JP2952297B2 - Ground measurement analysis judgment system - Google Patents

Ground measurement analysis judgment system

Info

Publication number
JP2952297B2
JP2952297B2 JP1202227A JP20222789A JP2952297B2 JP 2952297 B2 JP2952297 B2 JP 2952297B2 JP 1202227 A JP1202227 A JP 1202227A JP 20222789 A JP20222789 A JP 20222789A JP 2952297 B2 JP2952297 B2 JP 2952297B2
Authority
JP
Japan
Prior art keywords
vibration
wave
vertical
ground
horizontal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1202227A
Other languages
Japanese (ja)
Other versions
JPH0365687A (en
Inventor
孝次 時松
晋一 桑山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1202227A priority Critical patent/JP2952297B2/en
Publication of JPH0365687A publication Critical patent/JPH0365687A/en
Application granted granted Critical
Publication of JP2952297B2 publication Critical patent/JP2952297B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、レーリー波、ラブ波のような表面波を用い
て地盤の層構造とその性質などの判定を行う地盤の計測
解析判定システムに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a ground measurement analysis determination system that determines the layer structure and properties of the ground using surface waves such as Rayleigh waves and Love waves. Things.

[従来の技術] 従来、レーリー波のような表面波を用いて地盤の層構
造とその性質などの判定を行う地盤の計測解析判定シス
テムは、第8図に示すように、調査を行う地盤上に起振
機1を設置すとともに、上記起振機1より離れた(通像
は1m程度)直線上の2点に、振動の鉛直成分を受信する
鉛直振動センサ2aを一定距離D(略1m)離して設置し、
起振機1の振動により地盤に発生した表面波を両鉛直振
動センサ2aにて受信し、受信された表面波振動の鉛直振
動データを解析して地盤の層構造とその性質等を判定す
るようにしたものである。
[Prior Art] Conventionally, a measurement / analysis determination system for a ground, which determines the layer structure and properties of the ground using a surface wave such as a Rayleigh wave, as shown in FIG. A vertical vibration sensor 2a that receives the vertical component of vibration is placed at a fixed distance D (approximately 1 m) at two points on a straight line separated from the vibrator 1 (the image is about 1 m). ) Separately,
Surface waves generated on the ground by the vibration of the exciter 1 are received by the vertical vibration sensors 2a, and the vertical vibration data of the received surface wave vibrations is analyzed to determine the layer structure of the ground and its properties. It was made.

いま、調査を行う地盤に起振機1で鉛直振動(周波数
f)を与えると、起振機1より発生された表面波振動の
鉛直成分が、直線上の2点に一定距離Dをもって設置さ
れた2個の鉛直振動センサ2aにて受信される。この2点
の鉛直振動センサ2aにて振動が受信されると、まず最初
に、両鉛直振動センサ2aに到達する波の時間差△Tを求
め、表面波の伝播速度、すなわち、位相速度Vを次式よ
り求める。
Now, when vertical vibration (frequency f) is given to the ground to be investigated by the vibration exciter 1, the vertical components of the surface wave vibration generated by the vibration exciter 1 are set at two points on a straight line with a fixed distance D. Are received by the two vertical vibration sensors 2a. When the vibrations are received by the two vertical vibration sensors 2a, first, the time difference ΔT between the waves reaching the vertical vibration sensors 2a is obtained, and the propagation velocity of the surface wave, that is, the phase velocity V is calculated as follows. Obtain from the formula.

V=D/△T 次に、表面波の波長λを、上式で求めた位相速度V、
及び、周波数fより次式で求める。
V = D / ΔT Next, the wavelength λ of the surface wave is calculated using the phase velocity V obtained by the above equation,
And frequency f by the following equation.

λ=V/f 上式で求めた速度Vは、地盤上から1/2波長(求めた
波長λ)の深度における表面波の伝播速度とされてお
り、与える振動の周波数fを種々変化させれば、それぞ
れの位相速度Vに対する波長λ(V−λ関係図、分散曲
線)が得られ、それぞれの地盤深度(1/2波長)におけ
る位相速度Vが求められる。この速度Vにより、地盤の
密度、層厚等、すなわち、地盤の層構造とその性質を推
定することができる。
λ = V / f The velocity V obtained by the above equation is the propagation velocity of the surface wave at a depth of 1/2 wavelength (the obtained wavelength λ) from the ground, and the frequency f of the applied vibration can be variously changed. For example, the wavelength λ (V-λ relation diagram, dispersion curve) for each phase velocity V is obtained, and the phase velocity V at each ground depth (1/2 wavelength) is obtained. From the velocity V, it is possible to estimate the density and layer thickness of the ground, that is, the layer structure of the ground and its properties.

[発明が解決しようとする課題] しかしながら、起振機1にて発生された表面波(レー
リー波)を、所定距離Dをもって設置された鉛直振動セ
ンサ2aにて検出することにより地盤の特性を把握するよ
うにした上述の従来例にあっては、下記の問題があっ
た。
[Problems to be Solved by the Invention] However, the characteristics of the ground are grasped by detecting the surface wave (Rayleigh wave) generated by the exciter 1 by the vertical vibration sensor 2a installed at a predetermined distance D. The above-described conventional example has the following problems.

A.鉛直加振により発生させた振動を、鉛直振動センサ2a
を用いて振動の鉛直成分のみを検出して行う方法である
ため、地盤の性質、地盤に発生させる振動の周波数、振
動を受信する測定地点までの距離によっては、振動の鉛
直成分が小さくなり(第6図に示す表面波の回転軌跡を
参照)、計測解析を不正確となる。すなわち、測定地点
の振動の鉛直方向の成分が小さい時、起振源からの他の
成分の波動や、近隣の車両の走行、機械の振動などの雑
振動(ノイズ)が入ってSN比(信号/ノイズ比)が低下
し、その結果、受信された波動がレーリー波など表面波
であることが不明確となり、更には、2点の鉛直振動セ
ンサ間に伝わる波動の時間差を求め難い。
A. The vibration generated by the vertical vibration is
Is a method of detecting only the vertical component of the vibration by using the method. Therefore, the vertical component of the vibration decreases depending on the properties of the ground, the frequency of the vibration generated on the ground, and the distance to the measurement point where the vibration is received ( (See the rotation trajectory of the surface wave shown in FIG. 6), and the measurement analysis becomes inaccurate. In other words, when the vertical component of the vibration at the measurement point is small, the vibration of other components from the vibration source, the running of nearby vehicles, the vibration of machinery, and other noises (noise) enter and the SN ratio (signal) / Noise ratio), it is unclear that the received wave is a surface wave such as a Rayleigh wave, and it is difficult to find the time difference between the waves transmitted between the two vertical vibration sensors.

