JPH04261496A - Method for preventing precipitation of dispersed particle of electroviscous fluid - Google Patents

Method for preventing precipitation of dispersed particle of electroviscous fluid

Info

Publication number
JPH04261496A
JPH04261496A JP2113191A JP2113191A JPH04261496A JP H04261496 A JPH04261496 A JP H04261496A JP 2113191 A JP2113191 A JP 2113191A JP 2113191 A JP2113191 A JP 2113191A JP H04261496 A JPH04261496 A JP H04261496A
Authority
JP
Japan
Prior art keywords
fine particles
magnetic
particles
specific gravity
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2113191A
Other languages
Japanese (ja)
Inventor
Toshiyuki Itabashi
利幸 板橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2113191A priority Critical patent/JPH04261496A/en
Publication of JPH04261496A publication Critical patent/JPH04261496A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)

Abstract

PURPOSE:To prevent precipitation of an electroviscous fluid without making dielectric fine particles hollow. CONSTITUTION:A magnetic field is applied to an electroviscous fluid 3 consisting of 20-40wt.% dielectric fine particles, 25-35wt.% magnetic fine particles and 55-25wt.% dispersing medium to nearly equalize specific gravity of dielectric fine particles with apparent specific gravity of a dispersing medium.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、電気粘性流体中に分散
している誘電体微粒子の沈澱を防止する方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preventing precipitation of dielectric fine particles dispersed in an electrorheological fluid.

【0002】0002

【従来の技術】電気粘性流体は、シリコーンオイルなど
の分散媒にイオン交換樹脂、シリカなどの誘電体微粒子
を分散させたものであり、電場の作用の下で速やかに、
しかも可逆的にその粘度が増大して固体状態となる特性
がある。そして少ない電力で大きな力を与えるため、ク
ラッチ、ショックアブソーバ、水圧弁など多方面でその
利用が開発されている。
[Prior Art] Electrorheological fluids are made by dispersing dielectric fine particles such as ion exchange resin and silica in a dispersion medium such as silicone oil, and they rapidly dissipate under the action of an electric field.
Furthermore, it has the property of reversibly increasing its viscosity and becoming a solid state. In order to provide a large amount of force with a small amount of electric power, its use is being developed in many fields such as clutches, shock absorbers, and water pressure valves.

【0003】ところが分散媒の比重は0.9前後である
のに対し、誘電体微粒子の比重は1.3前後と大きい。 そのため、時間の経過とともに相分離が生じて誘電体微
粒子が沈澱し、しかもその沈澱は再び分散させるのが困
難という不具合がある。そこで例えば特開平1−962
95号公報には、分散粒子を中空体とし、分散媒の比重
と略同一としてその沈澱を防止した電気粘性流体が開示
されている。
However, while the specific gravity of the dispersion medium is around 0.9, the specific gravity of the dielectric fine particles is as large as around 1.3. Therefore, there is a problem in that phase separation occurs over time and dielectric fine particles precipitate, and it is difficult to disperse the precipitate again. For example, JP-A-1-962
No. 95 discloses an electrorheological fluid in which dispersed particles are hollow bodies and the specific gravity is approximately the same as that of a dispersion medium to prevent precipitation.

【0004】0004

【発明が解決しようとする課題】しかしながら、中空状
の分散粒子を用いて沈澱を防止する方法にあっては、分
散媒の比重に合わせて分散粒子の中空化率を制御する必
要があり、中空分散粒子を得るまでの工数が極めて多大
である。また誘電体微粒子の中空化の技術も一般的とは
いえず、中空分散粒子のコストが高いという問題もある
。さらに、分散時などに中空分散粒子が破壊される場合
があり、このような場合には所望の比重が得られず沈澱
が生じてしまう。
[Problem to be Solved by the Invention] However, in the method of preventing precipitation using hollow dispersed particles, it is necessary to control the hollowing rate of the dispersed particles according to the specific gravity of the dispersion medium. The number of steps required to obtain dispersed particles is extremely large. Furthermore, the technology for hollowing dielectric fine particles is not common, and there is also the problem that the cost of hollow dispersed particles is high. Furthermore, the hollow dispersed particles may be destroyed during dispersion, and in such cases, the desired specific gravity cannot be obtained and precipitation occurs.

【0005】本発明はこのような事情に鑑みてなされた
ものであり、分散粒子を中空状とすることなく比重を分
散媒と近似させることを目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to make the specific gravity of the dispersed particles similar to that of the dispersion medium without making the dispersed particles hollow.

【0006】[0006]

【課題を解決するための手段】上記課題を解決する本発
明の電気粘性流体の分散粒子沈澱防止方法は、誘電体微
粒子が20〜40重量%、磁性体微粒子が25〜35重
量%、残部分散媒からなる電気粘性流体に、磁場を印加
することにより誘電体微粒子の比重と分散媒の見掛けの
比重を略同一とすることを特徴とする。
[Means for Solving the Problems] The method for preventing precipitation of dispersed particles of an electrorheological fluid according to the present invention, which solves the above problems, consists of 20 to 40% by weight of dielectric fine particles, 25 to 35% by weight of magnetic fine particles, and the balance being dispersed. It is characterized in that the specific gravity of the dielectric particles and the apparent specific gravity of the dispersion medium are made approximately the same by applying a magnetic field to an electrorheological fluid consisting of a medium.

【0007】磁性流体として、水または油などの分散媒
にマグネタイト、コバルトなどの超微粒子を安定分散さ
せたコロイド溶液が知られている。この磁性流体は、磁
場を印加することにより見掛けの粘度及び見掛けの比重
が変化する特性をもち、真空軸シール、加速度センサ、
比重差選別装置、アクチュエータなどへの応用が研究さ
れ一部商品化もなされている。本発明者はこの磁性流体
の特性を電気粘性流体に応用することを想起し、鋭意研
究の結果本発明を完成したものである。
Colloidal solutions in which ultrafine particles of magnetite, cobalt, etc. are stably dispersed in a dispersion medium such as water or oil are known as magnetic fluids. This magnetic fluid has the property that its apparent viscosity and apparent specific gravity change by applying a magnetic field, and it can be used for vacuum shaft seals, acceleration sensors, etc.
Applications to specific gravity sorting devices, actuators, etc. are being researched, and some have even been commercialized. The present inventor conceived of applying the characteristics of this magnetic fluid to an electrorheological fluid, and completed the present invention as a result of intensive research.

【0008】誘電体微粒子としては、イオン交換樹脂、
シリカ、乾燥ゼオライトなど従来の電気粘性流体に用い
られているものの微粉末を用いることができる。その粒
径は一般に約10μmのものが用いられる。磁性体微粒
子としては、マグネタイト、コバルト、ニッケルなどが
知られ、一般にこれらの粒径が約100Åの超微粒子が
用いられる。
[0008] As the dielectric fine particles, ion exchange resin,
Fine powders of silica, dry zeolite, and other materials used in conventional electrorheological fluids can be used. Generally, particles having a particle size of about 10 μm are used. Magnetite, cobalt, nickel, and the like are known as magnetic particles, and ultrafine particles having a particle size of about 100 Å are generally used.

【0009】また分散媒は誘電体微粒子と磁性体微粒子
を分散状態で安定に保持し、かつ電気粘性流体及び磁性
流体の両特性を発現するものであり、シリコーンオイル
、ケロシンオイル、スピンドルオイルなどの絶縁油を用
いることができる。本発明に用いられる電気粘性流体に
は、誘電体微粒子が20〜40重量%含まれている。 誘電体微粒子の濃度が20重量%より低くなると、電界
印加時の剪断応力変化が小さく電気粘性流体として機能
しない。また40重量%より高くなると、電界無印加時
の剪断応力が大き過ぎて実用に供し得ない。
[0009] The dispersion medium stably holds dielectric particles and magnetic particles in a dispersed state and exhibits both electrorheological fluid and magnetic fluid properties, and includes silicone oil, kerosene oil, spindle oil, etc. Insulating oil can be used. The electrorheological fluid used in the present invention contains 20 to 40% by weight of dielectric fine particles. When the concentration of dielectric fine particles is lower than 20% by weight, the change in shear stress upon application of an electric field is small and the fluid does not function as an electrorheological fluid. Moreover, if it exceeds 40% by weight, the shear stress when no electric field is applied is too large to be put to practical use.

