JPH09236483A - Seismometer - Google Patents
SeismometerInfo
- Publication number
- JPH09236483A JPH09236483A JP8044503A JP4450396A JPH09236483A JP H09236483 A JPH09236483 A JP H09236483A JP 8044503 A JP8044503 A JP 8044503A JP 4450396 A JP4450396 A JP 4450396A JP H09236483 A JPH09236483 A JP H09236483A
- Authority
- JP
- Japan
- Prior art keywords
- sound wave
- information
- vibration
- receiving
- free
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006073 displacement reaction Methods 0.000 claims abstract description 25
- 239000012530 fluid Substances 0.000 claims abstract description 25
- 230000005540 biological transmission Effects 0.000 claims description 13
- 230000001133 acceleration Effects 0.000 claims description 10
- 230000035807 sensation Effects 0.000 claims 1
- 238000005259 measurement Methods 0.000 description 19
- 230000033001 locomotion Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 5
- 239000012141 concentrate Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Landscapes
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ガスメータやガス
遮断装置などに設置されて地震を検出する感震装置に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seismic device installed in a gas meter, a gas shutoff device or the like to detect an earthquake.
【0002】[0002]
【従来の技術】従来この種の感震装置は、実開昭61−
48634号公報のようなものが知られていた。以下、
その構成について図10を参照しながら説明する。2. Description of the Related Art Conventionally, this kind of seismic device is disclosed in
No. 48634 has been known. Less than,
The configuration will be described with reference to FIG.
【0003】図3に示すように、底面1が凹円錐状とな
っている函体2内に転動自在に球3を収納し、函体の中
蓋4によって上下方向摺動自在に保持された円盤5の下
面を同円盤5の自重によって球3の上面に当接させ、同
円盤5の上面に設けたプランジャ6をスイッチ機構7に
接触させて、円盤5の上方への移動によってスイッチ機
構7が作動する。As shown in FIG. 3, a sphere 3 is rotatably housed in a box body 2 whose bottom surface 1 has a concave conical shape, and is vertically slidably held by an inner lid 4 of the box body. The lower surface of the disk 5 is brought into contact with the upper surface of the sphere 3 by the weight of the disk 5, the plunger 6 provided on the upper surface of the disk 5 is brought into contact with the switch mechanism 7, and the disk 5 is moved upward to cause the switch mechanism. 7 works.
【0004】上記構成において、函体2が震動すると球
3は円錐状底面1上を中央から端へと転動する。この
際、中心から端へ寄った位置では底面1と円盤5の凹球
面との間隔が小さくなっているのでこの間隔に入った球
3によってプランジャ6が押し上げられ接点8をオンす
る。In the above structure, when the box 2 vibrates, the sphere 3 rolls on the conical bottom surface 1 from the center to the end. At this time, since the distance between the bottom surface 1 and the concave spherical surface of the disk 5 is small at the position closer to the end from the center, the plunger 6 is pushed up by the sphere 3 entering this distance and the contact 8 is turned on.
【0005】[0005]
【発明が解決しようとする課題】しかしながら上記従来
技術では、震動を検知はできるが、どのような大きさの
震動であるかはわからなかった。また、円錐状の底面の
傾斜角で接点がオンされる震動の大きさを制限すること
はできたが正確ではなかった。そして、接点のオンのタ
イミングが震動波形と一致せず、地震動か衝撃動かの判
別が付けにくいという課題があった。However, although the above-mentioned prior art can detect a vibration, it has not been known what magnitude the vibration is. Moreover, it was possible to limit the magnitude of the vibration that the contact was turned on by the inclination angle of the conical bottom surface, but it was not accurate. Then, there was a problem that the timing of turning on the contact did not match the vibration waveform, and it was difficult to distinguish the seismic movement and the impact movement.
【0006】本発明は上記課題を解決するもので、自由
振動子の動きを音波によって計測し振動情報を求めて地
震判定を正確に行うことを主目的としている。The present invention is intended to solve the above problems, and its main purpose is to accurately measure an earthquake by measuring the movement of a free oscillator by sound waves and obtaining vibration information.
【0007】[0007]
【課題を解決するための手段】本発明の感震装置におい
ては、音波を発生する音波発生手段と、音波発生手段の
略正面方向に設けた自由振動素子と、自由振動素子から
反射してくる音波を受信する音波受信手段と、音波発生
手段の音波発生上方と音波受信手段の音波受信情報とか
ら自由信号素子の振動情報に変換する信号処理手段と、
信号情報が地震であるか否かを判定する判定手段とを備
えている。In the seismic sensing device of the present invention, a sound wave generating means for generating a sound wave, a free vibration element provided substantially in front of the sound wave generating means, and reflected from the free vibration element. Sound wave receiving means for receiving a sound wave; signal processing means for converting the sound wave generating information of the sound wave generating means and the sound wave receiving information of the sound wave receiving means into vibration information of the free signal element;
And a determination unit that determines whether or not the signal information is an earthquake.
【0008】この本発明によれば、自由振動素子の動き
を音波によって計測し振動情報としているので地震判定
を精度よく行うことができる。According to the present invention, since the movement of the free vibration element is measured by the sound wave and used as the vibration information, the earthquake determination can be accurately performed.
【0009】[0009]
【発明の実施の形態】本発明の第1の手段は、音波を発
生する音波発生手段と、前記音波発生手段の略正面方向
に設けた自由振動素子と、前記自由振動素子によって反
射してくる音波を受信する音波受信手段と、前記音波発
生手段の音波発生情報と前記音波受信手段の音波受信情
報から前記自由振動素子の振動情報に変換する信号処理
手段と、前記振動情報が地震であるか否かを判定する判
定手段を備えた構成とした。BEST MODE FOR CARRYING OUT THE INVENTION The first means of the present invention is a sound wave generating means for generating a sound wave, a free vibration element provided substantially in the front direction of the sound wave generating means, and reflected by the free vibration element. A sound wave receiving means for receiving a sound wave, a signal processing means for converting the sound wave generation information of the sound wave generating means and the sound wave reception information of the sound wave receiving means into the vibration information of the free vibration element, and whether the vibration information is an earthquake. The configuration is provided with a determination means for determining whether or not.
【0010】そして、第2の手段は、流体管路内部に音
波を発生する音波発生手段と、前記流体管路で前記音波
発生手段の略正面方向に設けた自由振動素子と、前記自
由振動素子によって反射してくる流体管路内の音波を受
信する音波受信手段と、前記音波発生手段の音波発生情
報と前記音波受信手段の音波受信情報から前記自由振動
素子の振動情報に変換する第1の信号処理手段と、前記
振動情報が地震であるか否かを判定する判定手段と、前
記音波発生情報と前記音波受信手段の音波受信情報から
流体管路を流れる流量情報に変換する第2の信号処理手
段を備えた構成とした。The second means is a sound wave generating means for generating a sound wave inside the fluid conduit, a free vibration element provided in the fluid conduit substantially in front of the sound wave generating means, and the free vibration element. Sound wave receiving means for receiving the sound wave in the fluid conduit reflected by the first sound wave generating means, and the first sound wave generating information of the sound wave generating means and the sound wave receiving information of the sound wave receiving means are converted into vibration information of the free vibration element. Signal processing means, determination means for determining whether or not the vibration information is an earthquake, and second signal for converting the sound wave generation information and the sound wave reception information of the sound wave reception means into flow rate information flowing through a fluid conduit. It is configured to include processing means.