B.測定地点が起振機1の設設置点から1〜2mの近距離と
なっているので、P波、S波などの実体波と表面波との
区別ができず、測定精度に問題がある。
B. Since the measurement point is located at a short distance of 1 to 2 m from the installation point of the exciter 1, it is not possible to distinguish between body waves such as P waves and S waves and surface waves, and there is a problem in measurement accuracy. is there.

C.発生させる振動の周波数、起振機1から測定地点まで
の距離によって卓越する振動モードが異なるため、振動
の鉛直成分のみを受信して解析する上記従来の方法では
モードの特定ができない。
C. Since the predominant vibration mode differs depending on the frequency of the vibration to be generated and the distance from the exciter 1 to the measurement point, the conventional method of receiving and analyzing only the vertical component of the vibration cannot specify the mode.

D.地盤の鉛直振動を与えた場合、P波、S波など実体
波、およびレーリー波、ラブ波などの表面波が発生する
が、鉛直振動センサ2aで検出した波が、表面波であるこ
との確認、判定が測定時に行われないので、測定、解析
データに信頼性がなく、また、鉛直方向の振動のみを鉛
直振動センサ2aで測定しているので、表面波であること
の確認、判定を行うことが不可能である。
D. When vertical vibration of the ground is given, body waves such as P wave and S wave, and surface waves such as Rayleigh wave and Love wave are generated, but the wave detected by the vertical vibration sensor 2a must be a surface wave. Confirmation and judgment are not performed at the time of measurement, so the measurement and analysis data are not reliable.In addition, since only vertical vibration is measured by the vertical vibration sensor 2a, confirmation and judgment of surface wave Is impossible to do.

E.表面波の伝播速度、すなわち、位相速度Vの算定につ
いても、起振機1から発生させた波が2つの鉛直振動セ
ンサ2aを通過する時間を計測して、直接時間差を取る方
法で行われているため、波が雑音などで乱れると、誤っ
た結果を得る虞がある。
E. The propagation velocity of the surface wave, that is, the phase velocity V is also calculated by measuring the time when the wave generated from the vibration exciter 1 passes through the two vertical vibration sensors 2a and taking the time difference directly. Therefore, if the wave is disturbed by noise or the like, an erroneous result may be obtained.

F.地盤内それぞれの深度における伝播速度も、分散曲線
からその波長の1/2を深度とする経験的な極めて不確実
な方法で行われ、精度の良い地盤の層構造とその性質な
ど(密度、P波速度、S波速度、層厚など)の解析判定
ができない。
F. Propagation velocity at each depth in the ground is also determined by an empirical and extremely uncertain method of setting the depth to 1/2 of the wavelength from the dispersion curve. , P-wave velocity, S-wave velocity, layer thickness, etc.) cannot be determined.

[課題を解決するための手段] 本発明では、レーリー波など表面波が、水平な多層構
造の地盤層内を伝播する時、波長によって位相速度(伝
播速度)が変わること(分散性)、及び、振動の伝達に
伴う地表面地盤の粒子運動の水平成分と鉛直成分を検出
して合成すると、地表面粒子運動の回転軌跡が描けるこ
と、およびこの回転軌跡が周波数によって異なること等
の表面波の特性を利用して地盤の層構造とその性質など
を解析判定するシステムを提供するものであり、調査を
行う地盤上に起振機を設置するとともに、上記起振機よ
り離れた直線上の複数点に、振動の鉛直成分を受信する
鉛直振動センサおよび水平成分を受信する水平振動セン
サを同位置に対にして設置し、起振機の鉛直振動により
地盤に発生した表面波振動の鉛直成分および水平成分を
同位置に設けた対に振動セサで、同時に受信することを
周波数を変えて繰り返し、受信された鉛直、水平振動デ
ータを解析して地盤の層構造とその性質等を判定するデ
ータ解析判定手段を設けたものであって、データ解析判
定手段では、鉛直振動センサにて受信した鉛直振動デー
タから得られた鉛直成分の波と対である水平振動センサ
にて受信した水平振動データから得られた水平成分の波
とを合成して得られる振動伝播による地盤土粒子の回転
軌跡により受信された波が表面波であることを確認する
際に起振機に対応する周波数成分を抽出し、この周波数
成分の位相差に基づいて振動センサに到達する波の時間
差を求めるとともに位相速度を求めて波長を得、これら
位相差、時間差、位相速度、波の波長を求める操作を繰
り返して行なって分散曲線を求め、この分散曲線をハス
ケルの理論に基づく逆解析により地盤の層構造および性
質の判定を行うことを特徴とする。
[Means for Solving the Problems] According to the present invention, when a surface wave such as a Rayleigh wave propagates in a horizontal multilayered ground layer, the phase velocity (propagation velocity) changes depending on the wavelength (dispersion), and By detecting and combining the horizontal and vertical components of the particle motion of the ground surface due to the transmission of vibration, it is possible to draw the rotation trajectory of the surface particle motion, and the fact that this rotation trajectory differs depending on the frequency. It provides a system that analyzes and determines the layer structure of the ground and its properties, etc., using the characteristics.In addition to installing an exciter on the ground to be investigated, At the point, a vertical vibration sensor that receives the vertical component of vibration and a horizontal vibration sensor that receives the horizontal component are installed in pairs at the same position, and the vertical component of the surface wave vibration generated on the ground by the vertical vibration of the exciter and The horizontal sensor is provided at the same position with a vibration sensor. Simultaneous reception is repeated at different frequencies, and the received vertical and horizontal vibration data are analyzed to determine the layer structure of the ground and its properties. A determination means is provided, wherein the data analysis determination means obtains from the horizontal vibration data received by the horizontal vibration sensor which is a pair with the vertical component wave obtained from the vertical vibration data received by the vertical vibration sensor. The frequency component corresponding to the exciter is extracted when confirming that the wave received by the rotation locus of the ground soil particles by the vibration propagation obtained by synthesizing the obtained horizontal component wave is a surface wave, Based on the phase difference of this frequency component, the time difference of the wave reaching the vibration sensor is obtained, the phase velocity is obtained, the wavelength is obtained, and the operation of obtaining the phase difference, the time difference, the phase velocity, and the wavelength of the wave are repeated. Performing seek dispersion curve, and performs determination of the layer structure and properties of the ground by the inverse analysis based the dispersion curve on the theory of Haskell.

