JP2952245B2 - Tool steel for hot working - Google Patents

Tool steel for hot working

Info

Publication number
JP2952245B2
JP2952245B2 JP20912398A JP20912398A JP2952245B2 JP 2952245 B2 JP2952245 B2 JP 2952245B2 JP 20912398 A JP20912398 A JP 20912398A JP 20912398 A JP20912398 A JP 20912398A JP 2952245 B2 JP2952245 B2 JP 2952245B2
Authority
JP
Japan
Prior art keywords
toughness
steel
less
toughness value
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20912398A
Other languages
Japanese (ja)
Other versions
JPH11106868A (en
Inventor
民也 岸田
充 鈴木
利夫 奥野
敦輔 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16567676&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2952245(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP20912398A priority Critical patent/JP2952245B2/en
Publication of JPH11106868A publication Critical patent/JPH11106868A/en
Application granted granted Critical
Publication of JP2952245B2 publication Critical patent/JP2952245B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、熱間鍛造用型、ア
ルミダイカスト型、アルミ押出ダイスなど各種熱間金型
用途に使用して、過酷な熱的、機械的応力の作用に対し
て、割れを生ぜず、長寿命を得ることができ、また割れ
が生じにくいため、硬さを上げて使用することができ、
この結果として優れた耐摩耗寿命を得ることを可能にす
る靭性、延性のレベルが高く、かつ方向性の少ない等方
性を備えた熱間加工用工具鋼鋼材に関するものである。 【0002】 【従来の技術】近年の型の形状複雑化、大型化、成形効
率をあげるための型面からの冷却の過酷化、鍛造精度を
あげるための型のシャープコーナー化は型の早期大割れ
の問題を提起し、また鍛造精度の高度化は型面の僅かな
ダレ、摩耗の段階で製品寸法、形状が不良となり、金型
が早期に寿命に達する事例が増加してきた。この場合、
早期へたり、摩耗を防止するため硬さを上げることが検
討されたが早期大割れをまねく結果となっている。 【0003】従来の熱間加工用工具鋼鋼材の場合、素材
の熱間加工時のファイバーに沿ってクラックが発生した
り進展、破壊する場合の靭性値即ち鍛伸方向と直角方向
の靭性値(T方向靭性値)が、ファイバーに対し直角方
向にクラックが進展、破壊する場合の靭性値即ち鍛伸方
向の靭性値(L方向靭性値)に対して低く、(例えばT
方向靭性値/L方向靭性値=0.6など)従ってファイ
バー方向に沿って破壊が進行しやすく、素材のT方向の
靭性、延性改善が寿命向上のための最重要課題であっ
た。 【0004】 【発明が解決しようとする課題】従来の鋼材の場合、鍛
伸方向に平行な方向の靭性値(L方向靭性値)に対し、
直角方向のサンプルによる靭、延性(T方向靭性値)の
レベルは上記のようにたとえば平行方向サンプルの場合
の60%と明らかに低いのが通例であり、金型の耐割れ
寿命は、この靭、延性の低い直角方向の靭、延性のレベ
ルによって左右される場合が多かった。その差の原因と
しては、鍛伸方向に長く伸びた非金属介在物や密集した
介在物の部分に剥離状破壊を生じやすく、このためファ
イバー方向に沿ってクラックが発生、進展しやすくなる
こと、また鍛伸方向に伸びた縞状偏析の成分偏析濃度が
高く、また縞幅が広く、ファイバー方向に強い方向性を
持って配列している場合、縞状偏析に沿ってクラックが
直線的に進みやすく、これが直角方向の靭性を低下させ
ている主因であった。 【0005】 【課題を解決するための手段】本発明ではとくに鍛伸方
向にのびやすい硫化物系介在物の量と大きさを極限まで
減じ、また珪酸塩系、酸化物系介在物とも極少量に減ら
した極清浄鋼を効率よく得、さらに適切な拡散ソーキン
グによるミクロ偏析の低減、素延係数の適切な管理をし
た熱間加工による非金属介在物の形状のコントロール等
を組み合わせることにより、前述した形態による破壊の
傾向を減じ、鍛伸方向および直角方向の靭性レベルをと
もに高め、かつ直角方向の靭性値を平行方向のそれと同
等ないしこれに準ずるレベル(等方性)まで高めようと
するものであり、また溶解、造塊方法については真空再
溶解や消耗電極式再溶解などのコストアップや能率低下
をまねく特殊な方法によらず電気炉精錬−炉外精錬等の
大量生産方式の中で解決を行なったものである。 【0006】即ち本発明の第1発明は、重量比でC:
0.10〜0.70%、Si:0.10〜2.00%、
Mn≦2.00%、Cr≦7.00%、WおよびMoの
単独または複合で(1/2W+Mo):0.20〜1
2.00%、V≦3.00%、さらにS:0.005%
未満、Oが30ppm未満であり、残部が実質的にFe
からなる組成を有し、鋼中に存在する非金属介在物の清
浄度がJIS dA60×400≦0.010%、d
(B+C)60×400≦0.020%であることを特
徴とする熱間加工用工具鋼である。上記第1発明の鋼
は、鍛伸方向の靭性値(L方向靭性値)とその直角方向
の靭性値(T方向靭性値)の比であるT方向靭性値/L
方向靭性値が0.70を越える等方性であるのがよい。
また、上記第1発明の鋼の範囲は、Sが0.003%未
満、非金属介在物の清浄度がJIS dA60×400
≦0.005%、T方向靭性値/L方向靭性値が0.8
5以上の等方性とするのがよい。 【0007】さらに第2発明は、重量比でC:0.10
〜0.70%、Si:0.10〜2.00%、Mn≦
2.00%、Cr≦7.00%、WおよびMoの単独ま
たは複合で(1/2W+Mo):0.20〜12.00
%、V≦3.00%を含有し、更にNi≦4.00%、
Co≦6.50%、N≦0.20%の一種以上、さらに
S:0.005%未満、Oが30ppm未満であり、残
部が実質的にFeからなる組成を有し、鋼中に存在する
非金属介在物の清浄度がJIS dA60×400≦
0.010%、d(B+C)60×400≦0.020
%であることを特徴とする熱間加工用工具鋼である。上
記第2発明の鋼は、鍛伸方向の靭性値(L方向靭性値)
とその直角方向の靭性値(T方向靭性値)の比であるT
方向靭性値/L方向靭性値が0.70を越える等方性で
あるのがよい。また、上記第2発明の範囲は、Sが0.
003%未満、非金属介在物の清浄度がJIS dA6
0×400≦0.005%、T方向靭性値/L方向靭性
値が0.85以上の等方性とするのがよい。 【0008】上記第1発明の鋼および第2発明の鋼の組
成に、特殊炭化物形成元素Nb、Tiなどを単独あるい
は複合で0.50%以下、金属間化合物形成による析出
強化付与元素Cu、B、Al、Beなどを単独あるいは
複合で3.00%以下等各種添加元素を含有さることが
できる。 【0009】 【発明の実施の形態】本発明の熱間加工用工具鋼として
必要な各種元素の役割を次に述べる。Cは焼入れ加熱時
に基地に固溶して必要な焼入れ硬さを与え、また焼もど
し時特殊炭化物形成元素との間に特殊炭化物を形成、析
出し、焼もどしにおける軟化抵抗と高温強度を与え、ま
た残留炭化物を形成して高温での耐摩耗性を付与し、焼
入れ加熱時の結晶粒の粗大化を防ぐ作用を有し、不可欠
の重要な元素である。多すぎると炭化物量が過度に増加
し、熱間工具としての必要な靭性が保持できず、また高
温強度の低下もまねくので0.70%以下とし、低すぎ
ると上記添加の効果が得られないので0.10%以上と
する。 【0010】Siは製造上脱酸元素としての使用が一般
に必要であり、また用途に応じ耐酸化性や500〜60
0℃以下での焼もどし軟化抵抗を高め、またA変態点
を上げることのために目的、用途により添加量は調整さ
れる。多すぎると靭性低下をまねき、また熱電導性を過
度に低下させるので0.10〜2.00%とする。Mn
は基地に固溶して焼入れ性を高める効果が大きい。Mn
は上記添加効果を得るために目的、用途により添加量を
調整する。多すぎると焼なまし硬さを過度に高くし、被
切削性を低下させ、またA変態点を過度に低くするの
で2.00%以下とする。 【0011】Crは工具として必要とされる焼入れ性を
与えるための最も重要な元素である。また、耐酸化性や
変態点の上昇、また残留炭化物を形成して焼入れ加
熱時の結晶粒の粗大化を抑制し、また耐摩耗性を高め、
焼もどし時特殊炭化物を析出して昇温時の軟化抵抗を改
善し、高温強度を高めるなどの効果を与えるために添加
される。多すぎるとCr炭化物を過度に形成しかえって
高温強度の低下をもたらすので7.00%以下とする。
なお、無添加の場合もあるが、上記添加の効果を得るた
めに一般には0.70%以上含有させるとよい。 【0012】WおよびMoは特殊炭化物を形成するもの
で、残留炭化物形成により焼入れ加熱時の組織粗大化を
防止し、また焼もどし時微細な特殊炭化物を析出し、焼
もどし軟化抵抗と高温強度を高めるための最も重要な添
加元素である。またA変態点を高める効果を有する。
Wはとくに高温強度、耐摩耗性を高める効果が大きく、
一方Moは靭性の点でWの場合より有利である。多すぎ
ると粗大な炭化物を形成し靭性の過度の低下をまねくの
でWおよびMoの単独または複合(1/2W+Mo)で
12.00%以下とし、低すぎると上記添加の効果が不
足するので0.20%以上とする。 【0013】Vは強力な炭化物形成元素であり、残留炭
化物を形成して結晶粒微細化の効果が大きく、また高温
での耐摩耗性向上を与える。また焼もどし時、微細な炭
化物を基地中に析出し、W、Moとの共同添加により6
00〜650℃以上の高温域での強度を高める効果が大
きく、またA変態点を高める効果を与える。Vは上記
効果を得るために添加されるが、多すぎると粗大な炭化
物を形成し、靭性の低下をまねくので3.00%以下と
する。なお無添加の場合もあるが、上記添加の効果を得
るために一般的には0.05%以上含有させるとよい。 【0014】Niは基地に固溶して靭性を高め、また焼
入性を高めるために目的、用途により添加される。多す
ぎると焼なまし硬さを過度に高くし、被切削性を低下さ
せ、またA変態点の過度の低下をまねくので4.00
%以下とする。Coは基地に固溶して高温強度を高める
作用を有する。また焼入加熱時のオーステナイト中への
炭化物の固溶限を高め、焼もどし時の特殊炭化物の析出
量を増加させ、また昇温時の析出炭化物の凝集抵抗を高
め、この面からも高温強度特性を改善する効果を与え
る。また工具の使用時の昇温により表面に緻密な密着性
の酸化被膜を形成させ、高温での耐摩耗性、耐焼付性を
高める効果を与える。Coは上記目的のために目的、用
途により添加されるが、多すぎると靭性を低下させるの
で6.50%以下とする。 【0015】Nは基地や炭化物中に固溶して結晶粒を微
細化し、靭性を高めるために、またオーステナイトフォ
ーマーとして低Cの場合にも焼入加熱時のフェライト残
存を防ぎ靭性にすぐれた合金組成の組合せを可能とする
ものである。Nは上記効果を得るために目的、用途によ
