JP2963296B2 - Method for producing conductive fine powder - Google Patents

Method for producing conductive fine powder

Info

Publication number
JP2963296B2
JP2963296B2 JP4200093A JP4200093A JP2963296B2 JP 2963296 B2 JP2963296 B2 JP 2963296B2 JP 4200093 A JP4200093 A JP 4200093A JP 4200093 A JP4200093 A JP 4200093A JP 2963296 B2 JP2963296 B2 JP 2963296B2
Authority
JP
Japan
Prior art keywords
tin
fine powder
indium oxide
indium
hydrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4200093A
Other languages
Japanese (ja)
Other versions
JPH06227815A (en
Inventor
武 村上
均 岡田
吉十郎 金沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Chitan Kogyo Kk
Original Assignee
Fuji Chitan Kogyo Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Chitan Kogyo Kk filed Critical Fuji Chitan Kogyo Kk
Priority to JP4200093A priority Critical patent/JP2963296B2/en
Publication of JPH06227815A publication Critical patent/JPH06227815A/en
Application granted granted Critical
Publication of JP2963296B2 publication Critical patent/JP2963296B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は優れた導電性および透明
性を有する錫含有酸化インジウム(ITO)微粉末の製
造方法に関し、特にITOの超微粉末の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing tin-containing indium oxide (ITO) fine powder having excellent conductivity and transparency, and more particularly to a method for producing ultrafine ITO powder.

【0002】具体的には、塗布法によつて帯電防止フイ
ルム等の透明導電性被膜、更には液晶デイスプレイ等の
透明電極を形成する際に利用される優れた導電性および
透明性を有する錫含有酸化インジウム超微粉末の製造方
法に関するものである。
More specifically, a tin-containing material having excellent conductivity and transparency used for forming a transparent conductive film such as an antistatic film and a transparent electrode such as a liquid crystal display by a coating method. The present invention relates to a method for producing ultrafine indium oxide powder.

【0003】[0003]

【従来の技術】太陽電池や液晶デイスプレイ等の透明電
極或いはエレクトロルミネツセンスデイスプレイやタツ
チパネル等の透明導電膜として広く用いられるITO膜
は一般にスパツタリング法、真空蒸着法、塗布法等によ
り形成される。その中でも塗布法はスパツタリング法や
真空蒸着法では困難な大面積或いは複雑な形状への加工
が可能であつたり、コスト的にも有利である。そのよう
な塗布法として利用されているのは、有機系のゾル・ゲ
ル法が一般的であるが、近年の微粒子製造技術の発展に
伴い、微粉末を用いてこれを塗布する方法が注目されて
いる。そのような塗布法に用い得る錫含有酸化インジウ
ム微粉末の製造方法として、例えば特開昭63−115
19号にはインジウム化合物又は錫化合物の水溶液を8
〜12のpH条件下加水分解させ、生成したコロイド粒子
を含有するゾルを濾過洗浄した後、加熱処理する方法、
特開平1−290527号にはインジウム・錫混合水酸
化物を有機溶媒に分散し共沸脱水した後、仮焼する方
法、また特開平3−54114号には反応系中の水分量
を有機溶媒量以下として、インジウム塩及び錫塩の溶液
にアルカリ水溶液を添加し、インジウム水酸化物と錫水
酸化物の混合物を生成させ、加熱処理する方法が提案さ
れている。しかしながら、特開昭63−11519号に記載さ
れた方法ではゾル液からコロイド粒子を濾別する際に副
生塩の除去が容易でなかつたり、特開平1−29052
7号及び特開平3−54114号に記載された方法では
多量の有機溶媒を必要とするため安全性及びコスト面に
おいて不利である等問題点を含むものである。
2. Description of the Related Art An ITO film widely used as a transparent electrode such as a solar cell or a liquid crystal display or a transparent conductive film such as an electroluminescent display or a touch panel is generally formed by a sputtering method, a vacuum deposition method, a coating method or the like. Among them, the coating method is capable of processing into a large area or a complicated shape which is difficult by the sputtering method or the vacuum evaporation method, and is advantageous in cost. An organic sol-gel method is generally used as such a coating method, but with the development of fine particle manufacturing technology in recent years, a method of applying this using fine powder has attracted attention. ing. As a method for producing a tin-containing indium oxide fine powder that can be used in such a coating method, for example, JP-A-63-115
No. 19 contains an aqueous solution of an indium compound or a tin compound in 8
A method of hydrolyzing under a pH condition of ~ 12, filtering and washing the sol containing the formed colloid particles, and then subjecting the sol to a heat treatment;
JP-A-1-290527 discloses a method of dispersing an indium / tin mixed hydroxide in an organic solvent, azeotropically dehydrating and calcining the mixture, and JP-A-3-54114 discloses a method in which the amount of water in the reaction system is determined by using an organic solvent. There has been proposed a method in which an alkali aqueous solution is added to a solution of an indium salt and a tin salt to produce a mixture of an indium hydroxide and a tin hydroxide, and a heat treatment is performed. However, according to the method described in JP-A-63-11519, it is not easy to remove by-product salts when colloid particles are separated from the sol by filtration.
The method described in Japanese Patent Application Laid-Open No. 7-54114 and Japanese Patent Application Laid-Open No. 3-54114 involve problems such as disadvantages in safety and cost because a large amount of organic solvent is required.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、上記
した問題点を解消し、導電性及び透明性に優れた錫含有
酸化インジウム微粉末の製造方法を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide a method for producing a tin-containing indium oxide fine powder having excellent conductivity and transparency.

【0005】[0005]

【課題を解決するための手段】本発明は錫塩及びインジ
ウム塩の溶液に温度を30℃以下に保持しながらアルカリ
水溶液を添加して得られた酸化錫及び酸化インジウムの
水和物を加熱処理することを特徴とする導電性錫含有酸
化インジウムの超微粉末の製造方法に係る。
According to the present invention, a tin salt and indium oxide hydrate obtained by adding an aqueous alkali solution to a tin salt and indium salt solution while maintaining the temperature at 30 ° C. or less is subjected to heat treatment. And a method for producing an ultrafine powder of conductive tin-containing indium oxide.

【0006】本発明において使用する錫塩及びインジウ
ム塩は水溶性のものであれば良く、塩化錫、硫酸錫、硝
酸錫、塩化インジウム、硫酸インジウム、硝酸インジウ
ム等が例示でき、又錫塩は第1錫塩、第2錫塩何れでも
よい。そのような錫塩及びインジウム塩を水に溶解さ
せ、必要によつてはアルコール、アセトン等の水溶性有
機溶媒及び/又は塩酸、硝酸等の鉱酸を加えた後、温度
を30℃以下、好ましくは0〜20℃に保持しながらアルカ
リ水溶液を添加する。30℃を超える場合には他の条件に
もよるが概して粒度は粗くなり、針状形状を有するも
の、凝集形態を有するものが生成するようになる。0℃
未満にしても特に効果は上がらず冷却用の冷媒等のコス
トが上昇してしまう。また、この場合の錫とインジウム
の割合はSnO2:In23重量比にて1:99〜20:80、
好ましくは4:96〜15:85であり、この範囲より錫は多
すぎても、少なすぎても所望とする導電性が得られな
い。
The tin salt and the indium salt used in the present invention may be any water-soluble salts, and examples thereof include tin chloride, tin sulfate, tin nitrate, indium chloride, indium sulfate, indium nitrate and the like. Either a tin salt or a stannic salt may be used. After dissolving such tin salt and indium salt in water, and if necessary, adding a water-soluble organic solvent such as alcohol and acetone and / or a mineral acid such as hydrochloric acid and nitric acid, the temperature is reduced to 30 ° C. or lower, preferably. While maintaining the temperature at 0 to 20 ° C., an aqueous alkali solution is added. When the temperature exceeds 30 ° C., the particle size is generally coarse, depending on other conditions, and a needle-shaped or aggregated form is formed. 0 ° C
Even if it is less than the above, the effect is not particularly improved, and the cost of the cooling refrigerant or the like increases. In this case, the ratio of tin to indium was 1:99 to 20:80 in terms of SnO 2 : In 2 O 3 weight ratio,
The ratio is preferably 4:96 to 15:85, and if the amount of tin is too large or too small, the desired conductivity cannot be obtained.

【0007】このときの濃度は、反応終了時に(SnO2
+In23)濃度にて2〜50g/lの範囲が適当で、2g/
l未満では収量が少なく不経済であり、50g/lを越える
と粒度が粗くなつてしまう。
At this time, the concentration at the end of the reaction (SnO 2
+ In 2 O 3 ) concentration in the range of 2 to 50 g / l is appropriate, and 2 g /
If it is less than 1 liter, the yield is small and uneconomical, and if it exceeds 50 g / l, the particle size becomes coarse.

【0008】アルカリ水溶液としては、アンモニア水、
水酸化アルカリ、炭酸アルカリ、炭酸アンモニウム等の
水溶液を例示できるが、導電性を阻害する成分を含むア
ルカリ金属塩は適当でなく、アンモニア水及びアンモニ
ウム塩水溶液が好ましい。そして、そのようなアルカリ
水溶液を最終的にpHが5.0〜9.0となるように添加する
ことにより酸化錫及び酸化インジウムの水和物が生成す
る。pHが5.0未満では反応が不完全であり、又、pHが
9.0を越えると逆に一部生成物の解膠が起き、何れもそ
の後の加熱処理工程での焼結を招き粗大粒子が生成して
しまう。
As the alkaline aqueous solution, ammonia water,
Aqueous solutions such as alkali hydroxide, alkali carbonate, and ammonium carbonate can be exemplified, but alkali metal salts containing a component that inhibits conductivity are not suitable, and aqueous ammonia and aqueous ammonium salts are preferred. Then, a hydrate of tin oxide and indium oxide is formed by adding such an alkaline aqueous solution so that the pH finally becomes 5.0 to 9.0. If the pH is less than 5.0, the reaction is incomplete.
On the other hand, if it exceeds 9.0, deflocculation of a part of the product occurs, and in any case, sintering is caused in the subsequent heat treatment step, and coarse particles are generated.

【0009】又、アルカリ水溶液の添加時間は特に限定
するものではないが、30分から12時間程度が好ましく、
30分未満では生成物がゲル状となり濾過洗浄が困難とな
る上、後の加熱処理工程での焼結を招く。12時間以上の
添加時間は生産性が低下する上、粒度も粗くなつてく
る。
The addition time of the aqueous alkali solution is not particularly limited, but is preferably about 30 minutes to 12 hours.
If the time is less than 30 minutes, the product will be in a gel state, which will be difficult to filter and wash, and will cause sintering in the subsequent heat treatment step. If the addition time is longer than 12 hours, the productivity decreases and the particle size becomes coarse.

【0010】以上のような条件により、一次粒子径0.01
5〜0.05μm程度の酸化錫及び酸化インジウムの水和物が
生成する。本発明では、該水和物を必要によつては副生
してくる塩を除去した後に乾燥、更に300〜1200℃、好
ましくは500〜1000℃にて加熱処理することにより目的
とする錫含有酸化インジウム微粉末を得ることができ
る。この場合、必要に応じてN2,Ar等の不活性ガス雰
囲気或いはH2,NH3等の還元雰囲気中にて処理するこ
とにより導電性は更に向上する。得られるITO微粉末
は原料の酸化錫及び酸化インジウムの水和物と同一形
状、形骸を保持する。
Under the above conditions, the primary particle size is 0.01
A hydrate of tin oxide and indium oxide of about 5 to 0.05 μm is formed. In the present invention, the desired tin-containing substance is obtained by removing the salt produced as a by-product if necessary, drying the hydrate, and further heat-treating the hydrate at 300 to 1200 ° C, preferably 500 to 1000 ° C. Indium oxide fine powder can be obtained. In this case, if necessary, the conductivity is further improved by performing the treatment in an inert gas atmosphere such as N 2 or Ar or a reducing atmosphere such as H 2 or NH 3 . The obtained ITO fine powder has the same shape and shape as the hydrate of the raw material tin oxide and indium oxide.

【0011】[0011]

【実施例】以下に本発明の実施例を挙げて説明するが、
本発明はこれに限定されるものではない。
The present invention will be described below with reference to examples of the present invention.
The present invention is not limited to this.

【0012】実施例1 塩化第2錫(SnCl4・5H2O)5.9g及び塩化インジウ
ム(InCl3)75.9gを水4000mlに溶解し、これに2%ア
ンモニア水を58分かけて添加しpHを最終的に7.85とす
ることにより酸化錫及び酸化インジウムの水和物を共沈
させた。この間、液温は5℃を維持するようにした。次
いで、該共沈物を洗浄後乾燥、更に900℃にて2時間焼
成し、錫含有酸化インジウム(ITO)微粉末を得た。
該微粉末は図1の電子顕微鏡写真が示すように、一次粒
子径約0.02μmと微細でかつ粒度の揃つた形状を有して
いた。
EXAMPLE 1 5.9 g of stannic chloride (SnCl 4 .5H 2 O) and 75.9 g of indium chloride (InCl 3 ) were dissolved in 4000 ml of water, and 2% aqueous ammonia was added thereto over 58 minutes to adjust the pH. Was finally set to 7.85 to coprecipitate a hydrate of tin oxide and indium oxide. During this time, the liquid temperature was kept at 5 ° C. Next, the coprecipitate was washed, dried, and calcined at 900 ° C. for 2 hours to obtain a fine powder of tin-containing indium oxide (ITO).
As shown in the electron micrograph of FIG. 1, the fine powder had a primary particle diameter of about 0.02 μm and a fine and uniform particle size.

【0013】実施例2 塩化第1錫(SnCl2・2H2O)3.9g及び硝酸インジウ
ム〔In(NO33・3H2O〕121.6gを水4000mlに溶解
し、これに2%アンモニア水を73分かけて添加しpHを
最終的に7.80とすることにより酸化錫及び酸化インジウ
ムの水和物を共沈させた。この間、液温は20℃を維持す
るようにした。次いで該共沈物を洗浄後乾燥、更に900
℃にて2時間焼成し、錫含有酸化インジウム微粉末を得
た。該微粉末は図2の電子顕微鏡写真が示すように、一
次粒子径約0.035μmと微細でかつ粒度の揃つた形状を有
していた。
Example 2 3.9 g of stannous chloride (SnCl 2 .2H 2 O) and 121.6 g of indium nitrate [In (NO 3 ) 3 .3H 2 O] were dissolved in 4000 ml of water, and 2% aqueous ammonia was added thereto. Was added over 73 minutes to finally adjust the pH to 7.80, thereby co-precipitating a hydrate of tin oxide and indium oxide. During this time, the liquid temperature was maintained at 20 ° C. Next, the coprecipitate was washed, dried, and further 900
C. for 2 hours to obtain a tin-containing indium oxide fine powder. As shown in the electron micrograph of FIG. 2, the fine powder had a primary particle size of about 0.035 μm and a fine and uniform particle size.

【0014】実施例3 塩化第2錫(SnCl4・5H2O)5.9g及び塩化インジウ
ム(InCl3)75.9gを水4000mlに溶解し、これに4.5%
NH4HCO3水溶液を360分かけて添加しpHを最終的に
5.8とすることにより酸化錫及び酸化インジウムの水和
物を共沈させた。この間、液温は25℃を維持するように
した。次いで該共沈物を洗浄後乾燥、更に700℃にて2
時間焼成し、錫含有酸化インジウム微粉末を得た。該微
粉末は図3の電子顕微鏡写真が示すように、一次粒子径
約0.045μmと微細でかつ粒度の揃つた形状を有してい
た。
Example 3 5.9 g of stannic chloride (SnCl 4 .5H 2 O) and 75.9 g of indium chloride (InCl 3 ) were dissolved in 4000 ml of water, and 4.5%
NH 4 HCO 3 aqueous solution is added over 360 minutes to finally adjust pH.
By setting to 5.8, a hydrate of tin oxide and indium oxide was coprecipitated. During this time, the liquid temperature was kept at 25 ° C. Next, the coprecipitate is washed, dried, and further dried at 700 ° C for 2 hours.
Calcination was performed for a period of time to obtain a tin-containing indium oxide fine powder. As shown in the electron micrograph of FIG. 3, the fine powder had a primary particle size of about 0.045 μm and a fine and uniform particle size.

【0015】比較例1 液温を35℃に維持する以外は実施例1と同様にして錫含
有酸化インジウム微粉末を得た。該微粉末は図4の電子
顕微鏡写真が示すように短軸径0.05〜0.07μm、長軸径
0.30〜0.35μmの針状形状を有していた。
Comparative Example 1 Tin-containing indium oxide fine powder was obtained in the same manner as in Example 1 except that the liquid temperature was maintained at 35 ° C. The fine powder has a short axis diameter of 0.05 to 0.07 μm and a long axis diameter as shown in the electron micrograph of FIG.
It had a needle shape of 0.30 to 0.35 μm.

【0016】比較例2 pHを最終的に4.5とする以外は実施例1と同様にして酸
化錫及び酸化インジウムの水和物を共沈させた。該共沈
物はゲル状であるため水洗に長時間を要し、かつ900℃
にて2時間焼成することにより得られた錫含有酸化イン
ジウム粉末は図5に示すように、殆どが焼結し、粗大粒
子となつていた。
Comparative Example 2 A hydrate of tin oxide and indium oxide was coprecipitated in the same manner as in Example 1 except that the pH was finally adjusted to 4.5. Since the coprecipitate is in a gel state, it takes a long time to wash with water, and 900 ° C.
As shown in FIG. 5, almost all of the tin-containing indium oxide powder obtained by firing for 2 hours was sintered to form coarse particles.

【0017】比較例3 pHを最終的に9.5とする以外は実施例1と同様にして酸
化錫及び酸化インジウムの水和物を共沈させた。該共沈
物は比較例2と同様、ゲル状であるため水洗に長時間を
要し、かつ900℃にて2時間焼成することにより得られ
た錫含有酸化インジウム粉末は殆どが焼結し粗大粒子と
なつていた。
Comparative Example 3 A hydrate of tin oxide and indium oxide was coprecipitated in the same manner as in Example 1 except that the pH was finally adjusted to 9.5. As in Comparative Example 2, the coprecipitate is in a gel state, and thus requires a long time for water washing, and most of the tin-containing indium oxide powder obtained by firing at 900 ° C. for 2 hours is coarse and coarse. Had become particles.

【0018】比較例4 添加時間を20分とする以外は実施例1と同様にして酸化
錫及び酸化インジウムの水和物を共沈させた。該共沈物
は比較例2と同様、ゲル状であるため水洗に長時間を要
し、かつ900℃にて2時間焼成することにより得られた
錫含有酸化インジウム粉末は殆どが焼結し粗大粒子とな
つていた。
Comparative Example 4 A hydrate of tin oxide and indium oxide was coprecipitated in the same manner as in Example 1 except that the addition time was changed to 20 minutes. As in Comparative Example 2, the coprecipitate is in a gel state, and thus requires a long time for water washing, and most of the tin-containing indium oxide powder obtained by firing at 900 ° C. for 2 hours is coarse and coarse. Had become particles.

【0019】試験例1 実施例1〜3及び比較例1〜4の錫含有酸化インジウム
微粉末の各10.5gをアルキド樹脂(大日本インキ化学工
業製ベツコゾール、固形分70重量%)5.0gとキシロール
7ml及びガラスビーズ 50gと混合、ペイントシエーカ
ーにて60分間振盪して塗料を調製した。これをガラス板
に乾燥膜厚が5μmとなるように塗布し乾燥したのち表
面抵抗率をロレスタFP(三菱油化製)にて、又700nm
光の光透過率を分光光度計U−2000(日立製作所製)に
て測定した。その結果を表1に示す。
Test Example 1 10.5 g of each of the tin-containing indium oxide fine powders of Examples 1 to 3 and Comparative Examples 1 to 4 was mixed with 5.0 g of an alkyd resin (Betcosol manufactured by Dainippon Ink and Chemicals, solid content 70% by weight) and xylol. The mixture was mixed with 7 ml and 50 g of glass beads and shaken in a paint shaker for 60 minutes to prepare a paint. This was applied to a glass plate so that the dry film thickness became 5 μm, dried, and then the surface resistivity was measured with a Loresta FP (manufactured by Mitsubishi Yuka) at 700 nm.
The light transmittance of light was measured with a spectrophotometer U-2000 (manufactured by Hitachi, Ltd.). Table 1 shows the results.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【発明の効果】以上のように本発明によれば、水和物と
して生成する段階で従来法がコロイド粒子であるのに対
し、既に0.015〜0.05μm程度の一次粒子としての形骸を
有しているため加熱処理工程でも焼結することなく酸化
物となり、何ら特別な粉砕手段を講ずることなく製品化
することができる。
As described above, according to the present invention, while the conventional method is a colloidal particle at the stage of forming as a hydrate, it already has a form as a primary particle of about 0.015 to 0.05 μm. Therefore, it becomes an oxide without sintering even in the heat treatment step, and can be commercialized without taking any special grinding means.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例1により得られた錫含有酸化
インジウム微粉末の粒子構造を示す電子顕微鏡写真(40
000倍)である。
FIG. 1 is an electron micrograph (40) showing the particle structure of a tin-containing indium oxide fine powder obtained according to Example 1 of the present invention.
000 times).

【図2】 本発明の実施例2により得られた錫含有酸化
インジウム微粉末の粒子構造を示す電子顕微鏡写真(40
000倍)である。
FIG. 2 is an electron micrograph (40) showing the particle structure of the tin-containing indium oxide fine powder obtained according to Example 2 of the present invention.
000 times).

【図3】 本発明の実施例3により得られた錫含有酸化
インジウム微粉末の粒子構造を示す電子顕微鏡写真(40
000倍)である。
FIG. 3 is an electron micrograph (40) showing the particle structure of the tin-containing indium oxide fine powder obtained according to Example 3 of the present invention.
000 times).

【図4】 本発明の比較例1により得られた錫含有酸化
インジウム微粉末の粒子構造を示す電子顕微鏡写真(40
000倍)である。
FIG. 4 is an electron micrograph (40) showing the particle structure of the tin-containing indium oxide fine powder obtained according to Comparative Example 1 of the present invention.
000 times).

【図5】 本発明の比較例2により得られた錫含有酸化
インジウム微粉末の粒子構造を示す電子顕微鏡写真(40
000倍)である。
FIG. 5 is an electron micrograph (40) showing the particle structure of the tin-containing indium oxide fine powder obtained according to Comparative Example 2 of the present invention.
000 times).

フロントページの続き (56)参考文献 特開 平3−54114(JP,A) 特開 平1−290527(JP,A) 特開 平2−6332(JP,A) 特開 平2−120374(JP,A) 特開 昭62−7627(JP,A) 特開 昭63−11519(JP,A) (58)調査した分野(Int.Cl.6,DB名) C01G 1/00 - 23/08 Continuation of the front page (56) References JP-A-3-54114 (JP, A) JP-A-1-290527 (JP, A) JP-A-2-6332 (JP, A) JP-A-2-120374 (JP) JP, A 62-7627 (JP, A) JP, 63-11519 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C01G 1/00-23/08

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 錫塩及びインジウム塩の溶液に温度を30
℃以下に保持しながらアルカリ水溶液を添加して得られ
た酸化錫及び酸化インジウムの水和物を加熱処理するこ
とを特徴とする導電性錫含有酸化インジウムの超微粉末
の製造方法。
1. The temperature of the tin salt and indium salt solution is adjusted to 30.
A method for producing an ultrafine powder of conductive tin-containing indium oxide, comprising subjecting a hydrate of tin oxide and indium oxide obtained by adding an aqueous alkali solution to heat treatment at a temperature of not more than ° C.
JP4200093A 1993-02-04 1993-02-04 Method for producing conductive fine powder Expired - Lifetime JP2963296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4200093A JP2963296B2 (en) 1993-02-04 1993-02-04 Method for producing conductive fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4200093A JP2963296B2 (en) 1993-02-04 1993-02-04 Method for producing conductive fine powder

Publications (2)

Publication Number Publication Date
JPH06227815A JPH06227815A (en) 1994-08-16
JP2963296B2 true JP2963296B2 (en) 1999-10-18

Family

ID=12623939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4200093A Expired - Lifetime JP2963296B2 (en) 1993-02-04 1993-02-04 Method for producing conductive fine powder

Country Status (1)

Country Link
JP (1) JP2963296B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2972996B2 (en) * 1997-12-02 1999-11-08 三井金属鉱業株式会社 ITO fine powder and method for producing the same
JP4559581B2 (en) * 2000-03-22 2010-10-06 富士チタン工業株式会社 Tin-containing indium oxide fine particle powder and method for producing the same
JP5070554B2 (en) * 2001-09-28 2012-11-14 Dowaエレクトロニクス株式会社 ITO powder, transparent conductive film and method for forming the same
JP5285412B2 (en) * 2008-03-11 2013-09-11 三井金属鉱業株式会社 Tin-doped indium oxide particles and method for producing the same
JP6095570B2 (en) 2011-09-17 2017-03-15 日本化薬株式会社 Heat ray shielding adhesive composition, heat ray shielding transparent adhesive sheet and method for producing the same
TW201429711A (en) 2012-10-19 2014-08-01 Nippon Kayaku Kk Heat ray-shielding sheet
WO2019051737A1 (en) * 2017-09-14 2019-03-21 孟永辉 Method for preparing high-purity nano-tin dioxide spherical powder

Also Published As

Publication number Publication date
JPH06227815A (en) 1994-08-16

Similar Documents

Publication Publication Date Title
JP2875993B2 (en) Anatase dispersion and method for producing the same
KR950011338B1 (en) Acicular electro conductive titanium oxide and process for production same
JP3251066B2 (en) Method for producing acicular conductive fine powder
JP4018974B2 (en) Tin oxide powder, method for producing the same, and method for producing high-density indium tin oxide target using the same
JP2963296B2 (en) Method for producing conductive fine powder
JP5142891B2 (en) Cuprous oxide powder and method for producing the same
EP0921099B1 (en) ITO fine powder and method for preparing the same
JP3009581B2 (en) Conductive paint
JP2994020B2 (en) Method for producing conductive titanium dioxide powder
JP3289335B2 (en) Method for producing indium oxide powder and ITO sintered body
JPH06279618A (en) Rodlike fine particulate electrically conductive titanium oxide and production thereof
JPH09183620A (en) Bismuth oxycarbonate powder and its production
JP3367149B2 (en) Method for producing conductive oxide powder
KR101305903B1 (en) Tin oxide powder and manufacturing method of producing the same
CN107188225B (en) A kind of indium-doped antimony oxidation tin nano-powder and preparation method thereof
JPH01136910A (en) Manufacture of granular fine metal powder
JP2003054949A (en) Sn-CONTAINING In OXIDE AND MANUFACTURING METHOD THEREOF, COATING MATERIAL USING THE SAME AND CONDUCTIVE COATING FILM
CN109019676B (en) Method for preparing high-purity nano-grade barium titanate by precipitation method
JP2776573B2 (en) Production method of indium oxide-tin oxide fine powder
JPH06234522A (en) Electrically conductive material and its production
JPH0712922B2 (en) Method of forming inorganic hydroxide precipitate
KR101117309B1 (en) Method for producing indium tin oxides fine powder
JP2003104725A (en) Ito powder, transparent electroconductive film and the film preparation method
JP3367238B2 (en) Method for producing fine lead ruthenate powder
JP2001220137A (en) Tin-doped indium oxide powder and its manufacturing method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090806

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100806

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20130806

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20130806