[作 用] 本発明では、解析判定するシステムを提供するもので
あり、調査を行う地盤上に起振機を設置するとともに、
上記起振機より離れた直線上の複数点に、振動の鉛直成
分を受信する鉛直振動センサおよび水平成分を受信する
水平振動センサを同位置に対にして設置し、起振機の鉛
直振動により地盤に発生した表面波振動の鉛直成分およ
び水平成分を同位置に設けた対の振動センサで、同時に
受信することを周波数を変えて繰り返し、受信された鉛
直、水平振動データを解析して地盤の層構造とその性質
等を判定するデータ解析判定手段を設けたものであっ
て、データ解析判定手段では、鉛直振動センサにて受信
した鉛直振動データから得られた鉛直成分の波と対であ
る水平振動センサにて受信した水平振動データから得ら
れた水平成分の波とを合成して得られる振動伝播による
地盤土粒子の回転軌跡により受信された波が表面波であ
ることを確認する際に起振機に対応する周波数成分を抽
出し、この周波数成分の位相差に基づいて振動センサに
到達する波の時間差を求めるとともに位相速度を求めて
波長を得、これら位相差、時間差、位相速度、波の波長
を求める操作を繰り返して行なって分散曲線を求め、こ
の分散曲線をハスケルの理論に基づく逆解析により地盤
の層構造および性質の判定を行うので、表面波を確認し
つつ分散曲線をリアルタイムで求めるシステムを実現す
ることができ、従って地盤の層構造とその性質等の解析
判定が確実且つ正確に行える。
[Operation] The present invention provides a system for analysis and determination, in which an exciter is installed on the ground to be investigated,
At a plurality of points on a straight line distant from the exciter, a vertical vibration sensor that receives a vertical component of vibration and a horizontal vibration sensor that receives a horizontal component are installed in pairs at the same position. A pair of vibration sensors that have the vertical and horizontal components of the surface wave vibrations generated on the ground at the same position.Repeated simultaneous reception at different frequencies, and analyze the received vertical and horizontal vibration data to A data analysis determining means for determining a layer structure and its properties is provided. In the data analysis determining means, a horizontal component paired with a vertical component wave obtained from vertical vibration data received by a vertical vibration sensor is provided. When confirming that the wave received by the rotation trajectory of the ground soil particles due to the vibration propagation obtained by combining the horizontal component wave obtained from the horizontal vibration data received by the vibration sensor is a surface wave The frequency component corresponding to the exciter is extracted, the time difference of the wave arriving at the vibration sensor is obtained based on the phase difference of the frequency component, the phase speed is obtained, and the wavelength is obtained.These phase difference, time difference, phase speed, The dispersion curve is obtained by repeatedly performing the operation for obtaining the wavelength of the wave, and the layer structure and properties of the ground are determined by inverse analysis based on Haskell's theory. Thus, the analysis and determination of the layer structure of the ground and its properties can be performed reliably and accurately.

[実施例] 第1図および第2図は本発明一実施例を示すもので、
調査を行う地盤の地表上に設置される起振機1は、地盤
に対して鉛直もしくは水平方向に振動し、信号発生器
(ファンクションジェネレータ)5にて発生された信号
(周波数fが数Hz〜数100Hzの正弦波などの定常波ある
いはランダム波)を電力増幅器6にて増幅した信号にて
駆動される。なお、この場合の振動には、衝撃的な振動
も含まれる。
Embodiment FIG. 1 and FIG. 2 show an embodiment of the present invention.
A vibration exciter 1 installed on the surface of the ground to be investigated vibrates vertically or horizontally with respect to the ground, and a signal generated by a signal generator (function generator) 5 (frequency f is several Hz to It is driven by a signal obtained by amplifying a standing wave such as a sine wave of several hundred Hz or a random wave) by the power amplifier 6. Note that the vibration in this case includes a shocking vibration.

2aは振動(地盤を伝播した表面波)の鉛直成分を受信
する鉛直振動センサ、2bは振動の水平成分を受信する水
平振動センサであり、両振動センサ2a,2bは、速度計、
加速度計などにて形成され、対をなすセンサとして同位
置(起振機1から等距離)で、直線上のA,B点にそれぞ
れ配置されている。ここに、一対の振動センサ2a,2bが
それぞれ設置されるA,B間の距離D、起振機1より2点
A、Bのセンタまでの距離Lは、後述するように、発生
される振動の周波数f、地盤の種類などに応じて適宜選
択、変更させる。なお、鉛直振動センサ2aおよび水平振
動センサ2bは上述のように別体のものでなく、一体的に
組み込まれたものでも良い。
2a is a vertical vibration sensor that receives the vertical component of vibration (surface waves that propagated through the ground), 2b is a horizontal vibration sensor that receives the horizontal component of vibration, and both vibration sensors 2a and 2b are speedometers.
It is formed by an accelerometer or the like, and is arranged at the same position (equidistant from the exciter 1) as a pair of sensors at points A and B on a straight line. Here, the distance D between A and B where the pair of vibration sensors 2a and 2b are installed, and the distance L between the exciter 1 and the center of the two points A and B are determined by the vibration generated as described later. Is appropriately selected and changed according to the frequency f, the type of the ground, and the like. Note that the vertical vibration sensor 2a and the horizontal vibration sensor 2b are not separately provided as described above, but may be integrated.

7は各振動センサ2a,2bから出力される検出信号を増
幅する信号増幅器であり、増幅された検出信号はA/D変
換器(インターフェース)8を介してマイクロコンピュ
ータよりなるデータ解析判定手段3に入力されている。
Reference numeral 7 denotes a signal amplifier for amplifying the detection signal output from each of the vibration sensors 2a and 2b, and the amplified detection signal is transmitted to an A / D converter (interface) 8 to a data analysis / judgment means 3 comprising a microcomputer. Has been entered.

上記データ解析判定手段3は、探査用CPU3aと、逆解
析用CPU3bとで形成されており、探査用CPU3aにより信号
発生器5にて発生される信号、電力増幅器6および信号
像器7の増幅度などがD/A変換器(インターフェース)
9を介して制御されるようになっており、信号発生器5
での周波数fの切り替え選択、電力増幅器3、検出増幅
器6での信号の増幅度の切り替えなどを自動的に行わせ
ることができるようにしている。また、逆解析用CPU3b
にて演算された解析判定結果は、データ解析判定手段3
に内蔵されているCRTにて表示されると共に、必要に応
じてプリンタ10によりプリントアウトできるようになっ
ている。
The data analysis judging means 3 is composed of a search CPU 3a and an inverse analysis CPU 3b. The signal generated by the signal generator 5 by the search CPU 3a, the amplification of the power amplifier 6 and the signal imager 7 Etc. are D / A converters (interfaces)
9 and is controlled by a signal generator 5
, The switching of the frequency f, the switching of the signal amplification degree in the power amplifier 3 and the detection amplifier 6, and the like can be automatically performed. Also, reverse analysis CPU 3b
The analysis determination result calculated by the data analysis determination means 3
The information is displayed on a CRT built in the printer, and can be printed out by the printer 10 as needed.

以上、実施例の動作について説明する。まず、起振機
1と、2対の鉛直振動センサ2aおよび水平振動センサ2b
とを所定の測定位置に設置する。ここに、起振機1と、
2対の振動センサ2a,2bのセンタとの間の距離Lは、測
定地盤の理論的に求めた表面波の波形、回転軌跡(後
述)などに近い波形を求めて、数m〜数10mの範囲で変
更する。また、2対の振動センサ2a,2b間の距離D(A
−B点間の距離)は、計測される表面波の波長λの変化
に応じて数Mの範囲に設置する。
The operation of the embodiment has been described above. First, the exciter 1, two pairs of vertical vibration sensors 2a and horizontal vibration sensors 2b
Are set at predetermined measurement positions. Here, the exciter 1
The distance L between the center of the two pairs of vibration sensors 2a and 2b is determined by calculating the waveform of the surface wave theoretically obtained on the measurement ground, a waveform close to the rotation locus (described later), and several meters to several tens of meters. Change in range. The distance D (A) between the two pairs of vibration sensors 2a and 2b
−distance between points B) is set in a range of several M according to the change in the wavelength λ of the surface wave to be measured.

なお、数m〜数10mの範囲で変える複数の計測点に、
予め振動センサ2a,2bを対にして設置しておき、それぞ
れの振動センサ2a,2b出力を信号増幅器7を介して探査
用CPU3aに入力し、探査用CPU3aにて信号増幅器7を制御
して特定の計測点に設置された振動センサ2a,2bを選択
的に取り込むことができるようにし、起振器1と振動セ
ンサ2a,2bとの間の距離Lを変えた計測解析を自動で継
続して行うようにしても良い。
In addition, to several measurement points that change in the range of several meters to several tens of meters,
The vibration sensors 2a, 2b are installed in pairs in advance, and the outputs of the respective vibration sensors 2a, 2b are input to the search CPU 3a via the signal amplifier 7, and the search CPU 3a controls the signal amplifier 7 to specify the signals. The vibration sensors 2a and 2b installed at the measurement points can be selectively taken in, and the measurement analysis in which the distance L between the exciter 1 and the vibration sensors 2a and 2b is changed is automatically continued. It may be performed.

次に、信号発生器2によって発生させた周波数fの信
号(例えば、正弦波)で一定のマスをもつ起振機1を鉛
直振動される。この場合、周波数fを数Hz〜数100Hz程
度の範囲で段階的に変え計測する。上記起振機1による
鉛直振動に代えて、水平振動で加振したり、鉛直振動と
水平振動とで加振することもあるが、この場合には、振
動モードの特定がさらに容易に行える可能性があるとと
もに、他の振動モードを測定できる可能性がある。
Next, the exciter 1 having a constant mass is vertically vibrated by a signal (for example, a sine wave) of the frequency f generated by the signal generator 2. In this case, the frequency f is changed stepwise within a range of several Hz to several hundred Hz to measure. Instead of the vertical vibration by the vibrator 1, vibration may be performed by horizontal vibration or vibration by vertical vibration and horizontal vibration. In this case, the vibration mode can be more easily specified. And may be able to measure other modes of vibration.

次に一定の距離Lだけ離して設置された鉛直振動セン
サ2a及び水平振動センサ2bにより、それぞれの位置A、
Bでの表面波振動の鉛直成分及び水平成分を受信する。
各点の両振動センサ2a,2bにて同時に受信された信号
は、信号増幅器7によってそれぞれ増幅され、A/D変換
器8でアナログ量をデジタル量に変換した後、探査用CP
U3aに送られる。
Next, by the vertical vibration sensor 2a and the horizontal vibration sensor 2b installed at a fixed distance L, each position A,
The vertical and horizontal components of the surface wave vibration at B are received.
The signals received simultaneously by the two vibration sensors 2a and 2b at each point are respectively amplified by the signal amplifier 7, and the A / D converter 8 converts the analog amount into a digital amount.
Sent to U3a.