り添加されるが、Crなど熱間工具鋼の合金組成の範囲
内で添加可能な限界量が存在するため0.20%以下と
する。 【0016】Nb、Tiは強力な炭化物形成元素で、結
晶粒の微細化や焼もどし時の凝集抵抗のとくに大きい微
細炭化物の析出により650℃以上の高温域における軟
化抵抗や高温強度を高める効果がある。上記効果を得る
ため目的、用途により添加される。多すぎると粗大な固
溶しにくい炭化物を形成し靭性の低下をまねくので、複
合あるいは単独添加で0.5%以下とする。Cu、B、
Al、Beは金属間化合物を形成し析出効果をもたら
し、昇温時の軟化抵抗、高温強度を改善する効果をもた
らす。多すぎると靭性を低下させるので、単独あるいは
複合で3.00%以下とする。 【0017】 【実施例】表1にJISのSKD61相当組成の本発明
鋼、比較鋼および従来鋼の組成と非金属介在物の清浄度
を示す。図1にSKD61組成の実体金型用鋼材におけ
るS量とJIS法による非金属介在物清浄度、鍛伸方向
(L方向)とその直角方向(T方向)の平面歪み破壊靭
性値KICとの関係についての実験例を示す。この場合
の鍛練成形比は15(素延係数は6.5)である。S量
0.014から0.006%までの減少に対し、硫化物
系介在物の量、大きさは漸減し、それと共にKICは漸
増するが、S量が0.005%未満を境にとくにS量が
0.003%未満でT方向のKIC値は急増し、L、T
方向による差が急減することが認められる。 【0018】S量の減少によりT方向TPによる靭性値
が増大し、L方向のそれに近付く方向に向うことは従来
から指摘されていたが、本発明者らの詳細な研究究明の
結果、熱間加工用工具鋼においてS量が0.005%未
満とくに0.003%付近にその効果が著しく急増する
特殊点があり、これ以下のS量で急激にT方向の靭性値
が増加することが新たに見出され、各種熱間金型として
予想をはるかに越える優れた特性が得られたものであ
る。 【0019】 【表1】 【0020】図2に熱処理(焼入れ、焼もどし)硬さH
RC45のSKD61相当鋼材でのS:0.002%の
本発明鋼およびS:0.014%の従来鋼について素延
係数0〜20と、L、T方向のKIC値の関係を示す。
この場合鍛伸に移る前に据込みを入れており、トータル
鍛練成形比は0〜50となっている。本結果ではS:
0.014%の従来鋼は素延係数2以上でT方向試料の
靭性値の増加がみられ、素延係数4〜6付近で靭性値は
最大となるが、L方向の場合のKIC値の約6割(T方
向靭性値/L方向靭性値の比が約0.6)の値にしかな
らず、素延係数10前後以上では減少の傾向を示す。 【0021】これに対し、S:0.002%の本発明鋼
のもののT方向試料の靭性値は素延係数2付近で従来材
の場合よりも大きく増大し、4〜10付近で最大とり、
その値はS:0.014%の従来鋼のT方向は勿論のこ
とL方向よりも明らかに高く、本発明鋼のL方向のKI
C値の9割以上(T方向靭性値/L方向靭性値の比が
0.85以上)のKIC値を示す。かつ素延係数の増加
にともなうT方向試料のKIC値の減少が従来材と比較
しても生じにくく、素延係数20前後でもT方向TPの
KIC値の低下は僅少である。すなわち鍛練成形比とし
ては、1.5以上(ただし素延係数1〜20)、望まし
くは4以上(ただし素延係数4〜10)である。 【0022】図3に熱処理(焼入れ、焼もどし)硬さH
RC45でS:0.002%のSKD61組成の本発明
鋼材につき素延係数5.0、鍛練成形比12.0の場合
の鋼塊ソーキングおよび鍛練成形比2.3(素延係数
1)の段階で鋼片ソーキング処理を施した場合の鍛造仕
上後のT方向のシャルピー衝撃値の向上効果を示す。こ
の場合のソーキング温度は1200℃以上である。ソー
キング処理により凝固時のミクロ偏析を低減させること
により、T方向シャルピー衝撃値/L方向シャルピー衝
撃値の比はソーキングなしの場合0.88であるのに対
し、鋼塊ソーキングを施したものは0.90、鋼片ソー
キングを施したものは0.92でソーキングを施すこと
によりシャルピー衝撃値が向上していることが認められ
た。 【0023】本発明鋼を得るためには電気炉中にてあら
かじめ酸化精錬→還元精錬まで進めて溶鋼中の〔O〕量
を100ppm以下としたのち炉外精錬により脱硫、脱
酸を効率的に進めることが有効である。この際スラグ−
溶鋼反応による脱硫を効率よく進ませるため電磁攪拌方
式の炉外精錬により脱硫を短期間にS:0.005%未
満の極低レベルまで進ませること、この際同時に下方か
らのAr吹込みにより溶鋼中の〔O〕量を30ppm未
満まで一層低減させ、脱硫効果を一層加速させることな
どがより有効である。前述の表1に示すように、本発明
鋼はSが0.005%未満、Oが30ppm未満であ
り、望ましくはSが0.003%未満、Oが30ppm
未満であり、従来鋼に比して極めて少ない。また鋼中に
存在する非金属介在物の清浄度としては、JIS dA
60×400≦0.010%、d(B+C)60×40
0≦0.020%であり、望ましくはdA60×400
≦0.005%で従来鋼に比して硫化物系介在物や酸化
物系介在物の量および大きさが極めて減じられている。 【0024】図4に熱処理(焼入れ、焼もどし)硬さH
RC44でS:0.002%のSKD61組成の本発明
鋼材およびS:0.014%のSKD61組成の従来鋼
材のT方向試験片による衝撃遷移特性を示す。試験片は
JIS Vノッチシャルピー試験片で20〜300℃で
試験を行ない、破断の吸収エネルギーの変化を調べた。
素材の鍛練成形比は12.5、素延係数は5.0であ
る。S:0.014%の従来鋼材の場合50%脆性破面
遷移温度は50〜100℃で、試験温度に対する吸収エ
ネルギーの増加がみられるが、100℃を越える温度域
ではその増加の度合いが小さい。これに対し、本発明鋼
材の場合50%脆性破面遷移温度は同様に50〜100
℃であるが、試験温度の上昇に対する吸収エネルギーの
増加度は明らかに大きい。このために本発明鋼材を用い
た金型の場合、型予熱による衝撃吸収エネルギーを大き
くすることができ、割れ低減効果が従来鋼材の場合に対
し、際立って大きいことが認められる。 【0025】表2に、0.52%C-0.21%Si-0.85%Mn-1.
65%Ni-1.03%Cr-0.40%Mo-0.16%V-balFeのSK
T4、0.40%C-0.22%Si-0.34%Mn-4.36%Cr-4.35%
W-0.35%Mo-1.98%V-4.30%Co-balFeのSKD8、
0.19%C-0.25%Si-0.60%Mn-3.32%Ni-3.42%Mo-ba
lFeの3Ni−3Mo系、0.31%C-0.33%Si-0.65%M
n-10.25%Cr-1.58%Mo-0.97%V-balFeの10Cr
−Mo−V−N系の数種の熱間工具鋼について、本発明
鋼材と従来鋼材のL方向およびT方向の平面歪み破壊靭
性値並びにT方向靭性値とL方向靭性値の比を示す。従
来鋼材の場合T方向の靭性が低く、T方向靭性値/L方
向靭性値の比が0.70未満であるのに対し、本発明鋼
材のT方向の靭性が際立ってすぐれており、かつT方向
靭性値/L方向靭性値の比が0.70をはるかに越える
0.85以上の優れた等方性を備えていることがわか
る。 【0026】 【表2】 【0027】また表3に本発明鋼材および従来材を熱間
プレス鍛造型に使用した場合の型寿命の比較例を示す。 【0028】 【表3】 【0029】本発明鋼材の適用によりクラックの発生が
遅く、進みにくくなり、かつ大割れが生じないので型寿
命が従来材の2倍に向上し、安定化がはかられ実用性能
が大幅に改善されることが明らかとなった。またSKD
61組成の本発明鋼材を用いたアルミダイカスト金型お
よびSKT4組成の本発明鋼材を用いた熱間ハンマー金
型においても、従来材を用いた場合の2〜3倍の長寿命
が得られている。 【0030】 【発明の効果】以上示したように、本発明の熱間加工用
工具鋼は、靭性、延性のレベルが高く、かつT方向とL
方向の特性の差が少ない等方性を備えているために、適
用した各種熱間金型において、早期大割れを生じず、ク
ラックの発生が遅く、進みにくいので型の長寿命並びに
安定化が達成できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot forging die, an aluminum die casting die, an aluminum extrusion die and the like, which is used for various kinds of hot die applications. , It does not cause cracks due to the action of mechanical stress, it can obtain a long life, and it is hard to crack, so it can be used with increased hardness,
The present invention relates to a tool steel material for hot working having a high level of toughness and ductility, which is capable of obtaining an excellent wear life, and has isotropy with little orientation. 2. Description of the Related Art In recent years, the shape of a mold has become complicated and large, the cooling from the mold surface has been severe in order to increase molding efficiency, and the sharp corner of the mold has been increased early in order to increase the forging accuracy. The problem of cracking has been raised, and the improvement of forging accuracy has led to an increase in the number of cases in which the mold reaches the end of its service life at an early stage because the product dimensions and shape become poor at the stage of slight sagging and wear of the mold surface. in this case,
Consideration was given to increasing hardness to prevent early wear and abrasion, but this resulted in early large cracks. [0003] In the case of a conventional tool steel for hot working, a toughness value in the case where cracks are generated, propagate, or break along a fiber during hot working of the material, that is, a toughness value in a direction perpendicular to the forging direction ( (T-direction toughness value) is lower than the toughness value in the case where a crack propagates and breaks in a direction perpendicular to the fiber, that is, the toughness value in the forging direction (L-direction toughness value).