【0011】また、第3の手段は、流体管路の中心軸に
対して傾斜した直線上に設けた一対の音波受発信手段
と、前記音波受発信手段の対向方向に対して更に傾斜し
た方向にそれぞれ設けたの自由振動素子と、前記受発信
手段の音波受信情報から前記自由振動素子の振動情報に
変換する第1の信号処理手段と、前記振動情報が地震で
あるか否かを判定する判定手段と、前記音波発生情報と
前記音波受信手段の音波受信情報から流体管路を流れる
流量情報に変換する第2の信号処理手段を備えた構成と
した。The third means is a pair of sound wave transmitting / receiving means provided on a straight line inclined with respect to the central axis of the fluid conduit, and a direction further inclined with respect to the opposing direction of the sound wave receiving / transmitting means. And a first signal processing means for converting the sound wave reception information of the transmitting / receiving means into the vibration information of the free vibration element, and determining whether the vibration information is an earthquake or not. The configuration includes a determination unit and a second signal processing unit that converts the sound wave generation information and the sound wave reception information of the sound wave reception unit into flow rate information flowing through the fluid conduit.
【0012】さらに、第4の手段は、音波受発信手段と
前記音波受発信手段に対向した自由振動素子の2組のペ
アは互いにねじれの位置に配置した構成とした。Further, the fourth means is constructed such that two pairs of the sound wave receiving / transmitting means and the free vibration element facing the sound wave receiving / transmitting means are arranged in a twisted position.
【0013】そして、第5の手段は、第1の音波受発信
手段が発生した音波を第2の音波受発信手段が受信し、
かつ自由振動子で反射する反射波を第1の音波受発信手
段で受信し、さらに第2の音波受発信手段が発生した音
波を第1の音波受発信手段が受信し、かつ自由振動子で
反射する反射波を第2の音波受発信手段で受信するよう
に第1、第2の音波受発信手段の送受信の切換と音波発
生と音波受信のタイミングを制御する制御手段を備えた
構成とした。The fifth means receives the sound wave generated by the first sound wave receiving and transmitting means by the second sound wave receiving and transmitting means,
Further, the reflected wave reflected by the free oscillator is received by the first sound wave receiving / transmitting means, the sound wave generated by the second sound wave receiving / transmitting means is received by the first sound wave receiving / transmitting means, and the free vibrator is used. The second sound wave receiving / transmitting means receives the reflected wave and the second sound wave receiving / transmitting means switches the transmission / reception of the first and second sound wave receiving / transmitting means and controls the sound wave generation and sound wave reception timing. .
【0014】また、第6の手段は、振動情報で得られた
変位情報を演算によって速度、加速度に変換する信号処
理手段と、前記速度と加速度を用いて地震判定を行う構
成とした。Further, the sixth means is constituted so as to perform a seismic determination using the signal processing means for converting the displacement information obtained from the vibration information into velocity and acceleration by calculation and the velocity and acceleration.
【0015】そして、第7の手段は、音波は特定周期で
発生する構成とした。さらに、第8の手段は、第1の特
定周期で振動情報を求め、振動情報に所定の変化があっ
たときには、第1の特定周期より短い第2の特定周期で
音波発生を行う構成とした。Then, the seventh means is constructed so that the sound wave is generated at a specific cycle. Further, the eighth means is configured to obtain the vibration information at the first specific cycle, and to generate the sound wave at the second specific cycle shorter than the first specific cycle when the vibration information has a predetermined change. .
【0016】そして、第9の手段は、一定周期で得られ
た振動情報から振動波形を求め、波形解析によって地震
か否かを判定する判定手段を備えた構成とした。The ninth means is provided with a determining means for determining a vibration waveform from vibration information obtained in a constant cycle and determining whether or not there is an earthquake by waveform analysis.
【0017】また、第10の手段は、特定周期の最大値
は10秒以内とした。さらに、第11の手段は、自由振
動子の共振周波数は20Hz近傍に設定した。In the tenth means, the maximum value of the specific cycle is within 10 seconds. Furthermore, in the eleventh means, the resonance frequency of the free oscillator is set near 20 Hz.
【0018】そして、第12の手段は、自由振動子の反
射面は音波受信手段又は音波受発信手段の受音面に焦点
が一致するような凹面形状とした。In the twelfth means, the reflecting surface of the free oscillator is formed in a concave shape so that the focal point matches the sound receiving surface of the sound wave receiving means or the sound wave receiving and transmitting means.
【0019】また、第13の手段は、第2の信号処理手
段が流量有りの流量情報を求めたときには第1の信号処
理手段が振動情報を求める構成とした。In the thirteenth means, the first signal processing means obtains the vibration information when the second signal processing means obtains the flow rate information with the flow rate.
【0020】そして、第14の手段は、音波は超音波を
用いた構成とした。本発明は上記構成によって、第1の
手段によれば、自由振動子の動きを音波によって計測す
ることで振動情報を求めて地震判定を精度よく行うこと
ができる。Then, the fourteenth means has a constitution in which ultrasonic waves are used as sound waves. According to the first means of the present invention having the above-described configuration, it is possible to accurately determine the earthquake by obtaining the vibration information by measuring the movement of the free vibrator by the sound wave.
【0021】そして、第2の手段によれば、流体管路内
で音波による振動情報を計測することで流体の流量情報
と振動情報を同時に得ることができる。According to the second means, the flow rate information and the vibration information of the fluid can be obtained at the same time by measuring the vibration information by the sound wave in the fluid conduit.
【0022】さらに、第3の手段によれば、一対の音波
受発信手段と一対の自由振動素子を用いて一回の音波発
生で振動情報と流量情報を測定することができる。Further, according to the third means, it is possible to measure the vibration information and the flow rate information by generating the sound wave once by using the pair of sound wave receiving and transmitting means and the pair of free vibration elements.
【0023】また、第4の手段によれば、音波受発信手
段と自由振動素子の2組のペアをねじれの位置に配置す
ることで2方向の振動情報から3方向の振動情報を得る
ことができる。Further, according to the fourth means, by arranging two pairs of the sound wave transmitting / receiving means and the free vibration element at the twisted positions, the vibration information in the three directions can be obtained from the vibration information in the two directions. it can.
【0024】そして、第5の手段によれば、第1の音波
受発信手段が発信装置と受信装置を兼用するように音波
到達に合わせて機能を切り換えて合理化を図ることがで
きる。According to the fifth means, the function can be switched in accordance with arrival of the sound wave so that the first sound wave receiving / transmitting means serves both as the transmitting device and the receiving device for rationalization.
【0025】また、第6の手段によれば、振動情報は変
位から速度、加速度に変換して地震判定の精度を向上す
ることができる。According to the sixth means, the vibration information can be converted from displacement into velocity and acceleration to improve the accuracy of earthquake judgment.