上述のようにしてデータ解析判定手段3に送られた各
周波数fでの振動データは、探査用CPU3a及び逆解析用C
PU3bに蓄積され、後述の第3図に示すフローの手順で分
析、解析される。また、計測された波形データや、分散
曲線、クロススペクトル等分析、解析された結果は、デ
ータ解析判定手段3のCRT上に表示されるとともに、プ
リンタ(X−Yプロッタを含む)10により直ちにリント
アウトされる。
The vibration data at each frequency f sent to the data analysis determination means 3 as described above is stored in the search CPU 3a and the reverse analysis C
It is stored in the PU 3b and analyzed and analyzed in accordance with the flow procedure shown in FIG. The analyzed and analyzed results such as the measured waveform data, the dispersion curve, and the cross spectrum are displayed on the CRT of the data analysis determination means 3 and immediately printed by a printer (including an XY plotter) 10. Be out.

以上のようにして、1つの計測地点の計測が終了すれ
ば、起振機1と、各振動センサー2a,2b間の距離Lを変
え、別の計測地点に移動して同様の計測動作を繰り返し
て行う。
As described above, when the measurement at one measurement point is completed, the distance L between the vibration exciter 1 and each of the vibration sensors 2a and 2b is changed, and the same measurement operation is repeated by moving to another measurement point. Do it.

以下に計測、解析、判定動作を第3図に示すフローチ
ャートに基づいて説明する。いま、A点、B点の各振動
センサ2a,2bにより受信された振動の鉛直成分信号(A
v、Bv)、水平成分信号(Ah、Bh)は、信号増幅機7に
より増幅され、A/D変換された後、解析用の振動データ
として探査用CUP3aに送られる(フロー、、)。
Hereinafter, the measurement, analysis, and determination operations will be described with reference to the flowchart shown in FIG. Now, the vertical component signals (A) of the vibrations received by the vibration sensors 2a and 2b at the points A and B, respectively.
v, Bv) and the horizontal component signals (Ah, Bh) are amplified by the signal amplifier 7, A / D converted, and sent to the exploration CUP 3 a as vibration data for analysis (flow,,).

次に、探査用CPU3aでは、検出された振動波形の振動
をチエックし、振動が小さく下記フローの解析において
精度的に不満足のものであれば、さらに信号増幅器7の
増幅度を大きくして検出信号を増幅して取り込む(フロ
ー)。
Next, the exploration CPU 3a checks the vibration of the detected vibration waveform, and if the vibration is small and unsatisfactory in the analysis of the following flow, the amplification degree of the signal amplifier 7 is further increased and the detection signal is detected. And amplify (flow).

次に、FFT(高速フーリエ変換による演算)を行い
(フロー)、得られたデータの周波数上でクロススペ
クトル、コヒーレンス等を求め、A/D変換して取り込ん
だ振動データが、起振機1で発生させた周波数fに対応
するものであるかどうかをチエック(フロー)し、対
応しない場合には、フローに戻り、別の振動データを
取り込んで上記フロー、を行い、起振源に対応す周
波数成分を抜き出す。この場合、振動データの取り込み
繰り返し回数は上限値が設定されており(フロー−
1)、一定回数を行っても対応するものが得られない場
合には、周波数fを変更して上記の処理を行うものとす
る(フロー−1)。なお、上述のフローは、抜き出し
た周波数成分の波が、レーリー波等の表面波であること
を確認するために地表面粒子運動の回転軌跡の観測を行
うものである。
Next, FFT (calculation by fast Fourier transform) is performed (flow), cross spectrum, coherence, etc. are obtained on the frequency of the obtained data, and the vibration data obtained by A / D conversion is acquired by the exciter 1. A check (flow) is performed to determine whether the frequency corresponds to the generated frequency f. If the frequency f does not correspond to the frequency f, the flow returns to the flow, another vibration data is fetched, and the above flow is performed. Extract the ingredients. In this case, an upper limit value is set for the number of repetitions of the acquisition of the vibration data (flow-
1) If a corresponding result is not obtained even after performing a certain number of times, the above processing is performed by changing the frequency f (flow-1). In the above-described flow, the rotation trajectory of the ground surface particle motion is observed in order to confirm that the extracted frequency component wave is a surface wave such as a Rayleigh wave.

次に、探査用CUP3aでは、抜き出した周波数成分の2
つの波、即ち、鉛直成分の波と水平成分の波とを第5図
に示すように合成し、CRTの画面上、もしくは、プリン
タ10に縦横に表示させることにより、地表面粒子運動の
回転軌跡(回転方向と縦横振動比)を描いて観測し、受
信された振動波が表面であるかどうかの確認判定を行
う。
Next, in the CUP3a for exploration, 2 of the extracted frequency components
By combining the two waves, that is, the wave of the vertical component and the wave of the horizontal component, as shown in FIG. 5 and displaying them vertically or horizontally on the screen of the CRT or the printer 10, the rotation trajectory of the ground surface particle motion is obtained. (Rotation direction and vertical / horizontal vibration ratio) are drawn and observed, and it is determined whether or not the received vibration wave is a surface.

第6図(a)〜(d)に示す回転軌跡は、周波数fお
よび距離Dを変えた場合における地面に垂直な、波の伝
わる面内での波の動きを描いたもので、レーリー波など
表面波特有のものであり、起振により発生するP波、S
波等他の振動伝播波にはみられない、なお、図におい
て、Rは逆回転であることを示している。この場合、後
記フローにおいて、理論的に求めた回転軌跡(第6図
(e))と対比することによりレーリー波などの表面波
かどうかの判定が行われ、表面波でないと判定されれ
ば、フローに戻り、別の振動データを取り込んで上記
フロー、、を行う。
The rotation trajectories shown in FIGS. 6 (a) to 6 (d) depict the movement of a wave in a plane in which the wave propagates perpendicular to the ground when the frequency f and the distance D are changed, such as a Rayleigh wave P wave, S generated by vibration
It is not observed in other vibration propagation waves such as waves. In the drawing, R indicates reverse rotation. In this case, in a flow described later, it is determined whether or not the surface wave is a surface wave such as a Rayleigh wave by comparing with a rotational locus theoretically obtained (FIG. 6 (e)). Returning to the flow, another vibration data is taken in and the above flow is performed.