【0010】また本発明に用いられる電気粘性流体には
、磁性体微粒子が25〜35重量%含まれている。磁性
体微粒子の濃度が25重量%より低くなると、磁場印加
時の見掛けの比重の増大が小さく沈澱を防止する為には
大きな磁場勾配が必要となる。また35重量%より高く
なると誘電体微粒子の濃度が相対的に低くなり、電界印
加時の剪断応力変化が小さく電気粘性流体として機能が
低下する。
Further, the electrorheological fluid used in the present invention contains 25 to 35% by weight of magnetic fine particles. When the concentration of magnetic fine particles is lower than 25% by weight, the increase in apparent specific gravity upon application of a magnetic field is small and a large magnetic field gradient is required to prevent precipitation. Moreover, when it is higher than 35% by weight, the concentration of dielectric fine particles becomes relatively low, and the shear stress change upon application of an electric field is small, and the function as an electrorheological fluid is deteriorated.

【0011】本発明の電気粘性流体の分散粒子沈澱防止
方法では、上記構成の電気粘性流体に対して磁場を印加
する。これにより誘電体微粒子の比重と、残りの磁性体
微粒子を含む分散媒の見掛けの比重とをほぼ同一とする
ことができ、誘電体微粒子の沈澱を防止することができ
る。なお、沈澱を防止し続けるためには、一定の値の磁
場を印加し続ける必要がある。
In the method for preventing precipitation of dispersed particles in an electrorheological fluid according to the present invention, a magnetic field is applied to the electrorheological fluid having the above structure. As a result, the specific gravity of the dielectric fine particles and the apparent specific gravity of the dispersion medium containing the remaining magnetic fine particles can be made almost the same, and precipitation of the dielectric fine particles can be prevented. Note that in order to continue to prevent precipitation, it is necessary to continue applying a magnetic field of a constant value.

【0012】0012

【発明の作用及び効果】本発明の電気粘性流体の分散粒
子沈澱防止方法では、電気粘性流体中に磁性体微粒子が
含まれている。この磁性体微粒子を含む磁性流体の見掛
けの密度は、磁場の印加により下記の(1)式のように
変化する。 Sd=Se+M・gradH/4πg    (1)(
Sd:見掛けの密度、Se:流体の真密度、M:磁性体
の磁化、gradH:磁場勾配、g:重力の加速度)す
なわち、見掛けの密度は磁場勾配に比例して増大する。 したがって本発明では誘電体微粒子以外の成分が磁性流
体として作用し、磁場の印加により上記式に基づいて比
重が増大する。そして磁場勾配を適切な値とすることに
より、誘電体微粒子の比重とほぼ同一となるので、誘電
体微粒子の沈澱を防止することができる。
Effects and Effects of the Invention In the method for preventing precipitation of dispersed particles in an electrorheological fluid according to the present invention, fine magnetic particles are contained in the electrorheological fluid. The apparent density of the magnetic fluid containing the magnetic fine particles changes as shown in equation (1) below by applying a magnetic field. Sd=Se+M・gradH/4πg (1)(
(Sd: apparent density, Se: true density of fluid, M: magnetization of magnetic material, gradH: magnetic field gradient, g: acceleration of gravity) That is, the apparent density increases in proportion to the magnetic field gradient. Therefore, in the present invention, components other than the dielectric fine particles act as a magnetic fluid, and the application of a magnetic field increases the specific gravity based on the above formula. By setting the magnetic field gradient to an appropriate value, the specific gravity becomes almost the same as that of the dielectric fine particles, so that precipitation of the dielectric fine particles can be prevented.

【0013】したがって本発明の分散粒子沈澱防止方法
によれば、誘電体微粒子を中空体とする必要なく、磁場
を印加するだけで容易に沈澱が防止できるので、中空化
のための複雑な工程が不要となる。また沈澱防止効果は
誘電体微粒子の形状には無関係であるので、制御が容易
である。さらに分散媒や誘電体微粒子の種類が変更され
ても、印加される磁場勾配の値を変更するだけで沈澱を
防止することができ、従来のように中空化率を変更する
ような複雑な工程が不要となる。
Therefore, according to the method for preventing precipitation of dispersed particles of the present invention, precipitation can be easily prevented by simply applying a magnetic field without the need to make the dielectric fine particles hollow, thereby eliminating the need for a complicated process for making the dielectric particles hollow. No longer needed. Further, since the precipitation prevention effect is unrelated to the shape of the dielectric fine particles, it is easy to control. Furthermore, even if the type of dispersion medium or dielectric particles is changed, precipitation can be prevented simply by changing the value of the applied magnetic field gradient, which eliminates the conventional complicated process of changing the hollowing ratio. becomes unnecessary.

【0014】[0014]

【実施例】以下、実施例により具体的に説明する。 (実施例)市販の磁性流体(「マーポマグナFL40」
松本油脂製薬(株)製)70重量部に対し、誘電体微粒
子としての乾燥ゼオライト粉末を30重量部加え、攪拌
機により分散して電気粘性流体を調整した。用いた磁性
流体は、マグネタイトが40重量%、残部スピンドルオ
イルの組成であるので、得られた電気粘性流体はゼオラ
イトが30重量%、マグネタイトが28重量%、残部ス
ピンドルオイルの組成となる。
[Examples] Hereinafter, the present invention will be explained in detail using examples. (Example) Commercially available magnetic fluid (“Marpo Magna FL40”)
30 parts by weight of dry zeolite powder as dielectric fine particles were added to 70 parts by weight (manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd.) and dispersed with a stirrer to prepare an electrorheological fluid. Since the magnetic fluid used has a composition of 40% by weight of magnetite and the balance of spindle oil, the obtained electrorheological fluid has a composition of 30% by weight of zeolite, 28% by weight of magnetite, and the balance of spindle oil.

【0015】ここで用いたゼオライトの密度は2.0g
/cm3 であるが、ゼオライトを除いた成分である磁
性流体の真の密度(Se)は1.3g/cm3 であり
、このままではゼオライトが沈澱してしまう。そこで本
実施例では、図1に示すようにN極とS極とが対向する
ように配置された一対の磁石1、2の間で、磁石1、2
の表面から7cm離れた位置にこの電気粘性流体の入っ
た容器3の中心が位置するように配置した。温度は20
℃一定の条件である。この時容器3の位置の磁界の強さ
は約300Oeであり、磁化(M)は約70ガウスとな
る。 またこの磁界における磁場勾配(gradH)は約14
0Oe/cmとなる。これらの値を(1)式に代入する
と、ゼオライトを除いた成分である磁性流体の見掛けの
密度(Sd)は約2.1g/cm3 となり、ゼオライ
トの密度とほぼ同一となる。
[0015] The density of the zeolite used here is 2.0 g.
/cm3, but the true density (Se) of the magnetic fluid, which is a component excluding zeolite, is 1.3 g/cm3, and if left as is, the zeolite will precipitate. Therefore, in this embodiment, as shown in FIG.
The container 3 containing this electrorheological fluid was placed so that its center was located 7 cm from the surface of the container 3. The temperature is 20
℃ constant condition. At this time, the strength of the magnetic field at the position of the container 3 is about 300 Oe, and the magnetization (M) is about 70 Gauss. Also, the magnetic field gradient (gradH) in this magnetic field is approximately 14
It becomes 0 Oe/cm. Substituting these values into equation (1), the apparent density (Sd) of the magnetic fluid, which is a component excluding zeolite, is approximately 2.1 g/cm3, which is approximately the same as the density of zeolite.

【0016】上記のように磁場を印加した状態で容器3
を静置し、静置時間とゼオライトの沈澱率の関係を調査
した。結果を図2に示す。なお沈澱率は図5に示すよう
に、ゼオライト・磁性流体混合層高さと全液高さとの比
(a/b)を沈殿率とした。 (比較例1)また、磁場を印加しないこと以外は実施例
と同様にして、実施例で用いた電気粘性流体の沈澱率を
測定した。結果を図2に示す。 (比較例2)実施例と同様の乾燥ゼオライト粉末42重
量%と、スピンドルオイル58重量%とを分散・混合し
て,従来用いられている電気粘性流体を調整した。この
電気粘性流体についても、磁場を印加しないこと以外は
実施例と同様にして沈澱率を測定した。結果を図2に示
す。 (評価)図2より明らかなように、実施例の方法によれ
ば500時間以上静置しても沈澱がほとんど生じていな
い。そして比較例との比較により、この効果は磁性流体
を含みかつ磁場を印加したことに起因していることが明
らかである。
[0016] With the magnetic field applied as described above, the container 3
was allowed to stand, and the relationship between the standing time and the zeolite precipitation rate was investigated. The results are shown in Figure 2. As shown in FIG. 5, the precipitation rate was defined as the ratio (a/b) of the height of the zeolite/magnetic fluid mixed layer to the height of the total liquid. (Comparative Example 1) Furthermore, the sedimentation rate of the electrorheological fluid used in the example was measured in the same manner as in the example except that no magnetic field was applied. The results are shown in Figure 2. (Comparative Example 2) A conventionally used electrorheological fluid was prepared by dispersing and mixing 42% by weight of the same dry zeolite powder as in Example and 58% by weight of spindle oil. The sedimentation rate of this electrorheological fluid was also measured in the same manner as in the example except that no magnetic field was applied. The results are shown in Figure 2. (Evaluation) As is clear from FIG. 2, according to the method of the example, almost no precipitate was formed even after standing for 500 hours or more. Comparison with comparative examples reveals that this effect is due to the inclusion of magnetic fluid and the application of a magnetic field.

【0017】なお、上記実施例及び比較例2で用いた電
気粘性流体について、電界強度を変化させたときの電流
密度と剪断応力の変化を調査した。結果を図3及び図4
に示す。電流密度及び剪断応力は、図6に示すように、
共軸二重円筒式回転粘度計を用い測定した。電流密度は
アース線を流れる電流を内筒側面積で除した値であり、
また、剪断応力は、測定トルクを内筒半径及び内筒側面
積で除した値である。
[0017] Regarding the electrorheological fluids used in the above Examples and Comparative Example 2, changes in current density and shear stress when the electric field strength was changed were investigated. The results are shown in Figures 3 and 4.
Shown below. The current density and shear stress are as shown in Figure 6.
It was measured using a coaxial double cylinder rotational viscometer. Current density is the value obtained by dividing the current flowing through the ground wire by the area of the inner cylinder surface.
Further, the shear stress is a value obtained by dividing the measured torque by the radius of the inner cylinder and the area of the inner cylinder surface.

【0018】図3及び図4より本発明に用いる電気粘性
流体は、従来の電気粘性流体と比べて電気的特性に遜色
ないことがわかる。
It can be seen from FIGS. 3 and 4 that the electrorheological fluid used in the present invention is comparable in electrical characteristics to conventional electrorheological fluids.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】実施例における磁場の印加方法の説明図である
FIG. 1 is an explanatory diagram of a method of applying a magnetic field in an example.

【図2】静置時間と沈澱率の関係を示すグラフである。FIG. 2 is a graph showing the relationship between standing time and precipitation rate.

【図3】電界強度と電流密度の関係を示すグラフである
FIG. 3 is a graph showing the relationship between electric field strength and current density.

【図4】電界強度と剪断応力の関係を示すグラフである
FIG. 4 is a graph showing the relationship between electric field strength and shear stress.

【図5】沈澱率の測定方法の説明図である。FIG. 5 is an explanatory diagram of a method for measuring precipitation rate.

【図6】電流密度及び剪断応力の測定方法の説明図であ
る。
FIG. 6 is an explanatory diagram of a method for measuring current density and shear stress.

【符号の説明】[Explanation of symbols]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  誘電体微粒子が20〜40重量%、磁
性体微粒子が25〜35重量%、残部分散媒からなる電
気粘性流体に、磁場を印加することにより該誘電体微粒
子の比重と該分散媒の見掛けの比重を略同一とすること
を特徴とする電気粘性流体の分散粒子沈澱防止方法。
1. The specific gravity of the dielectric particles and their dispersion are determined by applying a magnetic field to an electrorheological fluid consisting of 20 to 40% by weight of dielectric particles, 25 to 35% by weight of magnetic particles, and the balance being a dispersion medium. A method for preventing precipitation of dispersed particles in an electrorheological fluid, characterized by making the apparent specific gravity of the medium substantially the same.
JP2113191A 1991-02-14 1991-02-14 Method for preventing precipitation of dispersed particle of electroviscous fluid Pending JPH04261496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2113191A JPH04261496A (en) 1991-02-14 1991-02-14 Method for preventing precipitation of dispersed particle of electroviscous fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2113191A JPH04261496A (en) 1991-02-14 1991-02-14 Method for preventing precipitation of dispersed particle of electroviscous fluid

Publications (1)

Publication Number Publication Date
JPH04261496A true JPH04261496A (en) 1992-09-17

Family

ID=12046340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2113191A Pending JPH04261496A (en) 1991-02-14 1991-02-14 Method for preventing precipitation of dispersed particle of electroviscous fluid

Country Status (1)

Country Link
JP (1) JPH04261496A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0579229A2 (en) * 1992-07-16 1994-01-19 Nippon Oil Co., Ltd. Fluid having magnetic and electrorheological effects simultaneously
EP0644253A2 (en) * 1993-09-21 1995-03-22 NIPPON OIL Co. Ltd. Dispersion particles for fluid having magnetic and electrorheological effects simultaneously and fluid using the same
US5702630A (en) * 1992-07-16 1997-12-30 Nippon Oil Company, Ltd. Fluid having both magnetic and electrorheological characteristics

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0579229A2 (en) * 1992-07-16 1994-01-19 Nippon Oil Co., Ltd. Fluid having magnetic and electrorheological effects simultaneously
EP0579229A3 (en) * 1992-07-16 1994-04-13 Nippon Oil Co Ltd
US5702630A (en) * 1992-07-16 1997-12-30 Nippon Oil Company, Ltd. Fluid having both magnetic and electrorheological characteristics
EP0644253A2 (en) * 1993-09-21 1995-03-22 NIPPON OIL Co. Ltd. Dispersion particles for fluid having magnetic and electrorheological effects simultaneously and fluid using the same
EP0644253A3 (en) * 1993-09-21 1995-08-09 Nippon Oil Co Ltd Dispersion particles for fluid having magnetic and electrorheological effects simultaneously and fluid using the same.
US5516445A (en) * 1993-09-21 1996-05-14 Nippon Oil Company, Ltd. Fluid having magnetic and electrorheological effects simultaneously and
US5523157A (en) * 1993-09-21 1996-06-04 Nippon Oil Company, Ltd. Dispersion particles for fluid having magnetic and electrorheological effects

Similar Documents

Publication Publication Date Title
US5900184A (en) Method and magnetorheological fluid formulations for increasing the output of a magnetorheological fluid device
Ashtiani et al. A review on the magnetorheological fluid preparation and stabilization
US5505880A (en) Magnetorheological Fluid
Upadhyay et al. Rheological properties of soft magnetic flake shaped iron particle based magnetorheological fluid in dynamic mode
US5354488A (en) Fluid responsive to a magnetic field
Lim et al. Magnetorheology of carbonyl-iron suspensions with submicron-sized filler
US7708901B2 (en) Magnetorheological materials having magnetic and non-magnetic inorganic supplements and use thereof
Leong et al. Synthesis, characterization and magnetorheological properties of carbonyl iron suspension with superparamagnetic nanoparticles as an additive
CN1092460A (en) Magnetorheological materials based on alloying pellet
Aruna et al. Influence of additives on the synthesis of carbonyl iron suspension on rheological and sedimentation properties of magnetorheological (MR) fluids
Hong et al. Carbonyl iron suspension with halloysite additive and its magnetorheology
US5516445A (en) Fluid having magnetic and electrorheological effects simultaneously and
Hu et al. Supramolecular magnetorheological polymer gels
Hajalilou et al. Enhanced magnetorheology of soft magnetic carbonyl iron suspension with binary mixture of Ni-Zn ferrite and Fe 3 O 4 nanoparticle additive
Roupec et al. Influence of clay-based additive on sedimentation stability of magnetorheological fluid
Leong et al. Performance of bidisperse magnetorheological fluids utilizing superparamagnetic maghemite nanoparticles
Park et al. Electrorheology and magnetorheology
Piao et al. Magnetic carbonyl iron suspension with sepiolite additive and its magnetorheological property
Kamble et al. Analysis of rheological properties of MR fluid based on variation in concentration of iron particles
JPH04261496A (en) Method for preventing precipitation of dispersed particle of electroviscous fluid
Ashour et al. Manufacturing and characterization of magnetorheological fluids
Pisuwala et al. Contribution of magnetic nanoparticle in thermal conductivity of flake-shaped iron particles based magnetorheological (MR) fluid
Fuchs et al. Synthesis and characterization of magnetorheological polyimide gels
Kolekar et al. Synthesis and characterization of innovative type magneto-rheological fluid
Kim et al. Coating of magnetic particle with polystyrene and its magnetorheological characterization