【0026】さらに、第7の手段によれば、音波の発生
を特定の周期で行うことで省電力化を図ることができ
る。Further, according to the seventh means, it is possible to save power by generating the sound wave at a specific cycle.
【0027】そして、第8の手段によれば、第1の周期
で振動の有無を観測し、第2の周期で振動状態を観測す
ることで省電力化と地震判定の高精度化を行うことがで
きる。According to the eighth means, the presence or absence of vibration is observed in the first cycle, and the vibration state is observed in the second cycle to save power and improve the accuracy of earthquake determination. You can
【0028】また、第9の手段によれば、一定の周期で
観測することで振動波形を観測して波形解析を用いて地
震判定の精度を向上することができる。According to the ninth means, it is possible to improve the accuracy of seismic determination by observing the vibration waveform by observing at a constant cycle and using the waveform analysis.
【0029】さらに、第10の手段によれば、周期を1
0秒以内にすることで地震波形を見逃すことなく判定す
ることができる。Further, according to the tenth means, the cycle is set to 1
By setting it within 0 seconds, it is possible to make a judgment without missing the seismic waveform.
【0030】そして、第11の手段によれば、自由振動
素子の共振周波数を20Hz付近に設けることで地震の
周波数を確実に測定すると共に高周波数のノイズを機械
的に濾過して測定精度を向上することができる。According to the eleventh means, the resonance frequency of the free vibration element is provided near 20 Hz to reliably measure the frequency of the earthquake and mechanically filter high frequency noise to improve the measurement accuracy. can do.
【0031】また、第12の手段によれば、自由振動素
子の反射面を凹面状にすることで音波を集中させて音圧
を上げることで測定精度を向上することができる。According to the twelfth means, the measurement accuracy can be improved by making the reflection surface of the free vibration element concave so as to concentrate the sound waves and increase the sound pressure.
【0032】そして、第13の手段によれば、流量が発
生したときには振動を測定することでガスなどが流れて
いるときに地震等の非常事態を検出することができる。According to the thirteenth means, it is possible to detect an emergency situation such as an earthquake when gas or the like is flowing by measuring the vibration when the flow rate is generated.
【0033】さらに、第14の手段によれば、超音波を
用いることで流体流路のような狭い空間でも分解能よく
測定することができる。Further, according to the fourteenth means, it is possible to measure with good resolution even in a narrow space such as a fluid channel by using ultrasonic waves.
【0034】以下、本発明の第1の実施例の感震装置を
ガス流路に使用した場合について、図1から図7を参照
して説明する。Hereinafter, a case where the seismic sensing device according to the first embodiment of the present invention is used in a gas passage will be described with reference to FIGS. 1 to 7.
【0035】図に示すように、ガスの流体管路9の中心
軸9aに対して傾斜した直線上に設けた流体管路9内部
に超音波を発生する一対の音波受発信手段としての第1
の超音波受発信素子10と、第2の超音波受発信素子1
1と、第1の超音波受発信素子10と第2の超音波受発
信素子11の対向方向に対して更に傾斜した方向にそれ
ぞれ設けた第1の振動板12と第1のバネ13で構成さ
れた第1の自由振動素子14と、第2の振動板15と第
2のバネ16で構成された第2の自由振動素子17を設
けた構成とした。そして、第1の振動板12によって反
射してくる反射波を第1の超音波受発信素子10で受信
し、超音波発生情報と超音波受信情報から第1の自由振
動素子14の振動情報としての変位に変換する第1の信
号処理手段18と、変位に関する振動情報が地震である
か否かを判定する判定手段19を備えた構成とした。一
方、第1の超音波受発信素子10で送信した超音波を第
2の超音波受発信素子11で受信し、超音波発生情報と
超音波受信情報から第2の信号処理手段20で流量情報
に演算によって変換する構成とした。ここで、21は増
幅器、22は制御手段としての制御装置、23は地震信
号出力端子、24は信号処理を行う演算装置、25は超
音波受発信素子を受信モードと送信モードに切り換える
制御手段としての信号切換器、26は電池である。ま
た、第1と第2の超音波受発信素子10、11の傾斜角
はα、第1と第2の自由振動素子14、17の傾斜角は
βだけ中心軸から傾けた構成とした。As shown in the figure, the first as a pair of sound wave transmitting / receiving means for generating ultrasonic waves inside the fluid conduit 9 provided on a straight line inclined with respect to the central axis 9a of the gas fluid conduit 9
Ultrasonic transmitting / receiving element 10 and second ultrasonic transmitting / receiving element 1
1, a first diaphragm 12 and a first spring 13 which are respectively provided in a direction further inclined with respect to the facing direction of the first ultrasonic wave transmitting / receiving element 10 and the second ultrasonic wave transmitting / receiving element 11. The first free vibrating element 14 and the second free vibrating element 17 including the second vibrating plate 15 and the second spring 16 are provided. Then, the reflected wave reflected by the first vibrating plate 12 is received by the first ultrasonic wave transmitting / receiving element 10 and is used as the vibration information of the first free vibrating element 14 from the ultrasonic wave generation information and the ultrasonic wave reception information. The first signal processing means 18 for converting into the displacement and the determination means 19 for determining whether or not the vibration information regarding the displacement is an earthquake. On the other hand, the ultrasonic wave transmitted from the first ultrasonic wave transmitting / receiving element 10 is received by the second ultrasonic wave transmitting / receiving element 11, and the flow rate information is received by the second signal processing means 20 from the ultrasonic wave generation information and the ultrasonic wave reception information. It is configured to be converted by calculation. Here, 21 is an amplifier, 22 is a control device as control means, 23 is an earthquake signal output terminal, 24 is an arithmetic device for performing signal processing, and 25 is control means for switching the ultrasonic wave transmitting / receiving element between a receiving mode and a transmitting mode. Is a signal switch, and 26 is a battery. In addition, the first and second ultrasonic wave transmitting / receiving elements 10 and 11 are inclined at an angle of α, and the first and second free vibration elements 14 and 17 are inclined at an angle of β from the central axis.
【0036】このような構成において、図2示すよう
に、制御装置22と第1の超音波受発信素子10によっ
て超音波が発生すると、第1の振動板12に当たって超
音波が反射してくる。この反射波を同じ第1の超音波受
発信素子10によって受音することで、第1の振動板1
2と第1の超音波受発信素子10の間を音波が往復した
時間t1を測定する。この時間から第1の振動板12と
第1の超音波受発信素子10の距離Lを測定する。すな
わち、距離Lは、L=C*t1/2で計算される。ここ
で、Cは音速である。In such a structure, as shown in FIG. 2, when an ultrasonic wave is generated by the control device 22 and the first ultrasonic wave transmitting / receiving element 10, the ultrasonic wave hits the first diaphragm 12 and is reflected. By receiving the reflected wave by the same first ultrasonic wave transmitting / receiving element 10, the first diaphragm 1
The time t1 when the sound wave reciprocates between the second ultrasonic wave transmitting / receiving element 10 and the first ultrasonic wave transmitting / receiving element 10 is measured. From this time, the distance L between the first diaphragm 12 and the first ultrasonic wave transmitting / receiving element 10 is measured. That is, the distance L is calculated by L = C * t1 / 2. Here, C is the speed of sound.
【0037】例えば、L=0.08m、C=340m/
s、最大変位を0.001mとすると、t1=(0.0
8+0.001)*2/340=0.000476とな
り、約500μ秒となる。また、変位のみを求めるため
には、0.08*2m分の時間を差し引くことになり、
結局、変位Δx分の時間はt1’=0.001/340
=0.0000029となり、約3μ秒となる。変位波
形を計測するためには、この3μ秒を更に128分割程
度の分解能で計測することが必要と考えると、単位時間
として、約20n秒以下のカウンタで超音波を発信して
から受信するまでの時間をカウントすれば計測できるこ
とがわかる。カウンタは、第1の信号処理手段18で行
うことができる。For example, L = 0.08 m, C = 340 m /
s, and the maximum displacement is 0.001 m, t1 = (0.0
8 + 0.001) * 2/340 = 0.000476, which is about 500 μsec. Also, in order to obtain only the displacement, the time for 0.08 * 2m is subtracted,
After all, the time of the displacement Δx is t1 ′ = 0.001 / 340.
= 0.0000029, which is about 3 μsec. Considering that it is necessary to measure this 3 μs with a resolution of about 128 divisions in order to measure the displacement waveform, as a unit time, from the transmission of ultrasonic waves by a counter of about 20 n seconds or less until reception You can see that you can measure by counting the time. The counter can be performed by the first signal processing means 18.
【0038】一方、同時に放射された超音波は対向する
第2の超音波受発信素子11によって受音される。そし
て、発信時の時間情報と受信時の時間情報から流れがあ
るときの超音波の到達時間t2を測定する。同様に、特
定周期の所定間隔T後に他方の第2の超音波受発信素子
11から超音波が発生させられると、第2の振動板15
に当たって反射によって第2の振動板15の変位が測定
できる。変位は、所定変位以上か否かを判定して地震の
可能性を判定するものである。また同時に放射された超
音波は、対向する第1の超音波受発信素子10によって
受音され、発信時の時間情報と受信時の時間情報から流
れがあるときの超音波の到達時間t3を測定する。この
t2、t3から流速vを計算するのである。ここで、傾
斜角αを持たせていることによって流量も計測すること
ができるようになるのである。On the other hand, the simultaneously emitted ultrasonic waves are received by the opposing second ultrasonic wave transmitting / receiving element 11. Then, the arrival time t2 of the ultrasonic wave when there is a flow is measured from the time information at the time of transmission and the time information at the time of reception. Similarly, when an ultrasonic wave is generated from the other second ultrasonic wave transmitting / receiving element 11 after a predetermined interval T of a specific cycle, the second diaphragm 15 is generated.
By hitting, the displacement of the second diaphragm 15 can be measured by reflection. The displacement determines whether or not an earthquake is possible by determining whether or not the displacement is equal to or greater than a predetermined displacement. The ultrasonic waves emitted at the same time are received by the opposing first ultrasonic wave transmitting / receiving element 10, and the arrival time t3 of the ultrasonic wave when there is a flow is measured from the time information at the time of transmission and the time information at the time of reception. To do. The flow velocity v is calculated from these t2 and t3. Here, the flow rate can be measured by providing the inclination angle α.
【0039】すなわち、t2=L/(C+v)と、t3
=L/(C−v)とから、 Δt=t3−t2=2Lv/(C2−v2) で計算される。一般にC≧vとして近似的に、 v=C2*Δt/2L として第2の信号処理手段20によって計算で求めるこ
とができるのである。よって、t2とt3の時間差Δt
から流速を求め、流体管路の断面積Sを乗算して流量を
求めるのである。図4に超音波波形をモデル化した受発
信のタイミングを示すチャート図を、図5と図6にはそ
のフローチャートを示す。That is, t2 = L / (C + v) and t3
Since = L / a (C-v), it is calculated by Δt = t3-t2 = 2Lv / (C 2 -v 2). In general, C ≧ v can be approximately calculated, and v = C 2 * Δt / 2L can be calculated by the second signal processing means 20. Therefore, the time difference Δt between t2 and t3
The flow velocity is obtained from the above, and the flow rate is obtained by multiplying the cross-sectional area S of the fluid pipe. FIG. 4 is a chart showing the timing of transmission / reception in which an ultrasonic waveform is modeled, and FIGS. 5 and 6 are flowcharts thereof.
【0040】また、地震の発生を検知するためには、変
位は常時計測していなければならないが、地震動波形の
多くが示すように地震波は3秒から10数秒続くもので
ある。よって、本装置では、第1の特定間隔T1として
2秒間隔で超音波を発信して観測するものとした。そし
て、その2秒間隔で発生した超音波の反射波から変位を
計測し、変位が所定値以上になったとき地震かどうかを
判定手段によって判定することとしている。そのため
に、所定値以上の変位が現れたときには前記2秒間隔を
さらに短くすることとしている。Further, in order to detect the occurrence of an earthquake, the displacement must be constantly measured, but as many earthquake motion waveforms show, the seismic wave lasts from 3 seconds to over 10 seconds. Therefore, in the present apparatus, ultrasonic waves are transmitted and observed at intervals of 2 seconds as the first specific interval T1. Then, the displacement is measured from the reflected wave of the ultrasonic wave generated at the interval of 2 seconds, and when the displacement becomes a predetermined value or more, it is determined by the determination means whether or not it is an earthquake. Therefore, when a displacement of a predetermined value or more appears, the 2 second interval is further shortened.
【0041】図7にタイミングチャートを示す。例え
ば、第2の特定間隔T2として20m秒間隔で計測する
こととした。20m秒間隔で変位を計測するとサンプリ
ング定理からおおよそ25Hz程度の周波数まで計測す
ることができるのでほぼ地震波形を観測することができ
ると考える。そして、20m秒で計測した地震変位波形
を第1の信号処理手段18によって、速度と加速度に変
換してその波形の特徴を抽出して地震かどうかを判定手
段が判定するものである。このように、第1の所定間隔
T1と第2の所定間隔T2で計測することで、地震発生
を見逃すことなく検知することができ、かつ地震の変位
波形を計測することができるので計算によって速度波
形、加速度波形へも変換することができる。その結果、
速度応答スペクトルから求めるスペクトル強度SIや、
振動加速度レベルであるガル値で地震強度の判定を行う
ことができる。また、変位、速度、加速度の各波形を波
形解析のひとつであるフーリエ解析することで、周波数
ごとの成分を分析することができ、地震の特徴である1
から5Hz付近の周波数成分の大きさで地震か否かを判
定することもできる。FIG. 7 shows a timing chart. For example, the second specific interval T2 is measured at 20 msec intervals. If the displacement is measured at 20 msec intervals, it is possible to measure up to a frequency of about 25 Hz according to the sampling theorem, so it is possible to observe almost seismic waveforms. Then, the seismic displacement waveform measured in 20 msec is converted into velocity and acceleration by the first signal processing means 18, and the characteristic of the waveform is extracted to determine whether or not it is an earthquake. In this way, by measuring at the first predetermined interval T1 and the second predetermined interval T2, it is possible to detect the occurrence of an earthquake without missing it, and it is possible to measure the displacement waveform of the earthquake. Waveforms and acceleration waveforms can also be converted. as a result,
Spectral intensity SI obtained from velocity response spectrum,
Seismic intensity can be determined by the galle value, which is the vibration acceleration level. In addition, by performing Fourier analysis, which is one of the waveform analysis, on each waveform of displacement, velocity, and acceleration, it is possible to analyze the component for each frequency, which is a feature of earthquakes.
It is also possible to determine whether or not there is an earthquake based on the magnitude of the frequency component around 5 Hz.
【0042】更に、流量情報から流量が所定値以上発生
しているときにのみ、振動情報から地震を判定すること
によって、判定処理の回数が大きく減少し電池の寿命を
長寿命化することができし、流量がある場合は流速によ
る変位の測定誤差を補正して精度よく測定することもで
きる。また、傾斜角度βを90゜とすることで管路内の
流速の影響をなくして自由振動子の振動を計測すること
ができ、計測精度を向上することができる。Further, by determining the earthquake from the vibration information only when the flow rate information shows that the flow rate exceeds a predetermined value, the number of determination processes can be greatly reduced and the battery life can be extended. However, if there is a flow rate, it is possible to correct the displacement measurement error due to the flow velocity and perform accurate measurement. Further, by setting the inclination angle β to 90 °, it is possible to eliminate the influence of the flow velocity in the conduit and measure the vibration of the free vibrator, and it is possible to improve the measurement accuracy.
【0043】なお、特定周期は2秒が最適であるが、電
池の寿命を長くするために10秒程度まで長くしてもよ
いと考えている。ただし、ガス流量の計測の精度を向上
するためにはできるだけ短い方が望ましい。また、流量
計測と振動計測を同時に行う方法で説明したが、超音波
を利用したその他の計測タンク内の貯蔵量を計測するレ
ベルセンサなどに応用しても同様に、貯蔵量検知と共に
地震検知を行うことができ、大型タンクの安全管理が行
える。さらに、超音波の発信回路や受信回路は、流量計
測と振動計測で兼用することができ回路を簡素化するこ
とができる。そして、超音波の周波数を400KHz程
度にすることによって波長が約1mm程度に抑えられガ
ス配管や流体流路のような細い配管内でも計測を行うこ
とができる。The optimum specific cycle is 2 seconds, but it is considered that the specific cycle may be increased to about 10 seconds in order to prolong the life of the battery. However, in order to improve the accuracy of gas flow rate measurement, it is desirable that the length be as short as possible. Also, although the method of performing flow rate measurement and vibration measurement at the same time has been described, the same applies to other level sensors that use ultrasonic waves to measure the amount of storage in the measurement tank, and in the same way it is possible to detect earthquakes along with the amount of storage. It can be done, and safety management of large tanks can be performed. Further, the ultrasonic wave transmission circuit and the ultrasonic wave reception circuit can be used for both flow rate measurement and vibration measurement, and the circuit can be simplified. The wavelength can be suppressed to about 1 mm by setting the frequency of the ultrasonic waves to about 400 KHz, and the measurement can be performed even in a thin pipe such as a gas pipe or a fluid passage.
【0044】以上のように、自由振動子の動きを音波に
よって計測することで振動情報を求めて地震判定を精度
よく行うことができ、かつ流体管路内で音波による振動
情報を計測することで流体の流量情報と振動情報を同時
に得ることができる。そして、一対の音波受発信手段と
一対の自由振動素子を用いて一回の音波発生で振動情報
と流量情報を一度に測定することができて計測を簡素化
し電池の長寿命化を図ることができる。また、第1の音
波受発信手段が発信装置と受信装置を兼用するように音
波到達に合わせて機能を切り換えて合理化を図ることが
できる。さらに、振動情報は変位から速度、加速度に変
換して地震判定の精度を向上することができる。そし
て、音波の発生を特定の周期で行うことで省電力化を図
ることができ、第1の周期で振動の有無を観測し、第2
の周期で振動状態を観測することで省電力化と地震判定
の高精度化を行うことができる。さらに、周期を10秒
以内にすることで地震波形を見逃すことなく判定するこ
とができる。そして、流量が発生したときには振動を測
定することでガスなどが流れているときに地震等の非常
事態を検出することができる。さらに、第14の手段に
よれば、超音波を用いることで流体流路のような狭い空
間でも分解能よく測定することができるのである。As described above, by measuring the movement of the free oscillator by the sound wave, the vibration information can be obtained and the earthquake judgment can be accurately performed, and the vibration information by the sound wave can be measured in the fluid conduit. Fluid flow rate information and vibration information can be obtained at the same time. Then, the vibration information and the flow rate information can be measured at a time by generating the sound wave once by using the pair of sound wave transmitting / receiving means and the pair of free vibration elements, and the measurement can be simplified and the life of the battery can be prolonged. it can. Further, the function can be switched in accordance with arrival of the sound wave so that the first sound wave receiving / transmitting means serves as both the transmitting device and the receiving device for rationalization. Furthermore, the vibration information can be converted from displacement into velocity and acceleration to improve the accuracy of earthquake determination. Power can be saved by generating sound waves at a specific cycle, and the presence or absence of vibration can be observed at the first cycle and the second cycle can be performed.
By observing the vibration state in the cycle of, it is possible to save power and improve the accuracy of earthquake judgment. Furthermore, by setting the cycle within 10 seconds, it is possible to make a judgment without missing the seismic waveform. When the flow rate is generated, the vibration can be measured to detect an emergency such as an earthquake when the gas or the like is flowing. Furthermore, according to the fourteenth means, it is possible to measure with good resolution even in a narrow space such as a fluid channel by using ultrasonic waves.
【0045】次に第2の実施例について図2及び図8か
ら図12を用いて説明する。上記第1の実施例と同一構
造で、かつ同一作用をする部分には同一符号を付して詳
細な説明は略し、異なる部分を中心に説明する。Next, a second embodiment will be described with reference to FIGS. 2 and 8 to 12. Portions having the same structure as those of the first embodiment and having the same function are denoted by the same reference numerals, and detailed description thereof will be omitted, and different portions will be mainly described.
【0046】図2に示すA−A’断面を図8に、図2に
示すB−B’断面を図9に示す。図8と図9か明らかの
ように、第1の超音波受発信素子10と第1の自由振動
素子14を結ぶ直線と、第2の超音波受発信素子11と
第2の自由振動素子17を結ぶ直線をお互いにねじれの
位置に配置する構成とした。FIG. 8 shows a cross section taken along the line AA 'shown in FIG. 2, and FIG. 9 shows a cross section taken along the line BB' shown in FIG. As is clear from FIG. 8 and FIG. 9, a straight line connecting the first ultrasonic wave transmitting / receiving element 10 and the first free vibration element 14, the second ultrasonic wave transmitting / receiving element 11 and the second free vibration element 17 are connected. The straight line connecting the points is arranged in a twisted position with respect to each other.
【0047】上記構成によれば、図10に示すように3
次元空間の3方向であるX方向、Y方向、Z方向をそれ
ぞれ計測した振動情報のベクトルの分割計算により求め
ることができる。すなわち、第1の超音波受発信素子1
0と第1の自由振動素子14を結ぶ直線方向の振動情報
より、X方向とY方向の振動情報が得られ、第2の超音
波受発信素子11と第2の自由振動素子17を結ぶ直線
方向の振動情報より、X方向とZ方向の振動情報が得ら
れる。よって、2方向の振動情報から3方向の振動情報
を得ることができるのである。According to the above configuration, as shown in FIG.
It can be obtained by division calculation of a vector of vibration information obtained by measuring the X direction, the Y direction, and the Z direction, which are the three directions of the dimensional space. That is, the first ultrasonic wave transmitting / receiving element 1
From the vibration information in the linear direction connecting 0 and the first free vibration element 14, vibration information in the X direction and the Y direction is obtained, and the straight line connecting the second ultrasonic wave transmitting / receiving element 11 and the second free vibration element 17 is obtained. The vibration information in the X direction and the Z direction can be obtained from the vibration information in the direction. Therefore, it is possible to obtain vibration information in three directions from vibration information in two directions.
【0048】また、自由振動素子は、バネと重りで構成
されているのでその共振周波数を20Hz付近に設定し
た。共振周波数f0は次式でもとめられ、図11のよう
な特性となる。Since the free vibration element is composed of a spring and a weight, its resonance frequency is set to around 20 Hz. The resonance frequency f0 can be determined by the following equation and has a characteristic as shown in FIG.
【0049】[0049]
【数1】 [Equation 1]
【0050】ここで、バネ定数kと、質量mは、現実的
な寸法上の制約から決定することができる。このように
設定しておくことによって、感震装置が外部から振動を
受けても20Hz以上のノイズ的に振動には反応が鈍く
なり検出できないのでノイズに強い構成とすることがで
き、電気的なフィルターを省略することができる。Here, the spring constant k and the mass m can be determined from practical dimensional constraints. By setting in this way, even if the seismic sensing device receives vibration from the outside, the response to the vibration becomes dull and cannot be detected due to noise of 20 Hz or more, so that it is possible to have a structure resistant to noise, and the electrical The filter can be omitted.
【0051】さらに、図12に示すように、振動板26
の反射面は超音波受発信素子10に焦点距離が一致する
凹面形状とすることで、反射波の音圧レベルを高くする
ことができる。すなわち、自由振動素子27は超音波受
発信素子10の正面から少しはずれた位置に配置してい
るので超音波が入射してくるレベルが低い。その反射波
はさらに低くなるので反射波の多くが超音波振動素子1
0に向かって反射するような構成としたものである。Further, as shown in FIG.
The reflection surface of is formed in a concave shape whose focal length matches the ultrasonic wave transmitting / receiving element 10, so that the sound pressure level of the reflected wave can be increased. That is, since the free vibration element 27 is arranged at a position slightly deviated from the front surface of the ultrasonic wave transmission / reception element 10, the level at which ultrasonic waves are incident is low. Since the reflected wave is further lowered, most of the reflected wave is the ultrasonic vibration element 1.
The configuration is such that it reflects toward 0.
【0052】以上のように、一対の音波受発信手段と一
対の自由振動素子とをねじれの位置に配置することで2
方向の振動情報から3方向の振動情報を得ることができ
る。そして、自由振動素子の共振周波数を20Hz付近
に設けることで地震の周波数を確実に測定すると共に高
周波数のノイズを機械的に濾過して測定精度を向上する
ことができる。また、自由振動素子の反射面を凹面状に
することで音波を集中させて音圧を上げることで測定精
度を向上することができる。As described above, by arranging the pair of sound wave transmitting / receiving means and the pair of free vibrating elements at the twisted positions,
The vibration information in three directions can be obtained from the vibration information in the directions. By providing the resonance frequency of the free vibration element in the vicinity of 20 Hz, it is possible to reliably measure the frequency of the earthquake and mechanically filter high-frequency noise to improve the measurement accuracy. Further, by making the reflecting surface of the free vibrating element concave, it is possible to improve the measurement accuracy by concentrating sound waves and increasing the sound pressure.
【0053】[0053]
【発明の効果】以上の説明から明らかように本発明の感
震装置の第1の手段によれば、自由振動子の動きを音波
によって計測することで振動情報を求めて地震判定を精
度よく行うことができる。As is apparent from the above description, according to the first means of the seismic sensing apparatus of the present invention, the movement of the free oscillator is measured by the sound wave to obtain the vibration information, and the earthquake determination is accurately performed. be able to.
【0054】そして、第2の手段によれば、流体管路内
で音波による振動情報を計測することで流体の流量情報
と振動情報を同時に得ることができる。According to the second means, the flow rate information and the vibration information of the fluid can be obtained at the same time by measuring the vibration information by the sound wave in the fluid conduit.
【0055】さらに、第3の手段によれば、一対の音波
受発信手段と一対の自由振動素子を用いて一回の音波発
生で振動情報と流量情報を測定することができる。Further, according to the third means, the vibration information and the flow rate information can be measured by generating the sound wave once by using the pair of sound wave transmitting / receiving means and the pair of free vibration elements.
【0056】また、第4の手段によれば、一対の音波受
発信手段と一対の自由振動素子とをねじれの位置に配置
することで2方向の振動情報から3方向の振動情報を得
ることができる。According to the fourth means, by disposing the pair of sound wave transmitting / receiving means and the pair of free vibrating elements at the twisted positions, the vibration information in the three directions can be obtained from the vibration information in the two directions. it can.
【0057】そして、第5の手段によれば、第1の音波
受発信手段が発信装置と受信装置を兼用するように音波
到達に合わせて機能を切り換えて合理化を図ることがで
きる。According to the fifth means, it is possible to rationalize the first sound wave receiving / transmitting means by switching the function according to the arrival of the sound wave so that the first sound wave receiving / transmitting means serves both as the transmitter and the receiver.
【0058】また、第6の手段によれば、振動情報は変
位から速度、加速度に変換して地震判定の精度を向上す
ることができる。According to the sixth means, the vibration information can be converted from displacement into velocity and acceleration to improve the accuracy of earthquake determination.
【0059】さらに、第7の手段によれば、音波の発生
を特定の周期で行うことで省電力化を図ることができ
る。Further, according to the seventh means, it is possible to save power by generating the sound wave at a specific cycle.
【0060】そして、第8の手段によれば、第1の周期
で振動の有無を観測し、第2の周期で振動状態を観測す
ることで省電力化と地震判定の高精度化を行うことがで
きる。According to the eighth means, the presence or absence of vibration is observed in the first cycle, and the vibration state is observed in the second cycle to save power and improve the accuracy of earthquake judgment. You can
【0061】また、第9の手段によれば、一定の周期で
観測することで振動波形を観測して波形解析を用いて地
震判定の精度を向上することができる。According to the ninth means, it is possible to improve the accuracy of seismic judgment by observing the vibration waveform by observing at a constant cycle and using the waveform analysis.
【0062】さらに、第10の手段によれば、周期を1
0秒以内にすることで地震波形を見逃すことなく判定す
ることができる。Furthermore, according to the tenth means, the cycle is set to 1
By setting it within 0 seconds, it is possible to make a judgment without missing the seismic waveform.
【0063】そして、第11の手段によれば、自由振動
素子の共振周波数を20Hz付近に設けることで地震の
周波数を確実に測定すると共に高周波数のノイズを機械
的に濾過して測定精度を向上することができる。According to the eleventh means, the resonance frequency of the free vibration element is provided in the vicinity of 20 Hz to reliably measure the frequency of the earthquake and mechanically filter the high frequency noise to improve the measurement accuracy. can do.
【0064】また、第12の手段によれば、自由振動素
子の反射面を凹面状にすることで音波を集中させて音圧
を上げることで測定精度を向上することができる。According to the twelfth means, the measurement accuracy can be improved by making the reflecting surface of the free vibration element concave so as to concentrate the sound waves and increase the sound pressure.
【0065】そして、第13の手段によれば、流量が発
生したときには振動を測定するとすることでガスなどが
流れているときに地震等の非常事態を検出することがで
きる。According to the thirteenth means, it is possible to detect an emergency such as an earthquake when gas or the like is flowing by measuring the vibration when the flow rate is generated.
【0066】さらに、第14の手段によれば、超音波を
用いることで流体流路のような狭い空間でも分解能よく
測定することができる。Further, according to the fourteenth means, it is possible to measure with good resolution even in a narrow space such as a fluid channel by using ultrasonic waves.
【図1】本発明の第1の実施例を示す感震装置のブロッ
ク図FIG. 1 is a block diagram of a seismic sensor showing a first embodiment of the present invention.
【図2】同装置の構成図FIG. 2 is a block diagram of the device.
【図3】同装置の構成図FIG. 3 is a configuration diagram of the apparatus.
【図4】同装置の動作を示すタイミングチャートFIG. 4 is a timing chart showing the operation of the device.
【図5】同装置の計測動作を示すフローチャートFIG. 5 is a flowchart showing a measurement operation of the device.
【図6】同装置の計測動作を示すフローチャートFIG. 6 is a flowchart showing a measuring operation of the device.
【図7】同装置の動作を示すタイミングチャートFIG. 7 is a timing chart showing the operation of the device.
【図8】本発明の第2の実施例を示す感震装置の断面図FIG. 8 is a sectional view of a seismic sensor showing a second embodiment of the present invention.
【図9】同装置の別の断面図FIG. 9 is another sectional view of the device.
【図10】同装置の計測データのベクトル図FIG. 10 is a vector diagram of measurement data of the device.
【図11】同装置の自由振動素子の特性図FIG. 11 is a characteristic diagram of a free vibration element of the device.
【図12】同装置の他の実施例の断面図FIG. 12 is a sectional view of another embodiment of the same device.
【図13】従来の感震装置の断面図FIG. 13 is a sectional view of a conventional seismic sensing device.
10 第1の超音波受発信素子 11 第2の超音波受発信素子 14 第1の自由振動素子 17 第2の自由振動素子 18 第1の信号処理手段 19 判定手段 20 第2の信号処理手段 22 制御手段 10 1st ultrasonic wave transmission / reception element 11 2nd ultrasonic wave transmission / transmission element 14 1st free vibration element 17 2nd free vibration element 18 1st signal processing means 19 Judgment means 20 2nd signal processing means 22 Control means
Claims (14)
発生手段の略正面方向に設けた自由振動素子と、前記自
由振動素子によって反射してくる音波を受信する音波受
信手段と、前記音波発生手段の音波発生情報と前記音波
受信手段の音波受信情報から前記自由振動素子の振動情
報に変換する信号処理手段と、前記振動情報が地震であ
るか否かを判定する判定手段を備えた感震装置。1. A sound wave generating means for generating a sound wave, a free vibration element provided substantially in front of the sound wave generating means, a sound wave receiving means for receiving a sound wave reflected by the free vibration element, and the sound wave. A signal processing means for converting the sound wave generation information of the generating means and the sound wave reception information of the sound wave receiving means into the vibration information of the free vibrating element, and a judgment means for judging whether the vibration information is an earthquake or not. Seismic device.
手段と、前記音波発生手段の略正面方向に設けた自由振
動素子と、前記自由振動素子によって反射してくる流体
管路内の音波を受信する音波受信手段と、前記音波発生
手段の音波発生情報と前記音波受信手段の音波受信情報
とから前記自由振動素子の振動情報に変換する第1の信
号処理手段と、前記振動情報が地震であるか否かを判定
する判定手段と、前記音波発生情報と前記音波受信手段
の音波受信情報から流体管路を流れる流量情報に変換す
る第2の信号処理手段を備えた感震装置。2. A sound wave generating means for generating a sound wave provided in a fluid conduit, a free vibrating element provided substantially in front of the sound wave generating means, and a free vibrating element in the fluid conduit which is reflected by the free vibrating element. Sound wave receiving means for receiving a sound wave; first signal processing means for converting sound wave generating information of the sound wave generating means and sound wave receiving information of the sound wave receiving means into vibration information of the free vibrating element; A seismic sensing apparatus comprising: a determination unit that determines whether or not there is an earthquake; and a second signal processing unit that converts the sound wave generation information and the sound wave reception information of the sound wave reception unit into flow rate information flowing through a fluid conduit.
対の音波受発信手段と、前記音波受発信手段の対向方向
に対し更に傾斜して設けたの自由振動素子と、前記受発
信手段の音波受信情報から前記自由振動素子の振動情報
に変換する第1の信号処理手段と、前記振動情報が地震
であるか否かを判定する判定手段と、前記音波発生情報
と前記音波受信手段の音波受信情報から流体管路を流れ
る流量情報に変換する第2の信号処理手段を備えた請求
項2記載の感震装置。3. A pair of sound wave receiving / transmitting means provided to be inclined with respect to a central axis of a fluid conduit, a free vibrating element further provided to be inclined with respect to a facing direction of the sound wave receiving / transmitting means, and the receiver. First signal processing means for converting the sound wave reception information of the transmission means into vibration information of the free vibration element, judgment means for judging whether or not the vibration information is an earthquake, the sound wave generation information and the sound wave reception. The seismic sensing apparatus according to claim 2, further comprising second signal processing means for converting the sound wave reception information of the means into flow rate information flowing through the fluid conduit.
設けた自由振動素子とで構成する2組のペアは互いにね
じれの位置の関係にある請求項3記載の感震装置。4. The seismic sensing apparatus according to claim 3, wherein the two pairs of pairs of the sound wave transmitting / receiving means and the free vibration elements provided so as to face each other are in a twisted position.
2の音波受発信手段が受信し、自由振動素子で反射する
反射波を第1の音波受発信手段で受信し、第2の音波受
発信手段が発生した音波を第1の音波受発信手段が受信
し、自由振動子で反射する反射波を第2の音波受発信手
段で受信するように前記第1及び第2の音波受発信手段
の送受信の切換と音波発生と音波受信のタイミングを制
御する制御手段を備えた請求項3記載の感震装置。5. A sound wave generated by the first sound wave transmitting / receiving means is received by the second sound wave receiving / transmitting means, and a reflected wave reflected by the free vibration element is received by the first sound wave receiving / transmitting means. The first sound wave receiving / transmitting means receives the sound wave generated by the first sound wave receiving / transmitting means, and the reflected wave reflected by the free oscillator is received by the second sound wave receiving / transmitting means. 4. The seismic sensing device according to claim 3, further comprising control means for controlling transmission / reception switching of the reception / transmission means and timing of sound wave generation and sound wave reception.
加速度に変換する信号処理手段と、前記信号処理手段か
らの信号により地震判定を行う請求項2〜5のいずれか
1項に記載の感震装置。6. Displacement information obtained from vibration information is used as velocity and
The seismic sensing apparatus according to any one of claims 2 to 5, wherein an earthquake determination is performed based on a signal processing unit that converts into acceleration and a signal from the signal processing unit.
いずれか1項に記載の感震装置。7. The seismic sensing device according to claim 1, wherein the sound wave is generated in a specific cycle.
動情報に所定の変化があったときには、第1の特定周期
より短い第2の特定周期で音波発生を行う請求項1〜6
のいずれか1項に記載の感震装置。8. The vibration information is obtained in a first specific cycle, and when there is a predetermined change in the vibration information, sound waves are generated in a second specific cycle shorter than the first specific cycle.
The earthquake-sensing device according to any one of 1.
を求め、波形解析によって地震か否かを判定する判定手
段を備えた請求項7または8記載の感震装置。9. The seismic sensing apparatus according to claim 7, further comprising a determination unit that determines a vibration waveform from vibration information obtained in a constant cycle and determines whether or not there is an earthquake by waveform analysis.
求項7、8または9記載の感震装置。10. The seismic sensing device according to claim 7, 8 or 9, wherein the maximum value of the specific period is within 10 seconds.
傍に設定した請求項1から5記載の感震装置。11. The seismic sensing device according to claim 1, wherein the resonance frequency of the free vibration element is set to about 20 Hz.
は音波受発信手段の受音面に焦点が一致するような凹面
形状とした請求項1〜5のいずれか1項に記載の感震装
置。12. The seismic sensation according to claim 1, wherein the reflecting surface of the free vibration element has a concave shape such that the focal point matches the sound receiving surface of the sound wave receiving means or the sound wave receiving and transmitting means. apparatus.
報を求めたときには第1の信号処理手段が振動情報を求
める請求項2〜5のいずれか1項に記載の感震装置。13. The seismic sensing apparatus according to claim 2, wherein when the second signal processing means obtains flow rate information with a flow rate, the first signal processing means obtains vibration information.
3のいずれか1項に記載の感震装置。14. An ultrasonic wave is used as a sound wave.
The seismic sensing device according to any one of 3 above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04450396A JP3605928B2 (en) | 1996-03-01 | 1996-03-01 | Seismic device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04450396A JP3605928B2 (en) | 1996-03-01 | 1996-03-01 | Seismic device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09236483A true JPH09236483A (en) | 1997-09-09 |
JP3605928B2 JP3605928B2 (en) | 2004-12-22 |
Family
ID=12693363
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04450396A Expired - Fee Related JP3605928B2 (en) | 1996-03-01 | 1996-03-01 | Seismic device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3605928B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012247124A (en) * | 2011-05-27 | 2012-12-13 | Harman Co Ltd | Vibration sensing heater |
JP2015145780A (en) * | 2015-03-30 | 2015-08-13 | 株式会社ハーマン | Earthquake-sensitive heating device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53138382A (en) * | 1977-05-09 | 1978-12-02 | Oki Electric Ind Co Ltd | Vibration detector |
JPS5582925A (en) * | 1978-12-20 | 1980-06-23 | Toshiba Corp | Ultrasonic flow meter |
JPH0389124A (en) * | 1989-08-31 | 1991-04-15 | Omron Corp | Seismic sensor |
JPH0440325A (en) * | 1990-06-05 | 1992-02-10 | Maintenance:Kk | Vibration measuring method and vibration meter |
-
1996
- 1996-03-01 JP JP04450396A patent/JP3605928B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53138382A (en) * | 1977-05-09 | 1978-12-02 | Oki Electric Ind Co Ltd | Vibration detector |
JPS5582925A (en) * | 1978-12-20 | 1980-06-23 | Toshiba Corp | Ultrasonic flow meter |
JPH0389124A (en) * | 1989-08-31 | 1991-04-15 | Omron Corp | Seismic sensor |
JPH0440325A (en) * | 1990-06-05 | 1992-02-10 | Maintenance:Kk | Vibration measuring method and vibration meter |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012247124A (en) * | 2011-05-27 | 2012-12-13 | Harman Co Ltd | Vibration sensing heater |
JP2015145780A (en) * | 2015-03-30 | 2015-08-13 | 株式会社ハーマン | Earthquake-sensitive heating device |
Also Published As
Publication number | Publication date |
---|---|
JP3605928B2 (en) | 2004-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11543286B2 (en) | Distributed acoustic sensing based acoustic wave speed scanning and mapping of civil infrastructures | |
US20160213283A1 (en) | Length measuring device | |
RU2447280C1 (en) | Method to detect fluid level in oil well | |
JPS6219695B2 (en) | ||
CN111157065A (en) | Acoustic time delay measuring method in ultrasonic signal transmission loop of gas ultrasonic flowmeter | |
JPH11125688A (en) | Reactor vibration monitor | |
US6601447B1 (en) | Acoustic anemometer for simultaneous measurement of three fluid flow vector components | |
US6832516B1 (en) | Integral ultrasonic liquid level continuous transmitter with independent high-level discrete alarm point level | |
US6598485B1 (en) | Method and device for evaluating quality of concrete structures | |
US4453238A (en) | Apparatus and method for determining the phase sensitivity of hydrophones | |
US5031451A (en) | Fluid level monitor | |
JPH09236483A (en) | Seismometer | |
JP2581929B2 (en) | Measuring device for concrete thickness and intrinsic crack depth | |
KR20210096124A (en) | rain sensor | |
JP2001004606A (en) | Measuring method for shear wave velocity | |
CN108802195B (en) | Test device and method for measuring transverse wave velocity of core sample | |
JPH0767857A (en) | Ultrasonic person's height measuring instrument | |
JP2952297B2 (en) | Ground measurement analysis judgment system | |
JP3156012B2 (en) | Concrete structure thickness measurement method | |
JP2651269B2 (en) | Ultrasonic thickness gauge | |
JP2650935B2 (en) | Partial discharge location method | |
SU993131A1 (en) | Device for testing accelerometer in impact mode | |
RU210598U1 (en) | ACOUSTIC ANEMOMETER | |
JPH08136321A (en) | Ultrasonic distance measuring instrument | |
JP3529722B2 (en) | Concrete structure quality testing method and equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040513 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040601 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040802 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040914 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040927 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081015 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091015 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091015 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101015 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111015 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |