JP2956402B2 - Electrorheological fluid - Google Patents

Electrorheological fluid

Info

Publication number
JP2956402B2
JP2956402B2 JP1011193A JP1011193A JP2956402B2 JP 2956402 B2 JP2956402 B2 JP 2956402B2 JP 1011193 A JP1011193 A JP 1011193A JP 1011193 A JP1011193 A JP 1011193A JP 2956402 B2 JP2956402 B2 JP 2956402B2
Authority
JP
Japan
Prior art keywords
resin
electrorheological fluid
fine particles
matrix resin
solid fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1011193A
Other languages
Japanese (ja)
Other versions
JPH06220476A (en
Inventor
宜弘 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1011193A priority Critical patent/JP2956402B2/en
Publication of JPH06220476A publication Critical patent/JPH06220476A/en
Application granted granted Critical
Publication of JP2956402B2 publication Critical patent/JP2956402B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、粘性を外部電圧によっ
て制御できる電気粘性流体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrorheological fluid whose viscosity can be controlled by an external voltage.

【0002】[0002]

【従来の技術】電気粘性流体は、シリコーンオイルなど
の絶縁性流体中に誘電性の固体微粒子が分散した懸濁液
であり、強い電場の作用により可逆的に粘度が増加する
液体であって、クラッチ、ショックアブソーバなどへの
利用が検討されている。ここで電気粘性流体に用いられ
る誘電性の固体微粒子としては、セルロース、澱粉、シ
リカゲル、ポリアクリル酸リチウムなどの水吸収性ある
いは親水性の固体微粒子が従来より用いられている。と
ころがこのような固体微粒子を用いた電気粘性流体で
は、電気粘性効果の温度依存性が大きく、また高温時に
導電率が大きくなって流れる電流量が大きく、絶縁破壊
を防止するための手段が必要となるという不具合があっ
た。また0℃以下の低温では、電気粘性効果が極端に小
さくなるという問題もある。
2. Description of the Related Art An electrorheological fluid is a suspension in which dielectric solid fine particles are dispersed in an insulating fluid such as silicone oil, and is a liquid whose viscosity is reversibly increased by the action of a strong electric field. Applications for clutches, shock absorbers, etc. are being considered. Here, as the dielectric solid fine particles used for the electrorheological fluid, water-absorbing or hydrophilic solid fine particles such as cellulose, starch, silica gel, and lithium polyacrylate have been conventionally used. However, in such an electrorheological fluid using solid fine particles, the temperature dependence of the electrorheological effect is large, and the conductivity increases at high temperatures, and the amount of flowing current is large. There was a problem of becoming. At a low temperature of 0 ° C. or less, there is also a problem that the electrorheological effect becomes extremely small.

【0003】そこで、特開平2−255798号公報に
は、多価アルコールを親水剤として含む結晶セルロース
粒子の表面が電気絶縁性薄膜で被覆された構成の誘電体
微粒子を用いた電気粘性流体が開示されている。この電
気粘性流体によれば、良好な電気粘性効果を示すととも
に、高温時にも導電率が小さく、流れる電流量を低減す
ることができる。
Japanese Patent Application Laid-Open No. 2-255798 discloses an electrorheological fluid using dielectric fine particles in which the surface of crystalline cellulose particles containing a polyhydric alcohol as a hydrophilic agent is coated with an electrically insulating thin film. Have been. According to this electrorheological fluid, while exhibiting a good electrorheological effect, the electric conductivity is small even at a high temperature, and the amount of flowing current can be reduced.

【0004】[0004]

【発明が解決しようとする課題】ところが上記公報に開
示された電気粘性流体では、誘電性微粒子は電気絶縁性
被膜の厚さによって導電率が大きく変化するという性質
がある。しかも、その電気絶縁性被膜の厚さを精密に制
御することが困難であり、結果的に流れる電流量にばら
つきが生じるという不具合があった。
However, in the electrorheological fluid disclosed in the above publication, the dielectric fine particles have such a property that the electric conductivity greatly changes depending on the thickness of the electrically insulating film. In addition, it is difficult to precisely control the thickness of the electrically insulating film, resulting in a problem that the amount of flowing current varies.

【0005】一方、水吸収性あるいは親水性の固体微粒
子の代わりに有機半導体粒子を用いた電気粘性流体が検
討されている。このような有機半導体粒子であれば導電
率の制御を比較的容易に行うことができる。しかしなが
らこの電気粘性流体では、有機半導体粒子の粒径によっ
て電気粘性効果が大きく変化するという特性を有し、し
かもその粒径の制御は困難であるために充分な特性が得
られていないのが現状である。
On the other hand, an electrorheological fluid using organic semiconductor particles instead of water-absorbing or hydrophilic solid fine particles has been studied. With such organic semiconductor particles, the control of the conductivity can be performed relatively easily. However, this electrorheological fluid has the characteristic that the electrorheological effect changes greatly depending on the particle size of the organic semiconductor particles, and it is difficult to control the particle size, so that sufficient characteristics have not yet been obtained. It is.

【0006】本発明はこのような事情に鑑みてなされた
ものであり、新規な親水性の固体微粒子の使用により、
高い電気粘性効果を維持しつつ高温時の導電率の増大を
防止することを目的とする。
[0006] The present invention has been made in view of such circumstances, and by using novel hydrophilic solid fine particles,
An object is to prevent an increase in conductivity at high temperatures while maintaining a high electrorheological effect.

【0007】[0007]

【課題を解決するための手段】上記課題を解決する本発
明の電気粘性流体は、電気絶縁性媒体中に固体微粒子を
分散してなる電気粘性流体において、固体微粒子は、A
BS樹脂,ポリオレフィン,ポリエチレンテレフタレー
ト,ポリメタクリル酸メチルから選ばれる樹脂からなる
マトリックス樹脂と、マトリックス樹脂中に含有され、
ポリ(エチレンオキシド/プロピレンオキシド)共重合
体,ポリエチレングリコール系ポリアミド,ポリエステ
ルアミド,ポリ(エピクロルヒドリン/エチレンオキシ
ド)共重合体,ポリエチレングリコールメタクリレート
共重合体,第4級アンモニウム塩基含有メタクリレート
共重合体から選ばれる親水性樹脂と、よりなり、実質的
に表面に水分を含まず、体積固有電導度が1×10-11
〜2×10-9S/cmであることを特徴とする。
The electrorheological fluid of the present invention for solving the above-mentioned problems is an electrorheological fluid in which solid fine particles are dispersed in an electrically insulating medium.
A matrix resin comprising a resin selected from BS resin, polyolefin, polyethylene terephthalate, and polymethyl methacrylate; and a matrix resin,
Hydrophilic selected from poly (ethylene oxide / propylene oxide) copolymer, polyethylene glycol-based polyamide, polyester amide, poly (epichlorohydrin / ethylene oxide) copolymer, polyethylene glycol methacrylate copolymer, and methacrylate copolymer containing quaternary ammonium base Consisting of a conductive resin, containing substantially no water on the surface, and having a volume specific conductivity of 1 × 10 −11.
22 × 10 −9 S / cm.

【0008】固体微粒子は、マトリックス樹脂と、マト
リックス樹脂中に含まれた親水性樹脂とから構成され
る。このうちマトリックス樹脂は固体微粒子の基体とな
るものであり、ABS樹脂,ポリオレフィン,ポリエチ
レンテレフタレート,ポリメタクリル酸メチルから選ば
れる。このマトリックス樹脂は、固体微粒子に耐熱性や
機械的強度を付与し、絶縁体及び誘電体のいずれも用い
られる。ただ親水性樹脂との相溶性により選択して用い
られる。
[0008] The solid fine particles are composed of a matrix resin and a hydrophilic resin contained in the matrix resin. Among these, the matrix resin serves as a substrate for solid fine particles, and is selected from ABS resin, polyolefin, polyethylene terephthalate, and polymethyl methacrylate. This matrix resin imparts heat resistance and mechanical strength to the solid fine particles, and both an insulator and a dielectric are used. However, it is selectively used depending on the compatibility with the hydrophilic resin.

【0009】親水性樹脂は、ポリ(エチレンオキシド/
プロピレンオキシド)共重合体,ポリエチレングリコー
ル系ポリアミド,ポリエステルアミド,ポリ(エピクロ
ルヒドリン/エチレンオキシド)共重合体,ポリエチレ
ングリコールメタクリレート共重合体,第4級アンモニ
ウム塩基含有メタクリレート共重合体から選ばれ、一般
に導電率が10-9〜10-8S/cmのものが望ましい。
この親水性樹脂は、上記マトリックス樹脂中に、固体微
粒子全体の体積固有電導度が1×10-11 〜2×10-9
S/cmとなるように含有される。体積固有電導度が1
×10-11 S/cmより小さいと電気粘性効果が小さく
なり、2×10-9S/cmより大きくなると高温時に流
れる電流量が大きくなってしまう。このようになる混合
比率は、重量比でマトリックス樹脂/親水性樹脂=99
/1〜80/20の範囲が一般的である。
The hydrophilic resin is poly (ethylene oxide /
Propylene oxide) copolymer, polyethylene glycol polyamide, polyester amide, poly (epichlorohydrin / ethylene oxide) copolymer, polyethylene glycol methacrylate copolymer, and methacrylate copolymer containing a quaternary ammonium base. Those having a density of 10 -9 to 10 -8 S / cm are desirable.
This hydrophilic resin has a volume specific conductivity of the whole solid fine particles of 1 × 10 −11 to 2 × 10 −9 in the matrix resin.
S / cm is contained. Volume specific conductivity is 1
If it is smaller than × 10 −11 S / cm, the electrorheological effect will be small, and if it is larger than 2 × 10 −9 S / cm, the amount of current flowing at high temperature will be large. The mixing ratio thus obtained is: matrix resin / hydrophilic resin = 99 by weight.
The range of / 1/80/20 is common.

【0010】親水性樹脂は、マトリックス樹脂中に均一
に分散した状態であってもよいが、筋状あるいは層状と
なって連続層を形成した状態であることが望ましい。し
たがってマトリックス樹脂と親水性樹脂との組合せは、
このような連続層を形成しやすい相溶性をもつ組合せを
選択することが好ましい。本発明では、固体微粒子の表
面には実質的に水分が含まれない。このような固体微粒
子は、固体微粒子を形成後に乾燥工程を行うことにより
容易に形成することができる。
The hydrophilic resin may be in a state of being uniformly dispersed in the matrix resin, but is preferably in a state in which a continuous layer is formed in a streak or a layer. Therefore, the combination of the matrix resin and the hydrophilic resin is
It is preferable to select a combination having compatibility that easily forms such a continuous layer. In the present invention, the surface of the solid fine particles contains substantially no moisture. Such solid fine particles can be easily formed by performing a drying step after forming the solid fine particles.

【0011】[0011]

【作用】本発明の電気粘性流体では、含まれる固体微粒
子の表面には水分が存在せず、内部には水分を含む親水
性樹脂が含まれている。したがって固体微粒子表面の導
電率が低いため、高温時に流れる電流量を低く抑制する
ことができる。また固体微粒子は、全体では体積固有電
導度が1×10-11 〜2×10-9S/cmと適度な導電
性を有しているので、内部において電荷移動が速く高い
降伏応力が得られ、応答性(電圧を印加してから粘度が
変化するまでの時間)も充分に高い。
In the electrorheological fluid of the present invention, no moisture is present on the surface of the solid fine particles contained therein, and a hydrophilic resin containing moisture is contained therein. Therefore, since the conductivity of the surface of the solid fine particles is low, the amount of current flowing at a high temperature can be suppressed low. In addition, the solid fine particles have an appropriate conductivity as a whole having an intrinsic volume conductivity of 1 × 10 −11 to 2 × 10 −9 S / cm, so that charge transfer is fast inside and a high yield stress is obtained. Also, the response (time from application of voltage to change in viscosity) is sufficiently high.

【0012】[0012]

【実施例】以下、実施例により具体的に説明する。 (実施例1)マトリックス樹脂としてABS樹脂を選ぶ
とともに、室温下、湿度80%の状態で1昼夜放置され
たポリエチレングリコールメタクリレート共重合体を親
水性樹脂として選び、それぞれを250℃に加熱溶融し
て混練機で混練し、ペレット状に押出した。両者の混合
比率は、重量比でマトリックス樹脂/親水性樹脂=89
/11である。
The present invention will be specifically described below with reference to examples. (Example 1) While selecting an ABS resin as a matrix resin, a polyethylene glycol methacrylate copolymer left at room temperature and a humidity of 80% for one day was selected as a hydrophilic resin, and each was heated and melted at 250 ° C. The mixture was kneaded with a kneader and extruded into pellets. The mixing ratio of the two was as follows: matrix resin / hydrophilic resin = 89 in weight ratio.
/ 11.

【0013】ペレット化された混合樹脂は、両樹脂が溶
解するTHF(テトラヒドロフラン)に溶解し、メタノ
ールを徐々に加えて粒子状に再析出させた。その平均粒
径は20μmである。濾過後、室温で1〜2日間真空乾
燥して表面の水分を除去し、粘度20csのシリコーン
オイル中に20体積%となるように分散させて本実施例
の電気粘性流体を調製した。得られた電気粘性流体の基
底粘度は0.2Pas、粒子の体積固有電導度は3×1
-10 S/cmであった。
The pelletized mixed resin was dissolved in THF (tetrahydrofuran) in which both resins were dissolved, and methanol was gradually added to reprecipitate the resin into particles. Its average particle size is 20 μm. After filtration, vacuum drying was performed at room temperature for 1 to 2 days to remove water from the surface, and the dispersion was dispersed in silicone oil having a viscosity of 20 cs to a concentration of 20% by volume to prepare an electrorheological fluid of this example. The base viscosity of the obtained electrorheological fluid was 0.2 Pas, and the volume specific conductivity of the particles was 3 × 1.
It was 0 -10 S / cm.

【0014】この電気粘性流体の電界強度−降伏応力特
性を調べ、結果を図1に示す。また電流密度−温度曲線
を図2に示す。さらに、マトリックス樹脂と親水性樹脂
の混合割合を種々変化させたこと以外は同様にして種々
の体積固有電導度をもつ電気粘性流体を作製し、それぞ
れの80℃における降伏応力と電流密度の関係を測定し
た。結果を図3に示す。 (実施例2)マトリックス樹脂としてABS樹脂を選ぶ
とともに、室温下、湿度80%の状態で1昼夜放置され
たポリエチレングリコールメタクリレート共重合体を親
水性樹脂として選び、それぞれを250℃に加熱溶融し
て混練機で混練し、ペレット状に押し出した。両者の混
合比率は、重量比でマトリックス樹脂/親水性樹脂=8
9/11である。
The electric field strength-yield stress characteristics of this electrorheological fluid were examined, and the results are shown in FIG. FIG. 2 shows a current density-temperature curve. Further, electrorheological fluids having various volume specific conductivities were prepared in the same manner except that the mixing ratio of the matrix resin and the hydrophilic resin was variously changed, and the relationship between the yield stress at 80 ° C and the current density was determined. It was measured. The results are shown in FIG. (Example 2) An ABS resin was selected as a matrix resin, and a polyethylene glycol methacrylate copolymer left at room temperature and a humidity of 80% for one day was selected as a hydrophilic resin, and each was heated and melted at 250 ° C. The mixture was kneaded with a kneader and extruded into pellets. The mixing ratio of the two is matrix resin / hydrophilic resin = 8 by weight ratio.
9/11.

【0015】ペレット化された混合樹脂は、ボールミル
やジェットミルなどで平均粒径20μmとなるように冷
凍粉砕し、室温で3時間真空乾燥して表面の水分を除去
し、粘度20csのシリコーンオイル中に20体積%と
なるように分散させて本実施例の電気粘性流体を調製し
た。得られた電気粘性流体の基底粘度は0.2Pas、
粒子の体積固有電導度は3×10-10 S/cmであっ
た。
The pelletized mixed resin is freeze-pulverized by a ball mill or a jet mill so as to have an average particle diameter of 20 μm, and vacuum-dried at room temperature for 3 hours to remove water on the surface. The electrorheological fluid of this example was prepared by dispersing so that the volume became 20% by volume. The base viscosity of the obtained electrorheological fluid is 0.2 Pas,
The volume specific conductivity of the particles was 3 × 10 −10 S / cm.

【0016】この電気粘性流体の電界強度−降伏応力特
性を調べ、結果を図1に示す。また温度−電流密度特性
を図2に示す。 (実施例3)マトリックス樹脂としてABS樹脂を選ぶ
とともに、室温下、湿度80%の状態で1昼夜放置され
たポリエチレングリコール系ポリアミドを親水性樹脂と
して選び、それぞれを260℃に加熱溶融して混練機で
混練し、ペレット状に押し出した。両者の混合比率は、
重量比でマトリックス樹脂/親水性樹脂=90/10で
ある。
The electric field strength-yield stress characteristics of this electrorheological fluid were examined, and the results are shown in FIG. FIG. 2 shows temperature-current density characteristics. (Example 3) An ABS resin was selected as a matrix resin, and a polyethylene glycol-based polyamide left for one day at room temperature and a humidity of 80% was selected as a hydrophilic resin. And extruded into pellets. The mixing ratio of both is
Matrix resin / hydrophilic resin = 90/10 by weight ratio.

【0017】ペレット化された混合樹脂は、ボールミル
やジェットミルなどで平均粒径30μmとなるように冷
凍粉砕し、室温で3時間真空乾燥して表面の水分を除去
し、粘度20csのシリコーンオイル中に18体積%と
なるように分散させて本実施例の電気粘性流体を調製し
た。得られた電気粘性流体の基底粘度は0.15Pa
s、粒子の体積固有電導度は2×10-10 S/cmであ
った。
The pelletized mixed resin is freeze-pulverized with a ball mill or a jet mill so as to have an average particle diameter of 30 μm, and vacuum-dried at room temperature for 3 hours to remove water on the surface. To prepare an electrorheological fluid of this example. The base viscosity of the obtained electrorheological fluid is 0.15 Pa
s, the volume specific conductivity of the particles was 2 × 10 −10 S / cm.

【0018】この電気粘性流体の電界強度−降伏応力特
性を調べ、結果を図1に示す。また温度−電流密度特性
を図2に示す。 (実施例4)マトリックス樹脂としてポリプロピレンを
選ぶとともに、室温下、湿度80%の状態で1昼夜放置
されたポリ(エチレンオキシド/プロピレンオキシド)
共重合体を親水性樹脂として選び、それぞれを210℃
に加熱溶融して混練機で混練し、ペレット状に押し出し
た。両者の混合比率は、重量比でマトリックス樹脂/親
水性樹脂=85/15である。
The electric field strength-yield stress characteristics of this electrorheological fluid were examined, and the results are shown in FIG. FIG. 2 shows temperature-current density characteristics. (Example 4) Poly (ethylene oxide / propylene oxide) left for one day and night at room temperature and 80% humidity while selecting polypropylene as the matrix resin
Select copolymers as hydrophilic resins, each at 210 ° C
The mixture was heated and melted, kneaded with a kneader, and extruded into pellets. The mixing ratio of both is a matrix resin / hydrophilic resin = 85/15 by weight ratio.

【0019】ペレット化された混合樹脂は、両樹脂が溶
解するTHF(テトラヒドロフラン)に溶解し、メタノ
ールを徐々に加えて粒子状に再析出させた。その平均粒
径は40μmである。濾過後、室温で3時間真空乾燥し
て表面の水分を除去し、粘度20csのシリコーンオイ
ル中に15体積%となるように分散させて本実施例の電
気粘性流体を調製した。得られた電気粘性流体の基底粘
度は0.1Pas、粒子の体積固有電導度は5×10
-10 S/cmであった。
The pelletized mixed resin was dissolved in THF (tetrahydrofuran) in which both resins were dissolved, and methanol was gradually added to reprecipitate the resin into particles. Its average particle size is 40 μm. After filtration, vacuum drying was performed at room temperature for 3 hours to remove water on the surface, and the dispersion was dispersed in silicone oil having a viscosity of 20 cs to 15% by volume to prepare an electrorheological fluid of this example. The base viscosity of the obtained electrorheological fluid is 0.1 Pas, and the volume specific conductivity of the particles is 5 × 10
-10 S / cm.

【0020】この電気粘性流体の電界強度−降伏応力特
性を調べ、結果を図1に示す。また温度−電流密度特性
を図2に示す。 (実施例5)マトリックス樹脂としてポリプロピレンを
選ぶとともに、室温下、湿度80%の状態で1昼夜放置
されたポリ(エピクロルヒドリン/エチレンオキシド)
共重合体を親水性樹脂として選び、それぞれを210℃
に加熱溶融して混練機で混練し、ペレット状に押し出し
た。両者の混合比率は、重量比でマトリックス樹脂/親
水性樹脂=85/15である。
The electric field strength-yield stress characteristics of this electrorheological fluid were examined, and the results are shown in FIG. FIG. 2 shows temperature-current density characteristics. (Example 5) Poly (epichlorohydrin / ethylene oxide) which was left for one day and night at a room temperature and a humidity of 80% while selecting polypropylene as a matrix resin.
Select copolymers as hydrophilic resins, each at 210 ° C
The mixture was heated and melted, kneaded with a kneader, and extruded into pellets. The mixing ratio of both is a matrix resin / hydrophilic resin = 85/15 by weight ratio.

【0021】ペレット化された混合樹脂は、両樹脂が溶
解するTHF(テトラヒドロフラン)に溶解し、メタノ
ールを徐々に加えて粒子状に再析出させた。その平均粒
径は40μmである。濾過後、室温で3時間真空乾燥し
て表面の水分を除去し、粘度20csのシリコーンオイ
ル中に15体積%となるように分散させて本実施例の電
気粘性流体を調製した。得られた電気粘性流体の基底粘
度は0.11Pas、粒子の体積固有電導度は4×10
-10 S/cmであった。
The pelletized mixed resin was dissolved in THF (tetrahydrofuran) in which both resins were dissolved, and methanol was gradually added to reprecipitate the resin into particles. Its average particle size is 40 μm. After filtration, vacuum drying was performed at room temperature for 3 hours to remove water on the surface, and the dispersion was dispersed in silicone oil having a viscosity of 20 cs to 15% by volume to prepare an electrorheological fluid of this example. The base viscosity of the obtained electrorheological fluid is 0.11 Pas, and the volume specific conductivity of the particles is 4 × 10
-10 S / cm.

【0022】この電気粘性流体の電界強度−降伏応力特
性を調べ、結果を図1に示す。また温度−電流密度特性
を図2に示す。 (実施例6)マトリックス樹脂としてポリエチレンテレ
フタレート(PET)を選ぶとともに、室温下、湿度8
0%の状態で1昼夜放置された第4級アンモニウム塩含
有メタクリレート共重合体を親水性樹脂として選び、そ
れぞれを280℃に加熱溶融して混練機で混練し、ペレ
ット状に押し出した。両者の混合比率は、重量比でマト
リックス樹脂/親水性樹脂=91/9である。
The electric field strength-yield stress characteristics of this electrorheological fluid were examined, and the results are shown in FIG. FIG. 2 shows temperature-current density characteristics. (Example 6) Polyethylene terephthalate (PET) was selected as a matrix resin, and a humidity of 8
A quaternary ammonium salt-containing methacrylate copolymer left at 0% for one day was selected as a hydrophilic resin, and each was heated and melted at 280 ° C., kneaded with a kneader, and extruded into pellets. The mixing ratio of the two is matrix resin / hydrophilic resin = 91/9 by weight ratio.

【0023】ペレット化された混合樹脂は、ボールミル
やジェットミルなどで平均粒径10μmとなるように冷
凍粉砕し、室温で3時間真空乾燥して表面の水分を除去
し、粘度20csのシリコーンオイル中に14体積%と
なるように分散させて本実施例の電気粘性流体を調製し
た。得られた電気粘性流体の基底粘度は0.09Pa
s、粒子の体積固有電導度は8×10-10 S/cmであ
った。
The pelletized mixed resin is freeze-pulverized by a ball mill or a jet mill so as to have an average particle diameter of 10 μm, and vacuum-dried at room temperature for 3 hours to remove water on the surface. The electrorheological fluid of this example was prepared by dispersing so that the volume became 14% by volume. The base viscosity of the obtained electrorheological fluid is 0.09 Pa
s, the volume specific conductivity of the particles was 8 × 10 −10 S / cm.

【0024】この電気粘性流体の電界強度−降伏応力特
性を調べ、結果を図1に示す。また温度−電流密度特性
を図2に示す。 (従来例)実施例で用いたものと同様のシリコーンオイ
ル中に、シリカ粉末を20体積%分散させた組成の従来
例の電気粘性流体を用意し、その電界強度−降伏応力特
性及び電流密度−温度曲線をそれぞれ図1及び図2に示
す。 (評価)図1より、本実施例の電気粘性流体は従来例の
ものに比べて電気粘性特性が優れていることがわかる。
そして図2より、従来の電気粘性流体は実施例のものに
比べて温度の上昇に伴って電流密度が急激に増大してい
ることが明らかである。これは、従来の電気粘性流体に
用いられているシリカ粒子表面に吸着した水分の影響で
ある。
The electric field strength-yield stress characteristics of this electrorheological fluid were examined, and the results are shown in FIG. FIG. 2 shows temperature-current density characteristics. (Conventional Example) A conventional electrorheological fluid having a composition in which 20% by volume of silica powder is dispersed in the same silicone oil as that used in the examples is prepared, and its electric field strength-yield stress characteristic and current density- The temperature curves are shown in FIGS. 1 and 2, respectively. (Evaluation) It can be seen from FIG. 1 that the electrorheological fluid of the present embodiment has better electrorheological characteristics than that of the conventional example.
From FIG. 2, it is apparent that the current density of the conventional electrorheological fluid sharply increases with an increase in temperature as compared with that of the embodiment. This is due to the effect of water adsorbed on the surface of silica particles used in conventional electrorheological fluids.

【0025】また図3より、電流密度は体積固有電導度
に対してほぼ比例関係にある。しかし電流密度が30μ
A/cm2 を越えると耐熱性が低下するので、体積固有
電導度は2×10-9S/cm以下とするのが実用上好ま
しい。一方、降伏応力は2×10-9S/cmを超えると
ほぼ一定値となり、1×10 -11 S/cmより小さくな
ると急激に低下している。したがって図3より、粒子の
体積固有電導度は1×10-11 〜2×10-9S/cmの
範囲とするのが望ましいことが明らかである。
FIG. 3 shows that the current density is the volume specific conductivity.
Is almost proportional to. However, the current density is 30μ
A / cmTwoIf it exceeds, the heat resistance will decrease, so
Conductivity is 2 × 10-9S / cm or less is practically preferable.
New On the other hand, the yield stress is 2 × 10-9If it exceeds S / cm
Almost constant value, 1 × 10 -11Smaller than S / cm
Then it drops sharply. Therefore, from FIG.
Volume specific conductivity is 1 × 10-11~ 2 × 10-9S / cm
Obviously, a range is desirable.

【0026】[0026]

【発明の効果】すなわち本発明の電気粘性流体によれ
ば、降伏応力及び高温時の電流密度の両方で優れた特性
を示し、電気粘性特性に優れるとともに絶縁破壊を防止
するための装備などが不要となる。また本発明に用いて
いる微粒子は、シリコーンオイルなどと近い比重を有し
ているので、沈澱などの不具合が生じにくくなり、また
有機半導体粒子などと比較して安価である。
That is, according to the electrorheological fluid of the present invention, it exhibits excellent characteristics in both the yield stress and the current density at a high temperature, and has excellent electrorheological characteristics and does not require equipment for preventing dielectric breakdown. Becomes Further, since the fine particles used in the present invention have a specific gravity close to that of silicone oil or the like, problems such as precipitation hardly occur, and they are less expensive than organic semiconductor particles.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電界強度と降伏応力との関係を示すグラフであ
る。
FIG. 1 is a graph showing the relationship between electric field strength and yield stress.

【図2】温度と電流密度の関係を示すグラフである。FIG. 2 is a graph showing a relationship between temperature and current density.

【図3】体積固有電導度と降伏応力及び電流密度の関係
を示すグラフである。
FIG. 3 is a graph showing a relationship among a volume specific conductivity, a yield stress, and a current density.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C10M 145:26 149:18 145:22) C10N 20:00 20:06 40:14 (58)調査した分野(Int.Cl.6,DB名) C10M 157/04 C10M 149/08 - 149/18 C10M 145/14 - 145/26 C10M 143/00 C10N 20:00 C10N 20:06 C10N 40:14 WPI/L(QUESTEL)──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 identification code FI C10M 145: 26 149: 18 145: 22) C10N 20:00 20:06 40:14 (58) Fields surveyed (Int.Cl. 6 , DB name) C10M 157/04 C10M 149/08-149/18 C10M 145/14-145/26 C10M 143/00 C10N 20:00 C10N 20:06 C10N 40:14 WPI / L (QUESTEL)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電気絶縁性媒体中に固体微粒子を分散し
てなる電気粘性流体において、 該固体微粒子は、ABS樹脂,ポリオレフィン,ポリエ
チレンテレフタレート,ポリメタクリル酸メチルから選
ばれる樹脂からなるマトリックス樹脂と、該マトリック
ス樹脂中に含有され、ポリ(エチレンオキシド/プロピ
レンオキシド)共重合体,ポリエチレングリコール系ポ
リアミド,ポリエステルアミド,ポリ(エピクロルヒド
リン/エチレンオキシド)共重合体,ポリエチレングリ
コールメタクリレート共重合体,第4級アンモニウム塩
基含有メタクリレート共重合体から選ばれる親水性樹脂
と、よりなり、実質的に表面に水分を含まず、体積固有
電導度が1×10-11 〜2×10-9S/cmであること
を特徴とする電気粘性流体。
1. An electrorheological fluid in which solid fine particles are dispersed in an electrically insulating medium, the solid fine particles comprising: a matrix resin comprising a resin selected from ABS resin, polyolefin, polyethylene terephthalate, and polymethyl methacrylate; Poly (ethylene oxide / propylene oxide) copolymer, polyethylene glycol polyamide, polyester amide, poly (epichlorohydrin / ethylene oxide) copolymer, polyethylene glycol methacrylate copolymer, quaternary ammonium base contained in the matrix resin A hydrophilic resin selected from a methacrylate copolymer, substantially free of moisture on the surface, and having a volume specific conductivity of 1 × 10 −11 to 2 × 10 −9 S / cm. Electrorheological fluid.
JP1011193A 1993-01-25 1993-01-25 Electrorheological fluid Expired - Lifetime JP2956402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1011193A JP2956402B2 (en) 1993-01-25 1993-01-25 Electrorheological fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1011193A JP2956402B2 (en) 1993-01-25 1993-01-25 Electrorheological fluid

Publications (2)

Publication Number Publication Date
JPH06220476A JPH06220476A (en) 1994-08-09
JP2956402B2 true JP2956402B2 (en) 1999-10-04

Family

ID=11741207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1011193A Expired - Lifetime JP2956402B2 (en) 1993-01-25 1993-01-25 Electrorheological fluid

Country Status (1)

Country Link
JP (1) JP2956402B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9914105B2 (en) 2014-11-07 2018-03-13 Hyundai Motor Company Phase-change suspension fluid composition including polyethylene oxide particles and method for manufacturing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6065572A (en) * 1995-11-13 2000-05-23 The Lubrizol Corporation Polymeric materials to self-regulate the level of polar activators in electrorheological fluids
US5843331A (en) * 1995-11-13 1998-12-01 The Lubrizol Corporation Polymeric materials to self-regulate the level of polar activators in electrorheological fluids
JP6914337B2 (en) * 2017-08-14 2021-08-04 日立Astemo株式会社 Non-aqueous suspension showing electrorheological effect and damper using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9914105B2 (en) 2014-11-07 2018-03-13 Hyundai Motor Company Phase-change suspension fluid composition including polyethylene oxide particles and method for manufacturing the same

Also Published As

Publication number Publication date
JPH06220476A (en) 1994-08-09

Similar Documents

Publication Publication Date Title
EP1962293B1 (en) Conductive materials
JPS63107104A (en) Ptc compound, manufacture of the same and ptc device
US6524697B1 (en) Temperature sensor and electronic equipment using the same
EP1367610A2 (en) PCT composition, method of making the same, and thermistor body obtained therefrom
CN106317544B (en) Conductive polymer compositions, conducting polymer sheet material, electric device and their preparation method
US5182050A (en) Extrinsically/intrinsically conductive gel
JP2956402B2 (en) Electrorheological fluid
US9646746B2 (en) Electrical device
CA1337012C (en) Temperature self-controlling heating composition
JP2016535106A (en) Composition for electric field grading
JP3564758B2 (en)   PTC composition
JP2004522299A (en) PTC conductive polymer composition
JP2001338529A (en) Conductive resin composition
JPS6216523B2 (en)
KR960022851A (en) Composition of Polymer PTC (Constant Temperature Coefficient)
JP2623678B2 (en) Conductive material
JPH03139598A (en) Electroviscous fluid
JPS6254828B2 (en)
JPH08127790A (en) Electro-rheological fluid composition and device using the same
JP3800687B2 (en) Composite particles for electrorheological fluid and electrorheological fluid
JPH0652714A (en) Conductive polymer composite
JP3001889B2 (en) Polymer PTC element
JPH04261496A (en) Method for preventing precipitation of dispersed particle of electroviscous fluid
DE102017003215A1 (en) Process for producing a phase change material composite molding (PCM - V) with improved dimensional stability
JPH05234707A (en) Resistance material with positive temperature coefficient