JP2951429B2 - Manufacturing method of dispersion-shifted single-mode optical fiber preform - Google Patents
Manufacturing method of dispersion-shifted single-mode optical fiber preformInfo
- Publication number
- JP2951429B2 JP2951429B2 JP3098544A JP9854491A JP2951429B2 JP 2951429 B2 JP2951429 B2 JP 2951429B2 JP 3098544 A JP3098544 A JP 3098544A JP 9854491 A JP9854491 A JP 9854491A JP 2951429 B2 JP2951429 B2 JP 2951429B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- porous
- optical fiber
- core
- fiber preform
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01413—Reactant delivery systems
- C03B37/0142—Reactant deposition burners
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/50—Multiple burner arrangements
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、センタコア層の外周に
サイドコア層が設けられ、該サイドコア層の外周にクラ
ッド層が設けられている分散シフトシングルモード光フ
ァイバ母分材の製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a dispersion-shifted single mode optical fiber preform in which a side core layer is provided on the outer periphery of a center core layer and a cladding layer is provided on the outer periphery of the side core layer. is there.
【0002】[0002]
【従来の技術】従来、この種の分散シフトシングルモー
ド光ファイバ母材のコア部1の製造は、図3に示すよう
なコア合成装置の反応容器2の中で、センタコア用バー
ナ3とサイドコア用バーナ4を用いて、センタコア用バ
ーナ3で多孔質のセンタコア層1aを形成し、サイドコ
ア用バーナ4で多孔質のサイドコア層1bを形成するこ
とにより行っていた。この場合、該サイドコア層1bに
は、Geをドープしていた。なお、5は反応容器2に設
けられた排気管である。2. Description of the Related Art Conventionally, this kind of dispersion-shifted single-mode optical fiber preform core 1 is manufactured in a reaction vessel 2 of a core synthesizing apparatus as shown in FIG. By using the burner 4, the porous center core layer 1a is formed by the center core burner 3, and the porous side core layer 1b is formed by the side core burner 4. In this case, the side core layer 1b was doped with Ge. Reference numeral 5 denotes an exhaust pipe provided in the reaction vessel 2.
【0003】かくして得られた光ファイバ母材のコア部
1は、電気炉で脱水し、透明ガラス化する。次に、その
表面を平滑化するため、火炎研磨する。この火炎研磨時
にOHが入るため、延伸工程で母材表面をエッチング
し、図4に示す6,7の位置まで除去している。この時
のガラスエッチング厚の制御は重要である。[0003] The core portion 1 of the optical fiber preform thus obtained is dehydrated in an electric furnace and vitrified. Next, flame polishing is performed to smooth the surface. Since OH enters during the flame polishing, the surface of the base material is etched in the stretching step and removed to positions 6 and 7 shown in FIG. At this time, control of the glass etching thickness is important.
【0004】次に、研磨したコア部の外周に多孔質のク
ラッド層を形成し、該クラッド層を電気炉で脱水し、透
明ガラス化する。[0004] Next, a porous clad layer is formed on the outer periphery of the polished core portion, and the clad layer is dehydrated in an electric furnace to form a transparent glass.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、前述し
たコア部のエッチング時に、削り過ぎると、サイドコア
層に含まれるGeがガラス表面にでるため、クラッド付
きガラス化工程で発泡が起こる問題点があった。However, if the core is etched too much during the above-described etching of the core, Ge contained in the side core layer comes to the surface of the glass, so that there is a problem that foaming occurs in the clad vitrification process. .
【0006】本発明の目的は、コア部のエッチング時
に、サイドコア層に含まれるGeがコア部表面に現れる
のを防止することができる分散シフトシングルモード光
ファイバ母分材の製造方法を提供することにある。An object of the present invention is to provide a method of manufacturing a dispersion-shifted single mode optical fiber preform which can prevent Ge contained in the side core layer from appearing on the surface of the core portion when the core portion is etched. It is in.
【0007】[0007]
【課題を解決するための手段】上記の目的を達成する本
発明の構成を説明すると、次の通りである。The structure of the present invention that achieves the above object will be described as follows.
【0008】請求項1に記載の本発明は、多孔質のセン
タコア層の外周に多孔質のサイドコア層を設け、これら
の層を透明,ガラス化した後、表面をエッチングし、し
かる後その表面に多孔質のクラッド層を設け、該クラッ
ド層を透明,ガラス化して製造する分散シフトシングル
モード光ファイバ母材の製造方法において、前記多孔質
のサイドコア層の外周に多孔質のシリカ層を、前記サイ
ドコア層の外径に対する前記シリカ層の外径の比が1:
1.4以上となるように設け、しかる後透明,ガラス化し
て前記シリカ層の表面のエッチングを行うことを特徴と
する。According to the first aspect of the present invention, a porous side core layer is provided on the outer periphery of a porous center core layer, and after these layers are transparent and vitrified, the surface is etched, and then the surface is etched. In a method for manufacturing a dispersion-shifted single-mode optical fiber preform, wherein a porous clad layer is provided, and the clad layer is made transparent and vitrified, a porous silica layer is provided around the porous side core layer, The ratio of the outer diameter of the silica layer to the outer diameter of the layer is 1:
It is characterized in that the surface of the silica layer is etched after being transparent and vitrified.
【0009】[0009]
【作用】このように、多孔質のサイドコア層の外周に多
孔質のシリカ層を設け、且つサイドコア層の外径に対す
るシリカ層の外径の比を 1.4倍以上とすると、Geの拡
散があっても、エッチング面ではほとんどGeが存在せ
ず、クラッド層の透明,ガラス化時の発泡を防止するこ
とができる。As described above, when the porous silica layer is provided on the outer periphery of the porous side core layer and the ratio of the outer diameter of the silica layer to the outer diameter of the side core layer is 1.4 times or more, Ge is diffused. Also, almost no Ge is present on the etched surface, and it is possible to prevent the cladding layer from becoming transparent and foaming during vitrification.
【0010】[0010]
【実施例】図1は、本発明の方法を実施するコア合成装
置の縦断面図を示したものである。なお、図3と対応す
る部分には、同一符号を付けて示している。FIG. 1 is a longitudinal sectional view of a core synthesizing apparatus for carrying out the method of the present invention. Parts corresponding to those in FIG. 3 are denoted by the same reference numerals.
【0011】本実施例では、反応容器2の中で、センタ
コア用バーナ3とサイドコア用バーナ4以外に、シリカ
層形成バーナ8を用い、多孔質のサイドコア層1bの外
周にシリカ層1cを設ける。このとき、サイドコア層1
bの外径に対する該シリカ層1cの外径の比は、1:
1.4以上となるようにする。In this embodiment, a silica layer forming burner 8 is used in the reaction vessel 2 in addition to the center core burner 3 and the side core burner 4, and a silica layer 1c is provided on the outer periphery of the porous side core layer 1b. At this time, the side core layer 1
The ratio of the outer diameter of the silica layer 1c to the outer diameter of b is 1:
Make it 1.4 or more.
【0012】しかる後、得られた多孔質のコア部1を電
気炉で脱水し、透明ガラス化する。次に、この透明ガラ
ス化したコア部のシリカ層1cのエッチングをし、図2
の6の位置まで除去する。次いで、このエッチングされ
たシリカ層1cの外周に、多孔質のクラッド層を形成し
て電気炉で脱水し、透明ガラス化する。Thereafter, the obtained porous core portion 1 is dehydrated in an electric furnace, and is turned into a transparent glass. Next, the silica layer 1c of the transparent vitrified core portion was etched, and FIG.
Remove to position 6. Next, a porous clad layer is formed on the outer periphery of the etched silica layer 1c, dehydrated in an electric furnace, and made into a transparent glass.
【0013】この場合、サイドコア層1bの外径に対す
るシリカ層1cの外径の比が 1.4倍未満であると、サイ
ドコア層1bからのGeの拡散がある場合に、シリカ層
表面にまでGeが現れることがあるので、クラッド層の
透明,ガラス化時における発泡防止効果が小さい。それ
に対して、サイドコア層の外径に対するシリカ層の外径
の比が 1.4倍以上とすると、Geの拡散があっても、エ
ッチング面ではほとんどGeが存在せず、発泡防止に効
果がある。In this case, when the ratio of the outer diameter of the silica layer 1c to the outer diameter of the side core layer 1b is less than 1.4 times, when Ge diffuses from the side core layer 1b, Ge appears on the silica layer surface. In some cases, the effect of preventing the foaming of the cladding layer from being transparent and vitrified is small. On the other hand, when the ratio of the outer diameter of the silica layer to the outer diameter of the side core layer is 1.4 times or more, even if Ge is diffused, almost no Ge is present on the etched surface, which is effective in preventing foaming.
【0014】上記実施例の具体例を示すと、次の通りで
ある。図1に示すコア合成装置のセンタコア用バーナ3
とサイドコア用バーナ4には、比率は異なるがSiCl
4 ,GeCl4 , H2 ,Ar,O2 を流した。シリカ層
形成バーナ8には、SiCl4 ,H2 ,Ar,O2 を流
した。得られた多孔質のコア部1を脱水,透明ガラス化
したところ、サイドコア層1bの外径に対するシリカ層
1cの外径は1.5 倍あった。このコア部1の外径を16mm
に延伸した後、表面のエッチングを行い、次いでその外
周に多孔質のクラッド層を形成した。The following is a specific example of the above embodiment. Center core burner 3 of the core synthesizing apparatus shown in FIG.
And the side core burner 4 have different ratios but SiCl
4 , GeCl 4 , H 2 , Ar, O 2 were flowed. SiCl 4 , H 2 , Ar, and O 2 were passed through the silica layer forming burner 8. When the obtained porous core part 1 was dehydrated and vitrified, the outer diameter of the silica layer 1c was 1.5 times the outer diameter of the side core layer 1b. The outer diameter of this core 1 is 16mm
After that, the surface was etched, and then a porous cladding layer was formed on the outer periphery.
【0015】得られた多孔質の光ファイバ母材を脱水,
透明ガラス化して、内部の気泡を観察したが、従来例で
見られた気泡は観察されなかった。The obtained porous optical fiber preform is dehydrated,
The glass was turned into a transparent glass and the air bubbles inside were observed. However, the air bubbles observed in the conventional example were not observed.
【0016】また、プリフォームアナライザによる屈折
率分布測定でも、コア部とクラッド層との界面には、サ
イドコア層からのGeの拡散はなかった。In the refractive index distribution measurement by the preform analyzer, Ge was not diffused from the side core layer at the interface between the core and the cladding layer.
【0017】本発明の方法で製造された光ファイバ母材
を用いて光ファイバの線引きを行ったところ、1.39μm
OHピーク高さは0.3 dB/Km 、また1.55μm における伝
送損失は0.205 dB/Km であり、問題ないレベルであっ
た。When an optical fiber was drawn using the optical fiber preform manufactured by the method of the present invention, the result was 1.39 μm
The OH peak height was 0.3 dB / Km, and the transmission loss at 1.55 μm was 0.205 dB / Km, which was a level without any problem.
【0018】比較例として、図1に示すコア合成装置に
より光ファイバ母材の製造を下記のようにして行った。
即ち、クラッド付け用バーナに投入するSiCl4 の量
を減少させ、サイドコア層の外径に対するシリカ層の外
径の比を1.1 倍を目標とした。この多孔質のコア部を脱
水,透明ガラス化し、上記の比を求めたところ1.2 倍で
あった。このコア部を外径16mmに延伸してエッチングを
行い、クラッド付け後、脱水,透明ガラス化したとこ
ろ、シリカレベルに対して比屈折率差は0.1 %程度高か
った。この光ファイバ母材中には、Geの発泡と思われ
る気泡が認められた。As a comparative example, an optical fiber preform was manufactured by the core synthesizing apparatus shown in FIG. 1 as follows.
That is, the amount of SiCl 4 introduced into the cladding burner was reduced, and the ratio of the outer diameter of the silica layer to the outer diameter of the side core layer was set to 1.1 times. The porous core was dehydrated and turned into a transparent glass, and the above ratio was determined to be 1.2 times. The core was stretched to an outer diameter of 16 mm and etched, and after cladding, dehydration and clear vitrification revealed that the relative refractive index difference was about 0.1% higher than the silica level. In this optical fiber preform, bubbles considered to be Ge foam were observed.
【0019】[0019]
【発明の効果】以上説明したように、本発明に係る分散
シフトシングルモード光ファイバ母材の製造方法では、
多孔質のサイドコア層の外周に多孔質のシリカ層を設
け、且つ該サイドコア層の外径に対する該シリカ層の外
径の比を 1.4倍以上としたので、Geの拡散があって
も、シリカ層のエッチング面ではほとんどGeが存在せ
ず、クラッド層の透明,ガラス化時の発泡を防止するこ
とができる。As described above, in the method for manufacturing a dispersion-shifted single-mode optical fiber preform according to the present invention,
A porous silica layer is provided on the outer periphery of the porous side core layer, and the ratio of the outer diameter of the silica layer to the outer diameter of the side core layer is 1.4 times or more. Almost no Ge is present on the etched surface, and it is possible to prevent the cladding layer from becoming transparent and foaming during vitrification.
【図1】本発明で用いるコア合成装置の一例の概略構成
を示す縦断面図である。FIG. 1 is a longitudinal sectional view showing a schematic configuration of an example of a core synthesizing apparatus used in the present invention.
【図2】本発明の方法で製造されたコア部の一例の屈折
率分布図である。FIG. 2 is a refractive index distribution diagram of an example of a core manufactured by the method of the present invention.
【図3】従来のコア合成装置の概略構成を示す縦断面図
である。FIG. 3 is a longitudinal sectional view showing a schematic configuration of a conventional core synthesizing apparatus.
【図4】従来の方法で製造されたコア部の一例の屈折率
分布図である。FIG. 4 is a refractive index distribution diagram of an example of a core portion manufactured by a conventional method.
1…コア部、1a…センタコア層、1b…サイドコア
層、1c…シリカ層、2…反応容器、3…センタコア用
バーナ、4…サイドコア用バーナ、5…排気管、8…シ
リカ層形成バーナDESCRIPTION OF SYMBOLS 1 ... Core part, 1a ... Center core layer, 1b ... Side core layer, 1c ... Silica layer, 2 ... Reaction vessel, 3 ... Burner for center core, 4 ... Burner for side core, 5 ... Exhaust pipe, 8 ... Burner with silica layer
Claims (1)
サイドコア層を設け、これらの層を透明,ガラス化した
後、表面をエッチングし、しかる後その表面に多孔質の
クラッド層を設け、該クラッド層を透明,ガラス化して
製造する分散シフトシングルモード光ファイバ母材の製
造方法において、前記多孔質のサイドコア層の外周に多
孔質のシリカ層を、前記サイドコア層の外径に対する前
記シリカ層の外径の比が1: 1.4以上となるように設
け、しかる後透明,ガラス化して前記シリカ層の表面の
エッチングを行うことを特徴とする分散シフトシングル
モード光ファイバ母材の製造方法。1. A porous side core layer is provided on the outer periphery of a porous center core layer, and after these layers are made transparent and vitrified, the surface is etched. Thereafter, a porous cladding layer is provided on the surface. In the method for producing a dispersion-shifted single-mode optical fiber preform, wherein the cladding layer is made transparent and vitrified, a porous silica layer is provided around an outer periphery of the porous side core layer, and the silica layer is formed with respect to an outer diameter of the side core layer. A method of producing a dispersion-shifted single-mode optical fiber preform, characterized in that the ratio of the outer diameters is 1: 1.4 or more, and then the surface of the silica layer is etched after being transparent and vitrified.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3098544A JP2951429B2 (en) | 1991-04-30 | 1991-04-30 | Manufacturing method of dispersion-shifted single-mode optical fiber preform |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3098544A JP2951429B2 (en) | 1991-04-30 | 1991-04-30 | Manufacturing method of dispersion-shifted single-mode optical fiber preform |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04331737A JPH04331737A (en) | 1992-11-19 |
JP2951429B2 true JP2951429B2 (en) | 1999-09-20 |
Family
ID=14222632
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3098544A Expired - Lifetime JP2951429B2 (en) | 1991-04-30 | 1991-04-30 | Manufacturing method of dispersion-shifted single-mode optical fiber preform |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2951429B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5666454A (en) * | 1994-04-25 | 1997-09-09 | The Furukawa Electric Co., Ltd. | Preform for optical fiber and method of producing optical fiber |
-
1991
- 1991-04-30 JP JP3098544A patent/JP2951429B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH04331737A (en) | 1992-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7536076B2 (en) | Optical fiber containing alkali metal oxide | |
US4675040A (en) | Method for producing glass preform for single mode optical fiber | |
US9250386B2 (en) | Optical fiber containing an alkali metal oxide and methods and apparatus for manufacturing same | |
JP2690106B2 (en) | Optical fiber manufacturing method | |
EP0164681B1 (en) | Single mode optical fiber | |
US20080050086A1 (en) | Optical fiber containing alkali metal oxide | |
EP0198510B1 (en) | Method of producing glass preform for optical fiber | |
JPH052118A (en) | Optical fiber and production thereof | |
US4505729A (en) | Method of producing optical fiber preform | |
JP3098828B2 (en) | Dispersion shifted fiber and method of manufacturing the same | |
JPH11237514A (en) | Optical fiber for grating, optical fiber preform for grating, and production of this optical fiber preform | |
JPH0314789B2 (en) | ||
JP2951429B2 (en) | Manufacturing method of dispersion-shifted single-mode optical fiber preform | |
EP1270522B1 (en) | Method for fabricating optical fiber from preforms, using control of the partial pressure of oxygen during preform dehydration | |
JPH0820574B2 (en) | Dispersion shift fiber and manufacturing method thereof | |
JPS62167235A (en) | Production of base material for optical fiber | |
KR100534049B1 (en) | Manufacturing Method for Single Mode Optical Fiber Having Hydrogen-Resistance | |
JPS63315530A (en) | Production of optical fiber preform | |
JPS5816161B2 (en) | Optical transmission line and its manufacturing method | |
JPH085685B2 (en) | Method for manufacturing base material for dispersion-shifted optical fiber | |
JP4890767B2 (en) | Manufacturing method of preform rod for optical fiber | |
EP0185975A1 (en) | Process for fabricating a glass preform | |
JP2721260B2 (en) | Perfluorinated optical fiber | |
JPH06219765A (en) | Production of preform for optical fiber | |
JPH07147447A (en) | Optical amplifier type optical fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080709 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080709 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090709 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090709 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100709 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110709 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term |