第3図はサブルーチンsub−1のフローチャートであ
り、まず、フローにて抜き出された周波数fの振動デ
ータの位相差φの演算を行い(フロー−1)、次に、
△T=(φ/2π)・(1/f)によりA,B点の両振動センサ
2a,2bに到達する波時間差△Tを計算する(フロー−
2)。さらに、式 V=D/△T により位相速度Vを求
め(フロー−3)、式 λ=V/fにより波長λが求め
られる(フロー−4)。
FIG. 3 is a flowchart of the subroutine sub-1. First, the phase difference φ of the vibration data of the frequency f extracted in the flow is calculated (flow-1).
ΔT = (φ / 2π) · (1 / f), both vibration sensors at points A and B
Calculate the wave time difference ΔT arriving at 2a and 2b (flow-
2). Further, the phase velocity V is obtained from the equation V = D / ΔT (flow-3), and the wavelength λ is obtained from the equation λ = V / f (flow-4).

次に、ある特定の周波数fに対してVを測定し波長λ
を計算するという操作を行い、第7図に示すような分散
曲線(位相速度V−波長λ)を求め(−5)、分散曲
線の1点が求められる。
Next, V is measured for a specific frequency f and the wavelength λ
Is calculated, a dispersion curve (phase velocity V-wavelength λ) as shown in FIG. 7 is obtained (−5), and one point of the dispersion curve is obtained.

なお、上記−1以下のフローにおけるV、λを求め
る計算は、取り出した周波数fの振動データの水平成分
(横)、鉛直成分(縦)より縦横比を演算して合成した
回転軌跡の長軸方向の波を検出選択して行うものとし、
また、水平成分、鉛直成分のそれぞれについて行っても
良く、さらに、水平成分、鉛直成分のうち波形の明確な
ものを選択して行っても良い。また、このように、水
平、鉛直両成分の位相速度および複数の点の回転軌跡を
求めることにより、それぞれについて行った計算結果が
一致するかどうかの対応度を確認でき、さらに、複数の
次数の振動モードが同時に測定判別できる可能性がある
ため、地盤の層構造とその性質の解析判定が確実に行え
る。
Note that the calculation for obtaining V and λ in the above-mentioned flow of −1 or less is performed by calculating the aspect ratio from the horizontal component (horizontal) and the vertical component (vertical) of the extracted vibration data of the frequency f, and the major axis of the rotation locus synthesized. Detect and select the wave in the direction,
Further, it may be performed for each of the horizontal component and the vertical component, and may be performed by selecting a component having a clear waveform from the horizontal component and the vertical component. In addition, in this way, by obtaining the phase velocities of both the horizontal and vertical components and the rotation trajectories of a plurality of points, it is possible to confirm the degree of correspondence of whether or not the calculation results performed for each of them match, and furthermore, to obtain a plurality of orders. Since there is a possibility that the vibration mode can be measured and determined at the same time, the analysis and determination of the layer structure of the ground and its properties can be reliably performed.

上述の処理を、周波数fを変えて繰り返すことにより
(フロー−1)、第7図に示す分散曲線(V−λ)が
得られ、波形、分散曲線、回転軌跡などデータが蓄積さ
れる。
By repeating the above process while changing the frequency f (flow-1), a dispersion curve (V-λ) shown in FIG. 7 is obtained, and data such as a waveform, a dispersion curve, and a rotation locus are accumulated.

以上のようにして起振機1と振動センサー2a,2b間の
距離がLの時の計測が終了すれば、求められた分散曲線
に対して、ハスケルの理論に基づく逆解析を行い、地盤
の層構造とその性質を判定する。
When the measurement when the distance between the exciter 1 and the vibration sensors 2a and 2b is L is completed as described above, an inverse analysis based on Haskell's theory is performed on the obtained dispersion curve, and the ground Determine the layer structure and its properties.

なお、水平多層構造においての分散曲線は、ハスケル
の理論により次式のように与えられる。
The dispersion curve in the horizontal multilayer structure is given by the following equation according to Haskell's theory.

c=F(f:h1、ρ、α、β、h2、ρ α、β、……、hn、ρn、αn、βn) f ……周波数 hm……第m層での層厚(添字nは最下層) ρm……第m層での密度 αm……第m層でのP波速度 βm……第m層でのS波速度 V ……変数 I ……測定データの数 i ……測定データの添字 J ……変数の数 j ……変数の添字 V ……変数のベクトル dV ……変数の補正量 D ……変数の補正ベクトル P ……偏微分を要素とするI行J列の行列 C ……I個の残差ベクトル 測定データ数をI、ある周波数f1での測定位相速度を
cei、理論位相速度をci=F(f1:……)とすると、次式 S=(cei−ci)=minimum で示されるSを最小にするようにパラメータを変化させ
る(最適化)逆解析を行うことで求められる。
c = F (f: h 1 , ρ 1 , α 1 , β 1 , h 2 , ρ 2 α 2 , β 2 ,..., hn, ρn, αn, βn) f... frequency hm. (Thick number n is the lowermost layer) ρm: density at m-th layer αm: P-wave velocity at m-th layer βm: S-wave velocity at m-th layer V: variable I: measurement Number of data i: Subscript of measurement data J: Number of variables j: Subscript of variable V: Variable vector dV: Variable correction amount D: Variable correction vector P: Partial differential The matrix C of I rows and J columns to be performed... I The number of residual vectors is I, and the measured phase velocity at a certain frequency f 1 is
Assuming that c ei and the theoretical phase velocity are c i = F (f 1 :...), the parameter is changed so as to minimize S represented by the following equation S = (c ei −c i ) = minimum (optimum ) Can be obtained by performing an inverse analysis.

次に、第7図に示すように蓄積された分散曲線、回転
軌跡(軌跡の回転方向を含む)を対比し、下記において
解析する計測分散曲線、回転軌跡等データの固定を行
う。この場合、データの固定が行い難い場合には、フロ
ーに移り測定距離Lを変更する。
Next, as shown in FIG. 7, the accumulated dispersion curve and rotation trajectory (including the rotation direction of the trajectory) are compared, and data such as a measured dispersion curve and a rotation trajectory to be analyzed below are fixed. In this case, if it is difficult to fix the data, the flow shifts to the flow and the measurement distance L is changed.

