13.56MHz, power is 10
The test was performed under the conditions of 0 W (distance from the electrode: 70 mm) and a processing time of 1 minute.

(実施例6) 第2図のように構成された多層薄膜コンデンサの素子
部を第1図の工程で作成した。電極はアルミニウム1000
ÅをEB蒸着にて形成し、誘電体はポリユリア4000Åを蒸
着重合法で形成した。プラズマ照射はプラズマ発生ガス
窒素,その圧力100mTorr,周波数0Hz(直流),パワー20
0W(電極からの距離70mm),処理時間1分の条件で行っ
た。
Example 6 An element portion of a multilayer thin film capacitor configured as shown in FIG. 2 was prepared in the process shown in FIG. Electrode is aluminum 1000
Å was formed by EB vapor deposition, and the dielectric was formed by polyurea 4000 Å by vapor deposition polymerization. Plasma irradiation is plasma generating gas nitrogen, its pressure is 100mTorr, frequency is 0Hz (DC), power is 20
The test was performed under the conditions of 0 W (distance from the electrode: 70 mm) and a processing time of 1 minute.

(実施例7) 第2図のように構成された多層薄膜コンデンサの素子
部を第1図の工程で作成した。電極はアルミニウム1000
ÅをEB蒸着にて形成し、誘電体はポリパラキシレン4000
Åを蒸着にて形成した。プラズマ照射はプラズマ発生窒
素,その圧力100mTorr,周波数13.56MHz,パワー200W(電
極からの距離70mm),処理時間2分の条件で行った。
Example 7 An element portion of a multilayer thin film capacitor configured as shown in FIG. 2 was prepared in the process shown in FIG. Electrode is aluminum 1000
Å is formed by EB evaporation, and the dielectric is polyparaxylene 4000
Å was formed by vapor deposition. Plasma irradiation was performed under the conditions of plasma-generated nitrogen, a pressure of 100 mTorr, a frequency of 13.56 MHz, a power of 200 W (a distance from the electrode of 70 mm), and a processing time of 2 minutes.

(実施例8) 第2図のように構成された多層薄膜コンデンサの素子
部を第1図の工程で作成した。電極はアルミニウム1000
ÅをEB蒸着にて形成し、誘電体はフルオロカーボン4000
Åをプラズマ重合法で形成した。プラズマ照射はプラズ
マ発生ガス窒素,その圧力100mTorr,周波数13.56MHz,パ
ワー200W(電極からの距離70mm),処理時間2分の条件
で行った。
Example 8 An element portion of a multilayer thin film capacitor configured as shown in FIG. 2 was prepared in the steps shown in FIG. Electrode is aluminum 1000
Å is formed by EB evaporation, and the dielectric is fluorocarbon 4000
Å was formed by a plasma polymerization method. The plasma irradiation was performed under the conditions of plasma generating gas nitrogen, a pressure of 100 mTorr, a frequency of 13.56 MHz, a power of 200 W (a distance from the electrode of 70 mm) and a processing time of 2 minutes.

(実施例9) 第2図のように構成された多層薄膜コンデンサの素子
部を第1図の工程で作成した。電極はアルミニウム1000
ÅをEB蒸着にて形成し、誘電体はポリウレタン4000Åを
蒸着重合法で形成した。プラズマ照射はプラズマ発生ガ
ス窒素,その圧力100mTorr,周波数13.56MHz,パワー200W
(電極からの距離70mm),処理時間2分の条件で行っ
た。
Example 9 An element portion of a multilayer thin film capacitor configured as shown in FIG. 2 was prepared in the process shown in FIG. Electrode is aluminum 1000
Å was formed by EB vapor deposition, and the dielectric was formed by vapor deposition polymerization of 4000 ポ リ ウ レ タ ン polyurethane. Plasma irradiation is plasma generating gas nitrogen, its pressure 100mTorr, frequency 13.56MHz, power 200W
(The distance from the electrode was 70 mm) and the processing time was 2 minutes.

(実施例10) 第2図のように構成された多層薄膜コンデンサの素子
部を第1図の工程で作成した。電極はアルミニウム1000
ÅをEB蒸着にて形成し、誘電体はポリイミド4000Åを蒸
着重合法で形成した。プラズマ照射はプラズマ発生ガス
窒素,その圧力100mTorr,周波数13.56MHz,パワー200W
(電極からの距離70mm),処理時間2分の条件で行っ
た。
Example 10 An element portion of a multilayer thin film capacitor configured as shown in FIG. 2 was prepared in the steps shown in FIG. Electrode is aluminum 1000
Å was formed by EB vapor deposition, and the dielectric was formed by vapor deposition polymerization of 4000 ポ リ イ ミ ド polyimide. Plasma irradiation is plasma generating gas nitrogen, its pressure 100mTorr, frequency 13.56MHz, power 200W
(The distance from the electrode was 70 mm) and the processing time was 2 minutes.

(実施例11) 第2図のように構成された多層薄膜コンデンサの素子
部を第1図の工程で作成した。電極はアルミニウム1000
ÅをEB蒸着にて形成し、誘電体はポリアミド4000Åを蒸
着重合法で形成した。プラズマ照射はプラズマ発生ガス
窒素,その圧力100mTorr,周波数13.56MHz,パワー200W
(電極からの距離70mm),処理時間2分の条件で行っ
た。
Example 11 An element portion of a multilayer thin film capacitor configured as shown in FIG. 2 was prepared in the process shown in FIG. Electrode is aluminum 1000
Å was formed by EB vapor deposition, and the dielectric was formed by vapor deposition polymerization of 4000 ポ リ ア ミ ド polyamide. Plasma irradiation is plasma generating gas nitrogen, its pressure 100mTorr, frequency 13.56MHz, power 200W
(The distance from the electrode was 70 mm) and the processing time was 2 minutes.

(比較例1) 第2図のように構成された多層薄膜コンデンサの素子
部を第3図の工程で作成した。電極はアルミニウム1000
ÅをEB蒸着にて形成し、誘電体はポリユリア4000Åを蒸
着重合法で形成した。
(Comparative Example 1) An element portion of a multilayer thin film capacitor configured as shown in FIG. 2 was prepared in the process shown in FIG. Electrode is aluminum 1000
Å was formed by EB vapor deposition, and the dielectric was formed by polyurea 4000 Å by vapor deposition polymerization.

(比較例2) 第2図のように構成された多層薄膜コンデンサの素子
部を第3図の工程で作成した。電極はアルミニウム1000
ÅをEB蒸着にて形成し、誘電体はポリウレタン4000Åを
蒸着重合法で形成した。
(Comparative Example 2) An element portion of a multilayer thin film capacitor configured as shown in FIG. 2 was prepared in the process shown in FIG. Electrode is aluminum 1000
Å was formed by EB vapor deposition, and the dielectric was formed by vapor deposition polymerization of 4000 ポ リ ウ レ タ ン polyurethane.

(比較例3) 第2図のように構成された多層薄膜コンデンサの素子
部を第3図の工程で作成した。電極はアルミニウム1000
ÅをEB蒸着にて形成し、誘電体はポリイミド4000Åを蒸
着重合法で形成した。
Comparative Example 3 An element portion of a multilayer thin film capacitor configured as shown in FIG. 2 was prepared in the steps shown in FIG. Electrode is aluminum 1000
Å was formed by EB vapor deposition, and the dielectric was formed by vapor deposition polymerization of 4000 ポ リ イ ミ ド polyimide.

(比較例4) 第2図のように構成された多層薄膜コンデンサの素子
部を第3図の工程で作成した。電極はアルミニウム1000
ÅをEB蒸着にて形成し、誘電体はポリアミド4000Åを蒸
着重合法で形成した。
(Comparative Example 4) An element portion of a multilayer thin film capacitor configured as shown in FIG. 2 was prepared in the process shown in FIG. Electrode is aluminum 1000
Å was formed by EB vapor deposition, and the dielectric was formed by vapor deposition polymerization of 4000 ポ リ ア ミ ド polyamide.

(比較例5) 第2図のように構成された多層薄膜コンデンサの素子
部を第3図の工程で作成した。電極はアルミニウム1000
ÅをEB蒸着にて形成し、誘電体はポリパラキシレン4000
Åを蒸着で形成した。
(Comparative Example 5) An element portion of a multilayer thin film capacitor configured as shown in FIG. 2 was prepared in the process shown in FIG. Electrode is aluminum 1000
Å is formed by EB evaporation, and the dielectric is polyparaxylene 4000
Å was formed by vapor deposition.

(比較例6) 第2図のように構成された多層薄膜コンデンサの素子
部を第3図の工程で作成した。電極はアルミニウム1000
ÅをEB蒸着にて形成し、誘電体はフルオロカーボン4000
Åをプラズマ重合法で形成した。
(Comparative Example 6) An element portion of a multilayer thin film capacitor configured as shown in FIG. 2 was formed in the process shown in FIG. Electrode is aluminum 1000
Å is formed by EB evaporation, and the dielectric is fluorocarbon 4000
Å was formed by a plasma polymerization method.

上記実施例11種類および比較例6種類の方法によって
製作した多層薄膜コンデンサの試験サンプルについて60
℃,95%RH,50VDC印加の環境下における静電容量の経時
変化の比較試験を行い、この結果を次の表に示す。
About the test sample of the multilayer thin film capacitor manufactured by the method of the above 11 kinds of examples and the comparative example 6 kinds,
A comparative test of the change over time in the capacitance under the environment of 50 ° C., 95% RH, and 50 VDC was performed. The results are shown in the following table.

上表に示すように、比較例6種類については、コンデ
ンサ内部のパターン以外への有機物の付着のため、保護
膜の封止が不完全で耐湿性が悪く、アルミニウム電極の
腐食のため100時間以下で大きく容量変化を起し、1000
時間経過後では腐食の進行により6個中の4個が破損に
至っている。これに対し、実施例11種においては1000時
間経過後においても破損は皆無であり、容量変化は全て
±1%以下である。また表中には示していないが、誘電
正接および絶縁抵抗は不変であり、耐環境特性が極めて
優れていることを示している。
As shown in the above table, with respect to the six types of Comparative Examples, the sealing of the protective film was incomplete and poor in moisture resistance due to the adhesion of organic substances other than the pattern inside the capacitor, and the corrosion of the aluminum electrode was less than 100 hours. Causes a large change in capacity, 1000
After the lapse of time, four out of six pieces were damaged due to the progress of corrosion. On the other hand, in the eleventh embodiment, there was no breakage even after the elapse of 1000 hours, and all the capacity changes were ± 1% or less. Although not shown in the table, the dielectric loss tangent and the insulation resistance were unchanged, indicating that the environment resistance was extremely excellent.

なお、本実施例ではプラズマ発生ガスを窒素または酸
素としたが、アルゴンやヘリウム等の放電可能なガスで
あってもよい。またレーザの放電周波数として実施例に
示した以外の周波数でも同等の効果が得られる。
In this embodiment, the plasma generating gas is nitrogen or oxygen, but may be a dischargeable gas such as argon or helium. The same effect can be obtained even if the discharge frequency of the laser is other than the frequency shown in the embodiment.

発明の効果 以上の説明からも明らかなように多層薄膜コンデンサ
において、本発明のように有機薄膜誘電体を形成する度
ごとに、プラズマ照射を行うことにより、コンデンサ内
のパターン以外に付着した有機物が除去され、耐環境性
特に耐湿性に優れ、信頼性の高い多層薄膜コンデンサの
製造法を確立することができる。
Effect of the Invention As is clear from the above description, in the multilayer thin film capacitor, every time an organic thin film dielectric is formed as in the present invention, by performing plasma irradiation, organic substances adhering other than the pattern in the capacitor are removed. It is possible to establish a highly reliable method of manufacturing a multilayer thin film capacitor which is removed, has excellent environmental resistance, particularly excellent moisture resistance.

【図面の簡単な説明】[Brief description of the drawings]

第1図(A)〜(I)は本発明の多層薄膜コンデンサの
製造法の一実施例を示す工程図、第2図は多層薄膜コン
デンサの内部構造を示す断面図、第3図(A)〜(E)
は多層薄膜コンデンサの従来の製造法の一例を示す工程
図である。 1……絶縁基板、2……内部電極(電極)、3……有機
薄膜誘電体、7……プラズマ。
1 (A) to 1 (I) are process diagrams showing one embodiment of a method for manufacturing a multilayer thin film capacitor of the present invention, FIG. 2 is a sectional view showing the internal structure of the multilayer thin film capacitor, and FIG. 3 (A). ~ (E)
FIG. 2 is a process chart showing an example of a conventional method for manufacturing a multilayer thin film capacitor. 1 ... insulating substrate, 2 ... internal electrode (electrode), 3 ... organic thin film dielectric, 7 ... plasma.

フロントページの続き (72)発明者 羽賀 幹夫 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 飯島 正行 神奈川県茅ケ崎市萩園2500番地 日本真 空技術株式会社内 (72)発明者 高橋 善和 神奈川県茅ケ崎市萩園2500番地 日本真 空技術株式会社内 (56)参考文献 特開 平2−121313(JP,A) 特開 平2−271606(JP,A) 特開 昭60−170229(JP,A) 特開 昭59−188110(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01G 4/00 - 4/40 Continued on the front page (72) Inventor Mikio Haga 1006 Kazuma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. Inventor Yoshikazu Takahashi 2500 Hagizono, Chigasaki-shi, Kanagawa Japan Nippon Vacuum Engineering Co., Ltd. (56) References JP-A-2-121313 (JP, A) JP-A-2-271606 (JP, A) -170229 (JP, A) JP-A-59-188110 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01G 4/00-4/40

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】絶縁基板上に有機薄膜誘電体と電極とをド
ライプロセスで形成し、パターン形成して交互に積み重
ねる多層薄膜コンデンサの製造法において、有機薄膜誘
電体を形成した後、その都度、絶縁基板全面にプラズマ
照射を行って、有機薄膜誘電体を形成する際に絶縁基板
上または電極上に付着した有機物を除去することを特徴
とする、多層薄膜コンデンサの製造法。
In a method of manufacturing a multilayer thin film capacitor in which an organic thin film dielectric and an electrode are formed on an insulating substrate by a dry process, and are patterned and stacked alternately, after forming the organic thin film dielectric, each time, A method of manufacturing a multilayer thin film capacitor, comprising: performing plasma irradiation on an entire surface of an insulating substrate to remove organic substances attached to the insulating substrate or electrodes when forming an organic thin film dielectric.
【請求項2】有機薄膜誘電体および電極のパターン形成
を板状マスクを用いて行うことを特徴とする請求項1記
載の多層薄膜コンデンサの製造法。
2. The method for manufacturing a multilayer thin film capacitor according to claim 1, wherein the pattern formation of the organic thin film dielectric and the electrode is performed using a plate-like mask.
【請求項3】プラズマの発生を高周波放電で行うことを
特徴とする請求項1または2記載の多層薄膜コンデンサ
の製造法。
3. The method according to claim 1, wherein the plasma is generated by high-frequency discharge.
【請求項4】プラズマの発生を直流放電で行うことを特
徴とする請求項1または2記載の多層薄膜コンデンサの
製造法。
4. The method according to claim 1, wherein the plasma is generated by a DC discharge.
【請求項5】有機薄膜誘電体の形成方法に蒸着重合法を
用いることを特徴とする請求項1から4のいずれか1項
に記載の多層薄膜コンデンサの製造法。
5. The method for manufacturing a multilayer thin film capacitor according to claim 1, wherein a vapor deposition polymerization method is used for forming the organic thin film dielectric.
JP30745390A 1990-11-13 1990-11-13 Manufacturing method of multilayer thin film capacitor Expired - Fee Related JP2965670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30745390A JP2965670B2 (en) 1990-11-13 1990-11-13 Manufacturing method of multilayer thin film capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30745390A JP2965670B2 (en) 1990-11-13 1990-11-13 Manufacturing method of multilayer thin film capacitor

Publications (2)

Publication Number Publication Date
JPH04177809A JPH04177809A (en) 1992-06-25
JP2965670B2 true JP2965670B2 (en) 1999-10-18

Family

ID=17969247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30745390A Expired - Fee Related JP2965670B2 (en) 1990-11-13 1990-11-13 Manufacturing method of multilayer thin film capacitor

Country Status (1)

Country Link
JP (1) JP2965670B2 (en)

Also Published As

Publication number Publication date
JPH04177809A (en) 1992-06-25

Similar Documents

Publication Publication Date Title
US5407865A (en) Method of manufacturing a flexible metallized polymer film cover for environmental protection of electronic assemblies
US4357203A (en) Plasma etching of polyimide
EP0478010A2 (en) Process for producing a continuous web of an electrically insulated metallic substrate
JPH06101461B2 (en) Method of coating substrate with fluorocarbon polymer film and coated substrate
JPH04329638A (en) Method of bonding fluorocarbon polymer film with substrate and substrate
US6248958B1 (en) Resistivity control of CIC material
JP2965670B2 (en) Manufacturing method of multilayer thin film capacitor
JP3088179B2 (en) Manufacturing method of multilayer thin film capacitor
JPH02303371A (en) Formation of electrode pattern on piezoelectric element for ultrasonic motor
JPS60184676A (en) Coated base material or manufacture of coated member
JPH01214096A (en) Manufacture of flexible printed circuit board
JP2002057065A (en) Thin-film capacitor and its manufacturing method
JPH05251511A (en) Production of copper/polyimide laminate structure
JPH04165063A (en) Production of metallized polypropylene film for capacitor
JP2000017424A (en) Metal transfer film
CN1533235A (en) Electromagnetic wave shielding assembly and its producing method
JPH0488160A (en) Production of metallized polypropylene film for capacitor
JP3007676B2 (en) Manufacturing method of thin film capacitor
JPS63303730A (en) Polyether imide film metallized with metallic thin film
JPH10237623A (en) Production of electronic parts and device for producing thin coating
JPH05283848A (en) Flexible printed wiring board
JPH03129894A (en) Flexible printed wiring board and manufacture thereof
JP3843572B2 (en) Thin film laminate and method for producing thin film laminate
JPH0444203A (en) Aluminum electrode for electrolytic capacitor
JPH0432555A (en) Metallic substrate coated with insulating material excellent in insulating property

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080813

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100813

LAPS Cancellation because of no payment of annual fees