(Toughness value in direction / Ltoughness value in L direction = 0.6, etc.) Therefore, fracture is likely to progress along the fiber direction, and improvement of toughness and ductility in the T direction of the material has been the most important issue for improving the life. [0004] In the case of a conventional steel material, the toughness value in the direction parallel to the forging direction (L direction toughness value) is:
As described above, the level of toughness and ductility (T-direction toughness value) of the sample in the perpendicular direction is usually clearly lower, for example, 60% of that of the sample in the parallel direction, as described above. In many cases, the ductility was affected by the level of ductility and the ductility in the right angle direction. The cause of the difference is that non-metallic inclusions elongated in the forging direction and dense inclusions are liable to cause delamination failure, and therefore cracks are generated and propagated along the fiber direction, In addition, when the segregation concentration of the stripe-like segregation extending in the forging direction is high, the stripe width is wide, and the fibers are arranged with strong directionality in the fiber direction, the cracks proceed linearly along the stripe-like segregation. This was the main reason that the toughness in the perpendicular direction was reduced. In the present invention, the amount and size of sulfide-based inclusions, which are particularly easy to extend in the forging direction, are reduced to the utmost, and both silicate-based and oxide-based inclusions are extremely small. Efficiently obtain ultra-clean steel with reduced diameter, further reduce micro-segregation by appropriate diffusion soaking, control the shape of non-metallic inclusions by hot working with appropriate management of elongation coefficient, etc. To increase the toughness level in both the forging direction and the perpendicular direction, and to increase the toughness value in the perpendicular direction to a level equivalent to or similar to that in the parallel direction (isotropic). Regarding the melting and agglomeration methods, large quantities such as electric furnace refining-out-of-furnace refining etc. are used regardless of the special methods that increase the cost and reduce the efficiency such as vacuum remelting and consumable electrode type remelting. The solution was made in the production system. [0006] That is, the first invention of the present invention is a C:
0.10 to 0.70%, Si: 0.10 to 2.00%,
Mn ≦ 2.00%, Cr ≦ 7.00%, W or Mo alone or in combination (1 / 2W + Mo): 0.20 to 1
2.00%, V ≦ 3.00%, S: 0.005%
, O is less than 30 ppm, and the balance is substantially Fe
And the cleanliness of nonmetallic inclusions present in the steel is JIS dA60 × 400 ≦ 0.010%, d
(B + C) 60 × 400 ≦ 0.020% is a tool steel for hot working. The steel of the first invention has a T-direction toughness value / L, which is a ratio of a toughness value in the forging direction (L-direction toughness value) to a toughness value in a direction perpendicular thereto (T-direction toughness value).
It is preferable that the directional toughness is more than 0.70 and isotropic.
Further, in the range of the steel of the first invention, S is less than 0.003%, and cleanliness of nonmetallic inclusions is JIS dA60 × 400.
≦ 0.005%, T direction toughness value / L direction toughness value is 0.8
5 or more isotropic. Further, in the second invention, C: 0.10 by weight ratio.
0.70%, Si: 0.10-2.00%, Mn ≦
2.00%, Cr ≦ 7.00%, alone or in combination of W and Mo (1 / W + Mo): 0.20 to 12.00
%, V ≦ 3.00%, Ni ≦ 4.00%,
Co ≦ 6.50%, N ≦ 0.20% or more, furthermore, S: less than 0.005%, O is less than 30 ppm, the balance is substantially composed of Fe, and present in steel Cleanliness of non-metallic inclusions is JIS dA60 × 400 ≦
0.010%, d (B + C) 60 × 400 ≦ 0.020
% Of tool steel for hot working. The steel of the second invention has a toughness value in the forging direction (L-direction toughness value).
Which is the ratio of the toughness value in the direction perpendicular to the direction (T direction toughness value)
It is preferable that the directional toughness value / L-direction toughness value is more than 0.70 and isotropic. Further, in the scope of the second invention, S is equal to 0.
Less than 003%, cleanliness of non-metallic inclusions is JIS dA6
0 × 400 ≦ 0.005%, and it is preferable that the T-direction toughness value / L-direction toughness value be 0.85 or more isotropic. The compositions of the steel of the first invention and the steel of the second invention contain 0.50% or less of a special carbide-forming element Nb, Ti or the like alone or in combination, and precipitation-enhancing elements Cu, B by intermetallic compound formation. , Al, Be, etc., alone or in combination, may contain various additive elements such as 3.00% or less. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The role of various elements necessary for the hot working tool steel of the present invention will be described below. C forms a solid solution in the matrix at the time of quenching and heating to provide a necessary quenching hardness, and at the time of tempering, forms and precipitates a special carbide with a special carbide-forming element, giving softening resistance and high-temperature strength in tempering, In addition, it has an effect of forming residual carbides to impart wear resistance at high temperatures and preventing crystal grains from being coarsened during quenching and heating, and is an indispensable important element. If it is too large, the amount of carbides excessively increases, the required toughness as a hot tool cannot be maintained, and the high-temperature strength is reduced, so that the content is set to 0.70% or less. If it is too low, the effect of the above addition cannot be obtained. Therefore, it is set to 0.10% or more. [0010] Si is generally required to be used as a deoxidizing element in production, and has an oxidation resistance or 500 to 60 depending on the use.
0 ℃ enhanced temper softening resistance below and amount object, the application for increasing the A 1 transformation point is adjusted. If the content is too large, the toughness is reduced and the thermal conductivity is excessively reduced. Mn
Has a great effect of improving the hardenability by forming a solid solution in the matrix. Mn
In order to obtain the above effect, the amount of addition is adjusted depending on the purpose and application. Too much and too high annealed hardness, it lowers the machinability, also to 2.00% or less because excessively lower the A 1 transformation point. [0011] Cr is the most important element for providing the hardenability required as a tool. Also, increase in oxidation resistance and the A 1 transformation point, also to form a residual carbides suppressing grain coarsening during heating for quenching, also enhance the abrasion resistance,
It is added for the purpose of precipitating a special carbide during tempering to improve the softening resistance at the time of raising the temperature and giving an effect such as increasing the high-temperature strength. If the content is too large, Cr carbides are excessively formed and the high-temperature strength is reduced, so the content is set to 7.00% or less.
In some cases, it is not added, but in order to obtain the effect of the above addition, it is generally preferable to contain 0.70% or more. W and Mo form special carbides. The formation of residual carbides prevents the coarsening of the structure during quenching and heating. Precipitates fine special carbides during tempering to reduce tempering softening resistance and high-temperature strength. It is the most important additive element to increase. Also it has the effect of increasing the A 1 transformation point.
W is particularly effective in increasing high temperature strength and wear resistance.
On the other hand, Mo is more advantageous than W in terms of toughness. If the content is too large, coarse carbides are formed and the toughness is excessively reduced, so that the content of W and Mo alone or in combination (1 / 2W + Mo) is set to 12.00% or less. If the content is too low, the effect of the above addition is insufficient. 20% or more. V is a strong carbide-forming element, forms a residual carbide, has a large effect of refining the crystal grains, and gives an improvement in wear resistance at high temperatures. At the time of tempering, fine carbides are precipitated in the matrix, and co-added with W and Mo.
Effect of increasing the strength at from 00 to 650 ° C. or higher high-temperature range is large and gives an effect of enhancing A 1 transformation point. V is added to obtain the above effect, but if it is too much, coarse carbides are formed and the toughness is reduced. In some cases, it is not added, but in order to obtain the effect of the above addition, it is generally preferable to contain 0.05% or more. Ni is added depending on the purpose and application in order to increase the toughness by solid solution in the matrix and to enhance the hardenability. Too much and too high annealed hardness, lowers the machinability, also since lead to excessive decrease of A 1 transformation point 4.00
% Or less. Co has a function of increasing the high-temperature strength by forming a solid solution in the matrix. In addition, the solid solubility limit of carbides in austenite during quenching and heating is increased, the amount of special carbides precipitated during tempering is increased, and the agglomeration resistance of precipitated carbides during heating is increased. It has the effect of improving the characteristics. In addition, by raising the temperature during use of the tool, a dense adhesive oxide film is formed on the surface, which has the effect of increasing wear resistance and seizure resistance at high temperatures. Co is added depending on the purpose and application for the above purpose, but if too much, the toughness is reduced, so Co is set to 6.50% or less. N forms a solid solution in the matrix and carbides to refine the crystal grains and enhance toughness. Also, even in the case of low C as an austenite former, ferrite remains during quenching heating and is excellent in toughness. This enables a combination of alloy compositions. N is added depending on the purpose and application in order to obtain the above effects, but is limited to 0.20% or less because there is a limit amount that can be added within the range of the alloy composition of the hot work tool steel such as Cr. Nb and Ti are strong carbide-forming elements, and have the effect of increasing softening resistance and high-temperature strength in a high-temperature region of 650 ° C. or more by precipitation of fine carbides, which have particularly large agglomeration resistance during grain refinement and tempering. is there. It is added depending on the purpose and application to obtain the above effects. If the content is too large, coarse carbides which hardly form a solid solution are formed, and the toughness is reduced. Cu, B,
Al and Be form an intermetallic compound and have a precipitation effect, and have an effect of improving softening resistance at the time of temperature rise and high-temperature strength. If the content is too large, the toughness is reduced. EXAMPLES Table 1 shows the compositions of the steels of the present invention, comparative steels and conventional steels having a composition equivalent to SKD61 of JIS and the cleanliness of nonmetallic inclusions. FIG. 1 shows the relationship between the S content and the cleanliness of nonmetallic inclusions according to the JIS method, the plane strain fracture toughness value KIC in the forging direction (L direction) and the direction perpendicular to the direction (T direction) in the SKD61 composition steel material for molds. An experimental example will be described. The forging ratio in this case is 15 (the elongation coefficient is 6.5). While the S content decreases from 0.014 to 0.006%, the amount and size of the sulfide-based inclusions gradually decrease, and the KIC gradually increases with the decrease. However, particularly when the S content is less than 0.005%, When the S amount is less than 0.003%, the KIC value in the T direction sharply increases, and L, T
It can be seen that the difference between the directions decreases sharply. It has been conventionally pointed out that the toughness value in the T direction TP increases due to the decrease in the S content, and that the toughness value approaches the direction in the L direction. However, as a result of detailed research and investigation by the present inventors, the hot work In machining tool steel, there is a special point where the effect increases remarkably when the S content is less than 0.005%, especially around 0.003%, and the toughness value in the T direction sharply increases when the S content is less than this. And obtained excellent properties far beyond expectations as various types of hot dies. [Table 1] FIG. 2 shows the heat treatment (quenching, tempering) hardness H
The relationship between S: 0.002% of the steel of the present invention and S: 0.014% of the conventional steel of SKD61 equivalent steel of RC45 of SKD61 and the KIC values in the L and T directions are shown.
In this case, upsetting is performed before moving to forging, and the total forging ratio is 0 to 50. In this result, S:
In the conventional steel of 0.014%, the toughness value of the specimen in the T direction increases when the elongation coefficient is 2 or more, and the toughness value becomes maximum around the elongation coefficient of 4 to 6, but the KIC value in the L direction is larger. It is only about 60% (the ratio of T-direction toughness value / L-direction toughness value is about 0.6), and tends to decrease when the elongation coefficient is around 10 or more. On the other hand, the toughness value of the sample in the T direction of the steel of the present invention having S: 0.002% increases greatly near the elongation coefficient of 2 as compared with the case of the conventional material, and reaches a maximum around 4 to 10;
The value is clearly higher than the L direction as well as the T direction of the conventional steel of S: 0.014%.
The KIC value is 90% or more of the C value (the ratio of T direction toughness value / L direction toughness value is 0.85 or more). In addition, the decrease in the KIC value of the sample in the T direction due to the increase in the elongation coefficient is unlikely to occur even when compared with the conventional material, and the decrease in the KIC value in the T direction TP is small even at around the elongation coefficient of 20. That is, the forging ratio is 1.5 or more (however, the elongation coefficient is 1 to 20), preferably 4 or more (however, the elongation coefficient is 4 to 10). FIG. 3 shows the heat treatment (quenching, tempering) hardness H
Ingot of steel of the present invention having an SKD61 composition of S: 0.002% with RC45, a stage of soaking and a forging forming ratio of 2.3 (forging factor 1) when the forging ratio is 5.0 and the forging ratio is 12.0. 5 shows the effect of improving the Charpy impact value in the T direction after the forging finish when the billet soaking treatment is performed. The soaking temperature in this case is 1200 ° C. or higher. By reducing micro-segregation during solidification by soaking treatment, the ratio of the Charpy impact value in the T direction / Charpy impact value in the L direction is 0.88 without soaking, whereas the ratio of the steel ingot soaked is 0. It was recognized that the Charpy impact value was improved by applying soaking at 0.92 to that obtained by soaking with a slab of 0.92. In order to obtain the steel of the present invention, the oxidation refining and the reduction refining are advanced in advance in an electric furnace to reduce the amount of [O] in the molten steel to 100 ppm or less. It is effective to proceed. At this time, slag
In order to efficiently advance desulfurization by molten steel reaction, desulfurization is advanced to an extremely low level of S: less than 0.005% in a short period of time by electromagnetic refining external furnace refining, and at the same time, molten steel is injected by injecting Ar from below. It is more effective to further reduce the amount of [O] therein to less than 30 ppm and further accelerate the desulfurization effect. As shown in Table 1 above, in the steel of the present invention, S is less than 0.005% and O is less than 30 ppm, desirably, S is less than 0.003% and O is 30 ppm.
Less than the conventional steel. The cleanliness of non-metallic inclusions in steel is measured in accordance with JIS dA
60 × 400 ≦ 0.010%, d (B + C) 60 × 40
0 ≦ 0.020%, desirably dA60 × 400
At ≦ 0.005%, the amount and size of sulfide-based inclusions and oxide-based inclusions are extremely reduced as compared with conventional steel. FIG. 4 shows a heat treatment (quenching, tempering) hardness H
The RC44 shows the impact transition characteristics of the steel material of the present invention having a composition of SKD61 of S: 0.002% and the conventional steel material of a composition of SKD61 of 0.014% by S in a T-direction test piece. The test piece was a JIS V notch Charpy test piece, which was tested at 20 to 300 ° C., and the change in absorbed energy at break was examined.
The forging ratio of the material is 12.5, and the elongation coefficient is 5.0. In the case of the conventional steel material of S: 0.014%, the 50% brittle fracture transition temperature is 50 to 100 ° C, and the absorbed energy is increased with respect to the test temperature. However, the degree of the increase is small in a temperature range exceeding 100 ° C. . On the other hand, in the case of the steel material of the present invention, the 50% brittle fracture transition temperature is similarly 50 to 100.
° C, but the increase in absorbed energy with increasing test temperature is clearly large. For this reason, in the case of the mold using the steel material of the present invention, the impact absorption energy due to the preheating of the mold can be increased, and it is recognized that the effect of reducing cracking is remarkably greater than that of the conventional steel material. Table 2 shows that 0.52% C-0.21% Si-0.85% Mn-1.
SK of 65% Ni-1.03% Cr-0.40% Mo-0.16% V-balFe
T4, 0.40% C-0.22% Si-0.34% Mn-4.36% Cr-4.35%
SKD8 of W-0.35% Mo-1.98% V-4.30% Co-balFe,
0.19% C-0.25% Si-0.60% Mn-3.32% Ni-3.42% Mo-ba
1Fe 3Ni-3Mo, 0.31% C-0.33% Si-0.65% M
n-10.25% Cr-1.58% Mo-0.97% V-balFe 10Cr
With respect to several types of -Mo-V-N type hot work tool steels, the plane strain fracture toughness values in the L direction and the T direction and the ratio of the T direction toughness value to the L direction toughness value of the steel material of the present invention and the conventional steel material are shown. In the case of the conventional steel material, the toughness in the T direction is low and the ratio of the toughness value in the T direction / the toughness value in the L direction is less than 0.70, whereas the toughness in the T direction of the steel material of the present invention is remarkably excellent. It can be seen that the material has excellent isotropy of 0.85 or more in which the ratio of the direction toughness value / L direction toughness value far exceeds 0.70. [Table 2] Table 3 shows a comparative example of die life when the steel material of the present invention and the conventional material are used for a hot press forging die. [Table 3] The use of the steel material of the present invention slows the occurrence of cracks, makes it difficult to progress, and does not cause large cracks, so that the mold life is twice as long as that of the conventional material, stabilization is achieved, and practical performance is greatly improved. It became clear that it would be. Also SKD
Also in the aluminum die casting mold using the steel material of the present invention having 61 composition and the hot hammer mold using the steel material of the present invention having the SKT4 composition, the life is 2-3 times longer than that of the conventional material. . As described above, the tool steel for hot working of the present invention has a high level of toughness and ductility, and has a low
Since it has the isotropy with little difference in directional characteristics, it does not cause early large cracks, slow crack generation, and does not easily progress in various applied hot dies, so the long life and stabilization of the mold can be achieved. Can be achieved.

【図面の簡単な説明】 【図1】S量と硫化物介在物面積率、鍛伸方向(L方
向)とその直角方向(T方向)の平面歪み破壊靭性値K
ICとの関係を示す図である。 【図2】素延係数とシャルピー衝撃値との関係を示す図
である。 【図3】シャルピー衝撃値に及ぼすソーキングの影響を
示す図である。 【図4】T方向における衝撃遷移特性を示す図である。
BRIEF DESCRIPTION OF THE DRAWINGS [FIG. 1] S content, sulfide inclusion area ratio, plane strain fracture toughness K in the forging direction (L direction) and its perpendicular direction (T direction)
FIG. 3 is a diagram illustrating a relationship with an IC. FIG. 2 is a diagram showing the relationship between the elongation coefficient and the Charpy impact value. FIG. 3 is a diagram showing the influence of soaking on the Charpy impact value. FIG. 4 is a diagram showing an impact transition characteristic in a T direction.

フロントページの続き (56)参考文献 特開 昭60−59053(JP,A) 特開 昭58−117863(JP,A) (58)調査した分野(Int.Cl.6,DB名) C22C 38/00 - 38/60 C21D 6/00 Continuation of the front page (56) References JP-A-60-59053 (JP, A) JP-A-58-117863 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C22C 38 / 00-38/60 C21D 6/00

Claims (1)

(57)【特許請求の範囲】 1.重量比でC:0.10〜0.70%、Si:0.1
0〜2.00%、Mn≦2.00%、Cr≦7.00
%、WおよびMoの単独または複合で(1/2W+M
o):0.20〜12.00%、V≦3.00%、さら
にS:0.005%未満、Oが30ppm未満であり、
残部が実質的にFeからなる組成を有し、鋼中に存在す
る非金属介在物の清浄度がJIS dA60×400≦
0.010%、d(B+C)60×400≦0.020
%であることを特徴とする熱間加工用工具鋼。 2.重量比でC:0.10〜0.70%、Si:0.1
0〜2.00%、Mn≦2.00%、Cr≦7.00
%、WおよびMoの単独または複合で(1/2W+M
o):0.20〜12.00%、V≦3.00%を含有
し、更にNi≦4.00%、Co≦6.50%、N≦
0.20%の一種以上、さらにS:0.005%未満、
Oが30ppm未満であり、残部が実質的にFeからな
る組成を有し、鋼中に存在する非金属介在物の清浄度が
JIS dA60×400≦0.010%、d(B+
C)60×400≦0.020%であることを特徴とす
る熱間加工用工具鋼。 3.ソーキング処理を施してなることを特徴とする請求
項1ないし2に記載の熱間加工用工具鋼。
(57) [Claims] C: 0.10 to 0.70% by weight, Si: 0.1
0-2.00%, Mn ≦ 2.00%, Cr ≦ 7.00
%, W and Mo alone or in combination (1 / 2W + M
o): 0.20 to 12.00%, V ≦ 3.00%, S: less than 0.005%, O is less than 30 ppm,
The balance has a composition substantially consisting of Fe, and the cleanliness of nonmetallic inclusions present in the steel is JIS dA60 × 400 ≦
0.010%, d (B + C) 60 × 400 ≦ 0.020
% Tool steel for hot working. 2. C: 0.10 to 0.70% by weight, Si: 0.1
0-2.00%, Mn ≦ 2.00%, Cr ≦ 7.00
%, W and Mo alone or in combination (1 / 2W + M
o): contains 0.20 to 12.00%, V ≦ 3.00%, further Ni ≦ 4.00%, Co ≦ 6.50%, N ≦
0.20% or more, S: less than 0.005%,
O is less than 30 ppm, the balance is substantially composed of Fe, and the cleanliness of the nonmetallic inclusions present in the steel is JIS dA60 × 400 ≦ 0.010%, d (B +
C) Tool steel for hot working, wherein 60 × 400 ≦ 0.020%. 3. The tool steel for hot working according to claim 1, wherein the tool steel is subjected to a soaking treatment.
JP20912398A 1998-07-24 1998-07-24 Tool steel for hot working Expired - Lifetime JP2952245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20912398A JP2952245B2 (en) 1998-07-24 1998-07-24 Tool steel for hot working

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20912398A JP2952245B2 (en) 1998-07-24 1998-07-24 Tool steel for hot working

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60205858A Division JPH0765141B2 (en) 1985-09-18 1985-09-18 Tool steel for hot working

Publications (2)

Publication Number Publication Date
JPH11106868A JPH11106868A (en) 1999-04-20
JP2952245B2 true JP2952245B2 (en) 1999-09-20

Family

ID=16567676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20912398A Expired - Lifetime JP2952245B2 (en) 1998-07-24 1998-07-24 Tool steel for hot working

Country Status (1)

Country Link
JP (1) JP2952245B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10563277B2 (en) 2018-03-28 2020-02-18 DOOSAN Heavy Industries Construction Co., LTD Hot-work mold steel for die casting and method of manufacturing the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3946684B2 (en) * 2003-10-02 2007-07-18 日本高周波鋼業株式会社 Hot work tool steel
JP2008202078A (en) * 2007-02-19 2008-09-04 Daido Steel Co Ltd Hot-working die steel
DE102009008285A1 (en) * 2009-02-10 2010-11-25 Gebr. Schmachtenberg Gmbh steel alloy
SE536596C2 (en) * 2011-03-04 2014-03-18 Uddeholms Ab Hot work steel and a process for producing a hot work steel
JP6528610B2 (en) * 2015-08-28 2019-06-12 大同特殊鋼株式会社 Mold steel and mold
JP7220750B1 (en) 2021-07-27 2023-02-10 山陽特殊製鋼株式会社 Hot work tool steel with excellent high-temperature strength and toughness
CN115747612B (en) * 2022-10-19 2024-02-09 成都先进金属材料产业技术研究院股份有限公司 Complex-phase H13 hot working die steel and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10563277B2 (en) 2018-03-28 2020-02-18 DOOSAN Heavy Industries Construction Co., LTD Hot-work mold steel for die casting and method of manufacturing the same
US10907229B2 (en) 2018-03-28 2021-02-02 DOOSAN Heavy Industries Construction Co., LTD Hot-work mold steel for die casting and method of manufacturing the same

Also Published As

Publication number Publication date
JPH11106868A (en) 1999-04-20

Similar Documents

Publication Publication Date Title
JPH0765141B2 (en) Tool steel for hot working
CN110366603B (en) Wear-resistant steel sheet and method for producing wear-resistant steel sheet
KR20220129609A (en) Steel for mining chain and its manufacturing method
JP5186809B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
WO2014154104A1 (en) Low alloy high toughness wear-resistant steel plate and manufacturing method thereof
JP4267260B2 (en) Steel with excellent machinability
WO2014154140A1 (en) Low-alloy high-performance wear-resistant steel plate and manufacturing method therefor
WO2014154106A1 (en) Low-alloy high-hardness wear-resistant steel plate and manufacturing method therefor
KR20150119117A (en) Abrasion resistant steel plate having low-temperature toughness, and manufacturing method therefor
JPH1129839A (en) Spring steel with high toughness
JP2007092155A (en) Wear resistant steel sheet having excellent low temperature toughness and its production method
JP5929963B2 (en) Hardening method of steel
JPH11335777A (en) Case hardening steel excellent in cold workability and low carburizing strain characteristics, and its production
JP5801529B2 (en) Non-heat treated steel for hot forging with high bending fatigue strength and small deformation due to repeated stress, and method for producing the same
WO2007123164A1 (en) Piston ring material for internal combustion engine
JP3485805B2 (en) Hot forged non-heat treated steel having high fatigue limit ratio and method for producing the same
JP2952245B2 (en) Tool steel for hot working
JP2012214833A (en) Cold tool steel
JP5217191B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
JP2005336553A (en) Hot tool steel
JP4600988B2 (en) High carbon steel plate with excellent machinability
JP3581028B2 (en) Hot work tool steel and high temperature members made of the hot work tool steel
JP2959319B2 (en) Hot forging die steel
JP3256184B2 (en) Method for producing ultra-free-cutting steel rods and parts, and ultra-free-cutting steel rods and parts using them
JP6673320B2 (en) Thick steel plate and method for manufacturing thick steel plate