ここに、地盤の各層の層厚、密度、VP(P波速度)、
Vs(S波速度)を仮定すると、仮定した地盤に対する理
論的なレーリー波分散曲線が求められ、求めた理論分散
曲線が、計測で求めた分散曲線に一致するように地盤構
造の最適化を行う逆解析プログラムの演算解析により、
層別のS波速度が算定される。
Here, the layer thickness, density, V P (P wave velocity),
Assuming Vs (S-wave velocity), a theoretical Rayleigh wave dispersion curve for the assumed ground is obtained, and the ground structure is optimized such that the calculated theoretical dispersion curve matches the dispersion curve obtained by measurement. By the operation analysis of the inverse analysis program,
The stratified S-wave velocity is calculated.

なお、計測で求めた分散曲線、波形、回転軌跡と、上
記逆解析で求めた理論分散曲線、波形、回転軌跡(理論
分散曲線を求めた際に同時に求める)とを対比し、それ
ぞれが近似し、正常かつ正確な計測解析であると判断さ
れれば、フローに移り地盤の層構造とその性質の判定
を行う。一方、正常でない場合にはフローを実行す
る。
Note that the dispersion curve, waveform, and rotation trajectory obtained by the measurement are compared with the theoretical dispersion curve, waveform, and rotation trajectory obtained at the above-described inverse analysis (which are obtained simultaneously when the theoretical dispersion curve is obtained). If it is determined that the measurement and analysis are normal and accurate, the flow proceeds to the determination of the layer structure of the ground and its properties. On the other hand, if it is not normal, the flow is executed.

次に、距離Lを変え、振動センサ2a,2bを次の計測地
点に移動させ、上記フロー〜を行う。ある距離Lで
の計測、計算、解析でフローが満足すれば、地盤の層
構造とその性質(密度、P波速度、S波速度、層厚な
ど)が判定される。なお、第7図において、計測で求め
た分散曲線は点で示されており、上記逆解析で求めた分
散曲線は実線で示されている。
Next, the distance L is changed, the vibration sensors 2a, 2b are moved to the next measurement point, and the above-mentioned flow is performed. If the flow is satisfied by measurement, calculation, and analysis at a certain distance L, the layer structure of the ground and its properties (density, P-wave velocity, S-wave velocity, layer thickness, etc.) are determined. In FIG. 7, the dispersion curve obtained by the measurement is indicated by a dot, and the dispersion curve obtained by the reverse analysis is indicated by a solid line.

[発明の効果] 本発明は、解析判定するシステムを提供するものであ
り、調査を行う地盤上に起振機を設置するとともに、上
記起振機より離れた直線上の複数点に、振動の鉛直成分
を受信する鉛直振動センサおよび水平成分を受信する水
平振動センサを同位置に対にして設置し、起振機の鉛直
振動により地盤に発生した表面波振動の鉛直成分および
水平成分を同位置に設けた対の振動センサで、同時に受
信することを周波数を変えて繰り返し、受信された鉛
直、水平振動データを解析して地盤の層構造とその性質
等を判定するデータ解析判定手段を設けたものであっ
て、データ解析判定手段では、鉛直振動センサにて受信
した鉛直振動データから得られた鉛直成分の波と対であ
る水平振動センサにて受信した水平振動データから得ら
れた水平成分の波とを合成して得られる振動伝播による
地盤土粒子の回転軌跡により受信された波が表面波であ
ることを確認する際に起振機に対応する周波数成分を抽
出し、この周波数成分の位相差に基づいて振動センサに
到達する波の時間差を求めるとともに位相速度を求めて
波長を得、これら位相差、時間差、位相速度、波の波長
を求める操作を繰り返して行なって分散曲線を求め、こ
の分散曲線をハスケルの理論に基づく逆解析により地盤
の層構造および性質の判定を行うので、表面波を確認し
つつ分散曲線をリアルタイムで求めるシステムを実現す
ることができ、従って地盤の層構造とその性質等の解析
判定が確実且つ正確に行えるという効果がある。
[Effects of the Invention] The present invention provides a system for analysis and determination, in which an exciter is installed on the ground to be investigated, and vibrations are applied to a plurality of points on a straight line distant from the exciter. A vertical vibration sensor that receives the vertical component and a horizontal vibration sensor that receives the horizontal component are installed in pairs at the same position, and the vertical and horizontal components of the surface wave vibration generated on the ground by the vertical vibration of the exciter are placed at the same position. In the pair of vibration sensors provided in the above, the simultaneous reception is changed with changing the frequency, and the data analysis determination means for analyzing the received vertical and horizontal vibration data to determine the layer structure of the ground and its properties is provided. Wherein the data analysis determination means includes a vertical component wave obtained from the vertical vibration data received by the vertical vibration sensor and a horizontal component obtained from the horizontal vibration data received by the horizontal vibration sensor which is a pair. When confirming that the wave received by the rotation locus of the ground soil particles due to vibration propagation obtained by synthesizing the component wave with the component wave is a surface wave, the frequency component corresponding to the exciter is extracted, and this frequency component is extracted. The time difference between the waves reaching the vibration sensor and the phase velocity are obtained based on the phase difference, and the wavelength is obtained.The dispersion curve is obtained by repeating the operation of obtaining the phase difference, the time difference, the phase velocity, and the wavelength of the wave. Because the dispersion curve is determined by the inverse analysis based on Haskell's theory, the layer structure and properties of the ground can be determined, so that a system that determines the dispersion curve in real time while confirming the surface wave can be realized. In addition, there is an effect that analysis and determination of the characteristics and the like can be performed reliably and accurately.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明一実施例を示す概略構成図、第2図は同
上のブロック回路図、第3図乃至第7図は同上の動作説
明図、第8図は従来例の概略構成図である。 1は起振機、2aは鉛直振動センサ、2bは水平振動セン
サ、3はデータ解析判定手段である。
FIG. 1 is a schematic configuration diagram showing one embodiment of the present invention, FIG. 2 is a block circuit diagram of the same, FIGS. 3 to 7 are operation explanatory diagrams of the same, and FIG. 8 is a schematic configuration diagram of a conventional example. is there. 1 is an exciter, 2a is a vertical vibration sensor, 2b is a horizontal vibration sensor, and 3 is a data analysis determination means.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 埼玉県公害センター研究報告 15号 (1988年)村岡達郎「表面波を利用した 地盤調査法」 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References Research Report of the Saitama Prefectural Pollution Center No.15 (1988) Tatsuro Muraoka “Soil Investigation Method Using Surface Waves”

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】調査を行う地盤上に起振機を設置するとと
もに、上記起振機より離れた直線上の複数点に、振動の
鉛直成分を受信する鉛直振動センサおよび水平成分を受
信する水平振動センサを同位置に対にして設置し、起振
機の鉛直振動により地盤に発生した表面波振動の鉛直成
分および水平成分を同位置に設けた対の振動センサで、
同時に受信することを周波数を変えて繰り返し、受信さ
れた鉛直、水平振動データを解析して地盤の層構造とそ
の性質等を判定するデータ解析判定手段を設けたもので
あって、データ解析判定手段では、鉛直振動センサにて
受信した鉛直振動データから得られた鉛直成分の波と対
である水平振動センサにて受信した水平振動データから
得られた水平成分の波とを合成して得られる振動伝播に
よる地盤土粒子の回転軌跡により受信された波が表面波
であることを確認する際に起振機に対応する周波数成分
を抽出し、この周波数成分の位相差に基づいて振動セン
サに到達する波の時間差を求めるとともに位相速度を求
める波長を得、これら位相差、時間差、位相速度、波の
波長を求める操作を繰り返して行なって分散曲線を求
め、この分散曲線をハスケルの理論に基づく逆解析によ
り地盤の層構造および性質の判定を行うことを特徴とす
る地盤の計測解析判定システム。
An exciter is installed on the ground to be investigated, and a vertical vibration sensor for receiving a vertical component of vibration and a horizontal for receiving a horizontal component at a plurality of points on a straight line distant from the exciter. A pair of vibration sensors installed at the same position with a pair of vibration sensors installed at the same position, and the vertical component and the horizontal component of the surface wave vibration generated on the ground due to the vertical vibration of the exciter,
Simultaneous reception is repeated at different frequencies, and the received vertical and horizontal vibration data is analyzed to provide data analysis determination means for determining the layer structure of the ground and its properties. The vibration obtained by combining the vertical component wave obtained from the vertical vibration data received by the vertical vibration sensor with the horizontal component wave obtained from the horizontal vibration data received by the paired horizontal vibration sensor When confirming that the wave received by the rotation locus of the ground soil particles due to propagation is a surface wave, the frequency component corresponding to the exciter is extracted, and reaches the vibration sensor based on the phase difference of the frequency component. Obtain the wavelength for which the phase velocity is obtained while obtaining the time difference of the wave, and obtain the dispersion curve by repeatedly performing the operation for obtaining the phase difference, the time difference, the phase velocity, and the wavelength of the wave. Ground measurement analysis determination system, characterized in that the inverse analysis based on the theory of skeletal judging the layer structure and properties of the ground.
JP1202227A 1989-08-03 1989-08-03 Ground measurement analysis judgment system Expired - Fee Related JP2952297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1202227A JP2952297B2 (en) 1989-08-03 1989-08-03 Ground measurement analysis judgment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1202227A JP2952297B2 (en) 1989-08-03 1989-08-03 Ground measurement analysis judgment system

Publications (2)

Publication Number Publication Date
JPH0365687A JPH0365687A (en) 1991-03-20
JP2952297B2 true JP2952297B2 (en) 1999-09-20

Family

ID=16454067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1202227A Expired - Fee Related JP2952297B2 (en) 1989-08-03 1989-08-03 Ground measurement analysis judgment system

Country Status (1)

Country Link
JP (1) JP2952297B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3467208B2 (en) * 1999-05-31 2003-11-17 財団法人鉄道総合技術研究所 Surface wave phase velocity detection system and surface wave phase velocity detection method
JP2003043152A (en) * 2001-07-30 2003-02-13 Arukoihara:Kk Ground surveying method, ground surveying device and ground surveying system
JP4509865B2 (en) * 2005-06-02 2010-07-21 東京電力株式会社 Layer structure estimation method and analysis apparatus for analyzing layer structure
JP2007177557A (en) * 2005-12-28 2007-07-12 Arukoihara:Kk Method and apparatus for researching ground

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
埼玉県公害センター研究報告 15号(1988年)村岡達郎「表面波を利用した地盤調査法」

Also Published As

Publication number Publication date
JPH0365687A (en) 1991-03-20

Similar Documents

Publication Publication Date Title
US6612398B1 (en) Methods for measurement, analysis and assessment of ground structure
JP3617036B2 (en) Ground exploration device and analysis program used therefor
JPH0374349B2 (en)
US7107849B2 (en) Vibration source probe system
US6601447B1 (en) Acoustic anemometer for simultaneous measurement of three fluid flow vector components
US4564927A (en) Method and apparatus for testing seismic vibrators
JPH11125688A (en) Reactor vibration monitor
JP2952297B2 (en) Ground measurement analysis judgment system
JP3467208B2 (en) Surface wave phase velocity detection system and surface wave phase velocity detection method
CN111397721A (en) Method and system for absolute calibration of co-vibrating vector hydrophone based on water surface boundary vibration measurement technology
Holland et al. Determination of plate source, detector separation from one signal
EP1769267B1 (en) Movement detection system and method
JPH09178863A (en) Ground strength analyzing method
JP2000065945A (en) Device and method for estimating structure using underground speed
EP1216422B1 (en) Method and apparatus for extracting physical parameters from an acoustic signal
JPH02179470A (en) Method and apparatus for measuring property of rock bed
Karczub et al. Finite differencing methods for the measurement of dynamic bending strain
RU2022301C1 (en) Method and device for geophysical combined prospecting
CN113075734B (en) Residual curvature spectrum calculation method and device based on signal-to-noise ratio constraint
JPH11211552A (en) Apparatus for measuring natural vibration mode
JPH11183630A (en) Method for evaluating amplification characteristic of ground at earthquake
JP2860461B2 (en) Target motion analysis method
RU1777107C (en) Method of determination of velocity of propagation of seismic wave
SU807071A1 (en) Method and device for determining oscillations of internal waves
JPH09236483A (en) Seismometer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees