JP2948344B2 - Thermal decomposition method of organic matter - Google Patents

Thermal decomposition method of organic matter

Info

Publication number
JP2948344B2
JP2948344B2 JP3095269A JP9526991A JP2948344B2 JP 2948344 B2 JP2948344 B2 JP 2948344B2 JP 3095269 A JP3095269 A JP 3095269A JP 9526991 A JP9526991 A JP 9526991A JP 2948344 B2 JP2948344 B2 JP 2948344B2
Authority
JP
Japan
Prior art keywords
gas
organic matter
thermal decomposition
organic substance
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3095269A
Other languages
Japanese (ja)
Other versions
JPH04325170A (en
Inventor
正康 坂井
直晴 篠田
雅寛 徳田
竹内  善幸
浩俊 堀添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3095269A priority Critical patent/JP2948344B2/en
Publication of JPH04325170A publication Critical patent/JPH04325170A/en
Application granted granted Critical
Publication of JP2948344B2 publication Critical patent/JP2948344B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、有機物の熱分解方法に
関し、特に塩素分を含有する有機物{例えば、ポリ塩化
ビフェニール(PCB)を含有するトランスオイル等}
に有効な熱分解方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for thermally decomposing organic substances, and more particularly to an organic substance containing chlorine (for example, a trans-oil containing polychlorinated biphenyl (PCB)).
The present invention relates to a pyrolysis method that is effective for:

【0002】[0002]

【従来の技術】PCB等の有機塩化物は、有害・有毒で
あるばかりでなく化学的に安定な物質が多く、PCBの
公害問題が表面化した1971年頃からその無害化処理
技術が社会ニュースとしてクローズアップされ、さらに
最近ではポリ塩化ジベンゾダイオキシン(PCDD)や
ポリ塩化ジベンゾフラン(PCDF)などのダイオキシ
ン類の問題もからんで、塩素分を含む有機物の完全無害
化処理技術の確立が緊急の課題となっている。塩素分を
含む有機物の無害化処理方法としては、特開昭49−6
1143号で提案されているような触媒を利用した脱塩
素方法、特公昭52−47459号公報で提案されてい
るイオン化放射線、紫外線等による分解方法、特公昭6
1−51956号公報のマイクロ波照射下における化学
反応処理方法、微生物分解方法など、種々の処理方法が
提案されているが、これらの方法は少量の処理にしか適
用できない。塩素分を微量含有する有機物(例えば、微
量のPCBを含むトランスオイル等)は大量処理が必要
となる場合が多々あるが、前述の方法ではその経済的処
理は不可能である。
2. Description of the Related Art Organic chlorides such as PCBs are not only harmful and toxic but also are chemically stable, and the detoxification processing technology has been closed as social news since around 1971 when the pollution problem of PCBs surfaced. Due to the problems of dioxins such as polychlorinated dibenzodioxin (PCDD) and polychlorinated dibenzofuran (PCDF), it has become an urgent issue to establish technology for completely detoxifying organic substances containing chlorine. I have. As a method for detoxifying organic substances containing chlorine, Japanese Patent Application Laid-Open No.
No. 1143, a dechlorination method using a catalyst, a method disclosed in Japanese Patent Publication No. 52-47459, a decomposition method using ionizing radiation, ultraviolet light, and the like.
Various treatment methods have been proposed, such as a chemical reaction treatment method under microwave irradiation and a microbial decomposition method described in 1-51956, but these methods can be applied only to a small amount of treatment. Organic substances containing a small amount of chlorine (for example, trans oil containing a small amount of PCB) often require large-scale treatment, but the above-mentioned method cannot economically treat the organic matter.

【0003】大量処理の方法としては、文献1.〔公害
と対策, Vol.22 ,NO.7,p 33(1986)〕に紹介されて
いるような高温焼却方法があるが、この種焼却方法には
次のような欠点がある。
[0003] As a method of mass processing, reference 1. Although there is a high-temperature incineration method as introduced in [Pollution and Countermeasures, Vol.22, NO.7, p.33 (1986)], this kind of incineration method has the following disadvantages.

【0004】第1の欠点は貴重な資源の損失になること
である。有機塩化物単味あるいはその含有濃度が高い場
合は、有害物の無害化処理の観点から焼却処理もやむを
得ないこともあるが、塩素分の含有濃度が低い場合は、
焼却処理にともなって有機物自体も焼却せざるを得ず、
資源損失につながることは容易に理解できよう。
[0004] The first disadvantage is the loss of valuable resources. If the organic chloride alone or its content is high, incineration may be unavoidable from the viewpoint of detoxification of harmful substances, but if the chlorine content is low,
With the incineration process, the organic matter itself must be incinerated,
It will be easy to understand that it will lead to resource loss.

【0005】第2の欠点はPCBなどのように難熱分解
性の物質については、この方法では完全な無害化処理が
極めて困難なことにある。文献1でも紹介されているよ
うに、液状の処理対象物を熱分解炉内にバーナで噴霧し
た場合、噴霧液滴の粒径を小さくし、炉内への噴霧と同
時に液滴が気化するようにすることが肝要であるが、そ
のようなバーナは現存せず、また、たとえ微細粒で噴霧
したとしても、噴霧後に液滴が合体しあって大粒の液滴
が必ず生成される。大粒の液滴は分解炉内の気流に乗っ
て気流との相対速度が小さくなり、その結果、気流と液
滴間の熱伝達速度が低下し、液滴中の物質の熱分解温度
の確保のみならず熱分解に要する滞留時間の確保が困難
となる。このため、この種分解炉では、滞留時間の確保
のため炉の容積を必要以上に大きくせざるを得ず、また
炉内温度も高くする必要があり、炉の損傷及び耐久性が
問題となるばかりでなく、空気燃焼の場合は窒素酸化物
の発生が問題となる。
[0005] The second drawback is that it is extremely difficult to completely detoxify substances that are difficult to decompose thermally, such as PCBs, by this method. As introduced in Document 1, when a liquid processing object is sprayed into a pyrolysis furnace with a burner, the particle size of the sprayed droplets is reduced so that the droplets evaporate simultaneously with the spraying into the furnace. It is important that such a burner does not exist, and even if sprayed with fine particles, droplets coalesce after spraying, and large droplets are necessarily generated. Large droplets ride on the air flow in the cracking furnace and the relative speed with the air flow decreases, as a result, the heat transfer speed between the air flow and the droplets decreases, only ensuring the thermal decomposition temperature of the substance in the droplets In addition, it is difficult to secure the residence time required for thermal decomposition. For this reason, in this kind of decomposition furnace, it is necessary to increase the furnace volume more than necessary in order to secure the residence time, and it is also necessary to increase the temperature in the furnace, which causes damage to the furnace and durability. In addition, in the case of air combustion, the generation of nitrogen oxides becomes a problem.

【0006】第3の欠点は塩素分を含む有機物質の熱分
解操作で、最も注意が必要である2次公害源の発生を抑
制できないことにある。有機物、特に高分子量の有機物
や芳香族系有機物を燃やした時黒煙(煤も含めて)が発
生することは誰もが経験していることである。また、既
存の優れた燃焼設備においても、この黒煙をなくするこ
とは至難であるとともに、一度発生した黒煙はアフター
バーニング等の手段を用いても容易に除去できないこと
は同業者なら周知である。
[0006] A third disadvantage is that the generation of secondary pollution sources, which requires the most caution, cannot be suppressed in the thermal decomposition operation of organic substances containing chlorine. Everyone has experienced the generation of black smoke (including soot) when burning organic matter, especially high molecular weight organic matter and aromatic organic matter. It is also well known to those skilled in the art that it is extremely difficult to eliminate this black smoke even with existing excellent combustion equipment, and that once generated black smoke cannot be easily removed even by means such as afterburning. is there.

【0007】塩素分を微量でも含有する物質の燃焼設備
ではこの黒煙、特に煤が2次公害源の元凶であるといわ
れている。事実、各種燃焼設備の煤から猛毒と恐れられ
ているダイオキシン類が検出されているばかりでなく、
燃焼設備排ガスの集塵設備から採取した煤等の未燃カー
ボンを含む灰を、空気中で加熱すると、300℃付近で
ダイオキシン類が異常に増えることが周知となってい
る。このことは、一度発生させた黒煙はたとえその時点
でダイオキシン類が検出されなくても、事後焼却等の加
熱でダイオキシン類を発生させる危険をはらむものであ
り、塩素分を含有する有機物の熱分解では煤等の黒煙を
絶対に発生させるべきではない。
It is said that black smoke, especially soot, is the primary cause of secondary pollution in combustion facilities for substances containing even trace amounts of chlorine. In fact, not only are dioxins, which are considered to be very poisonous, detected in soot from various types of combustion equipment,
It is well known that when ash containing unburned carbon such as soot collected from dust collection equipment for combustion equipment exhaust gas is heated in air, the amount of dioxins abnormally increases at around 300 ° C. This means that once smoke is generated, even if dioxins are not detected at that time, there is a danger of generating dioxins by heating such as post-incineration, etc. Decomposition should never generate black smoke such as soot.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記技術水
準に鑑み、PCBなどの有害物をはじめ、塩素分を含有
する有機物を、有害物の完全無害化及び2次公害源の発
生を防止して焼却できることのみならず、該有機物から
水素(H2 )と一酸化炭素(CO)を主成分とするガ
ス、いわゆる還元ガスを製造できる有機物の熱分解方法
を提供しようとするものである。
DISCLOSURE OF THE INVENTION In view of the above-mentioned state of the art, the present invention is intended to completely detoxify harmful substances such as PCBs and other organic substances containing chlorine and prevent the generation of secondary pollution sources. It is intended to provide a method of thermally decomposing an organic substance capable of producing a gas containing hydrogen (H 2 ) and carbon monoxide (CO) as main components, a so-called reducing gas, from the organic substance.

【0009】[0009]

【課題を解決するための手段】本発明の方法は有機物の
ガス体を、水蒸気および/または炭酸ガス(CO2 )と
予混合して、該有機物の熱分解温度雰囲気にある熱分解
炉内に供給する方法および前記予混合ガス体中に、さら
に酸素あるいは空気などの酸素含有ガスを爆発限界(燃
焼範囲)下限値以下に予混合する方法である。
According to the method of the present invention, a gaseous substance of an organic substance is premixed with water vapor and / or carbon dioxide (CO 2 ), and the mixture is placed in a pyrolysis furnace in an atmosphere at a temperature for thermal decomposition of the organic substance. This is a method of supplying and a method of premixing an oxygen-containing gas such as oxygen or air into the premixed gas body below an explosion limit (combustion range) lower limit.

【0010】[0010]

【作用】すなわち、本発明の方法は熱分解炉への有機物
の供給をガス状で行うため、従来の液噴霧供給方法で問
題となっていた噴霧液滴の大きさに起因する問題が解消
される。また、水蒸気および/または炭酸ガスとの予混
合あるいは該予混合ガスに、さらに酸素を爆発限界値以
下に混合することにより、焼却処理時は勿論のこと有機
物の部分酸化で還元ガスを製造する場合においても煤な
どの未燃カーボンの発生を完全に防止することができ
る。
That is, since the method of the present invention supplies the organic matter to the pyrolysis furnace in gaseous form, the problem caused by the size of the spray droplets, which has been a problem in the conventional liquid spray supply method, is solved. You. In addition, when reducing gas is produced by premixing with steam and / or carbon dioxide gas or by further mixing oxygen with the premixed gas below the explosion limit value, not only during incineration but also by partial oxidation of organic matter. The generation of unburned carbon such as soot can be completely prevented.

【0011】本発明者等は有機物の燃焼および熱分解方
法の実験研究を進める過程で、分解炉への液噴霧供給を
ガス供給方法に変えただけでは、煤などの未燃カーボン
の発生が完全に抑制できず、液噴霧以外にも問題がある
との観点で研究を進めて本発明に至ったものである。
In the process of conducting experimental research on the combustion and thermal decomposition methods of organic matter, the present inventors completely changed the supply of liquid spray to the decomposition furnace to the gas supply method, and thus completely generated unburned carbon such as soot. The present invention has been accomplished by conducting research from the viewpoint that it cannot be suppressed to a low level and there is a problem other than liquid spraying.

【0012】文献1.でも紹介されているように、焼却
処理においてですら、従来の方法は燃焼反応のみが重視
されている。燃焼反応で未燃カーボンの発生を抑制する
ためには酸素濃度を相当過剰にする必要があると考えら
れるとともに酸素濃度を過剰にしても未燃カーボン発生
の完全防止は不可能と予想される。ましてや、一種の不
完全燃焼である有機物の部分酸化方法で還元ガスを煤の
発生なしで製造することは、従来方法では不可能であ
る。
Reference 1. However, as introduced, even in the case of incineration, conventional methods focus only on the combustion reaction. It is considered that it is necessary to considerably increase the oxygen concentration in order to suppress the generation of unburned carbon in the combustion reaction, and it is expected that even if the oxygen concentration is excessive, it is impossible to completely prevent the generation of unburned carbon. Furthermore, it is impossible with conventional methods to produce a reducing gas without generating soot by a method of partial oxidation of organic matter, which is a kind of incomplete combustion.

【0013】この理由について本発明者等の研究結果か
ら推論すると、高温の燃焼滞域では有機物の熱分解が急
速に進行するとともに熱分解生成物である水素や一酸化
炭素などの燃焼の容易な成分が、先に酸素を消費する結
果、微視的には酸素濃度が不足する部分も生じ、その結
果、炭素の活性遊離基(フリーラジカル)が生成し、こ
の遊離基が結合しあって煤等が生成すると予想される。
また、塩素が存在した場合、塩素が煤に取りこまれてダ
イオキシン類の前駆体物質が生成すると考えられる。
The reason for this is inferred from the research results of the present inventors. In the high temperature combustion zone, the thermal decomposition of organic matter proceeds rapidly, and the combustion of hydrogen and carbon monoxide, which are the thermal decomposition products, is easy. As a result of the components consuming oxygen first, there is also a microscopically low oxygen concentration portion, which results in the generation of active free radicals (free radicals) of carbon, which are bound together to form soot. Etc. are expected to be generated.
Further, when chlorine is present, it is considered that chlorine is taken into soot to generate a precursor substance of dioxins.

【0014】従来の方法は高温分解炉内に熱分解対象の
有機物と酸素含有ガスを別々に導入するため、両者は均
一に混合する前に、であいがしらで燃焼反応を起すため
前記推論の状況が起ると考えられる。
In the conventional method, since the organic matter to be thermally decomposed and the oxygen-containing gas are separately introduced into the high-temperature decomposition furnace, before the two are uniformly mixed, a combustion reaction takes place before the mixture is mixed. Is thought to occur.

【0015】この推論の結果から、本発明者等は、従来
留意されていなかった有機物の急激な燃焼反応の抑制及
び熱分解開始前の反応関与剤の均一混合が重要と考え本
発明に至ったのである。
From the results of this inference, the present inventors have thought that it is important to suppress the rapid combustion reaction of organic substances and to uniformly mix the reaction-participants before the start of thermal decomposition, which has not been taken into account so far. It is.

【0016】すなわち、本発明の方法は、急激な燃焼反
応を抑制し、かつ熱分解過程での遊離炭素の生成を抑制
する効果をもつ水蒸気や炭酸ガスを、有機物の蒸気と予
め混合して熱分解炉に供給するものであり、従来の欠点
が一掃されることは明白である。また、該混合ガスにさ
らに酸素を予混合することは、熱分解滞域における酸素
濃度均一化への改善策であり、その効果は容易に理解で
きよう。
That is, according to the method of the present invention, steam or carbon dioxide having the effect of suppressing a rapid combustion reaction and suppressing the generation of free carbon in the pyrolysis process is mixed in advance with the vapor of an organic substance to produce heat. It is supplied to the cracking furnace, and it is clear that the conventional disadvantages are eliminated. Further, premixing the mixed gas with oxygen is an improvement measure for making the oxygen concentration uniform in the thermal decomposition stagnation region, and the effect can be easily understood.

【0017】[0017]

【実施例】次に、本発明の一態様を図1によって説明
し、本発明の効果を説明する。図1は実験に使用した設
備の系統図を示し、図1中、1は熱分解炉、2は熱分解
炉用のガスバーナ、3は煤の抑制剤(水蒸気および/ま
たは炭酸ガス)と酸化剤(酸素または酸素含有ガス)を
混合するガス化剤調整器、4は熱分解対象の有機物の蒸
気とガス化剤調整器3で調整されたガス化剤との予混合
器、5は熱分解炉1出口ガスの冷却器、6は熱分解炉1
出口ガスのサンプリングポートを示す。また、7はガス
化剤調整器7への煤の抑制剤供給用の導管、8は酸化剤
供給用の導管、8′はガスバーナ2へ酸化剤を直接供給
するための導管、9は予混合器4へのガス化剤供給用の
導管、10は予混合器4への有機物蒸気供給用の導管、
11は予混合されたガス化剤と有機物蒸気の混合ガスを
ガスバーナ2へ供給するための導管、12は熱分解ガス
の排出用導管である。
Next, one embodiment of the present invention will be described with reference to FIG. 1, and the effects of the present invention will be described. FIG. 1 shows a system diagram of the equipment used in the experiment. In FIG. 1, 1 is a pyrolysis furnace, 2 is a gas burner for the pyrolysis furnace, 3 is a soot inhibitor (steam and / or carbon dioxide) and an oxidizer. (Oxygen or oxygen-containing gas) gasifier regulator, 4 is a premixer of the vapor of the organic substance to be thermally decomposed and the gasifier adjusted by gasifier regulator 3, 5 is a pyrolysis furnace 1 outlet gas cooler, 6 is pyrolysis furnace 1
3 shows an outlet gas sampling port. 7 is a conduit for supplying a soot suppressant to the gasifying agent regulator 7, 8 is a conduit for supplying an oxidizing agent, 8 'is a conduit for directly supplying an oxidizing agent to the gas burner 2, and 9 is a premix. A conduit for supplying a gasifying agent to the vessel 4, a conduit 10 for supplying organic vapor to the premixer 4,
Reference numeral 11 denotes a conduit for supplying a gas mixture of a premixed gasifying agent and organic vapor to the gas burner 2, and reference numeral 12 denotes a conduit for discharging a pyrolysis gas.

【0018】ガス化剤調整器3は煤の抑制剤と酸化剤を
均一に混合する手段として設けるもので、ライン内ミキ
シングなどでその目的が達成される場合は不用である。
同様に、予混合器4もガス化剤と有機物の蒸気を、熱分
解炉1へ投入する前に均一に混合することを目的に設置
するものであり、別の手段でその目的が達成される場合
は不用である。また、液状有機物等の蒸気発生手段とし
て間接加熱器を用いる場合は、加熱器でのコーキング防
止もかねて、ガス化剤を加熱器で供給することも可能で
ある。
The gasifying agent regulator 3 is provided as a means for uniformly mixing the soot suppressant and the oxidizing agent, and is unnecessary when the purpose is achieved by in-line mixing or the like.
Similarly, the premixer 4 is also provided for the purpose of uniformly mixing the gasifying agent and the vapor of the organic matter before being put into the pyrolysis furnace 1, and the purpose is achieved by another means. It is unnecessary in the case. When an indirect heater is used as a means for generating vapor of a liquid organic substance or the like, the gasifying agent can be supplied by a heater in order to prevent coking in the heater.

【0019】導管9から供給される酸化剤中の酸素供給
量の上限値は、熱分解炉1の入口において、熱分解対象
有機物の爆発限界(燃焼範囲)の酸素濃度の下限値であ
り、導管8′から熱分解炉1に供給される酸化剤の供給
量は、希望とする熱分解ガス組成および熱分解炉内温度
によって調節される。
The upper limit of the oxygen supply amount in the oxidant supplied from the conduit 9 is the lower limit of the oxygen concentration at the explosion limit (combustion range) of the organic matter to be thermally decomposed at the inlet of the pyrolysis furnace 1. The supply amount of the oxidizing agent supplied from 8 'to the pyrolysis furnace 1 is adjusted according to the desired pyrolysis gas composition and the temperature in the pyrolysis furnace.

【0020】また、煤の抑制剤(水蒸気および/または
炭酸ガス)の供給量は熱分解炉1へ供給される全組成物
中の炭素成分に対する水素成分のモル比(H2 /C比)
が1以上になるように投入し、希望とする熱分解ガス組
成および熱分解炉内温度によって調節される。
The supply amount of the soot suppressant (steam and / or carbon dioxide gas) is determined by the molar ratio of the hydrogen component to the carbon component (H 2 / C ratio) in the total composition supplied to the pyrolysis furnace 1.
Is supplied so as to be 1 or more, and is adjusted according to a desired pyrolysis gas composition and a temperature in the pyrolysis furnace.

【0021】常温において液状あるいは固形状の有機物
の気化(蒸気化)は従来公知の間接加熱、直接加熱など
の手段がとり得る。
Evaporation (vaporization) of a liquid or solid organic substance at ordinary temperature can be performed by a conventionally known means such as indirect heating or direct heating.

【0022】熱分解ガスは冷却器5で100〜200℃
に冷却された後、ガス精製装置(図示なし)で清浄化さ
れる。なお、工業的実施においては、冷却器5のかわり
に廃熱回収ボイラをおき、熱回収することもできる。
The pyrolysis gas is cooled to 100 to 200 ° C. in the cooler 5.
After being cooled, it is cleaned by a gas purification device (not shown). In the industrial practice, a waste heat recovery boiler may be provided instead of the cooler 5 to recover heat.

【0023】実験に使用した有機物は、本発明の効果が
確認できるよう熱安定性が高く(難熱分解性)、かつ熱
分解操作時にダイオキシン類を生成しやすいPCBを約
2重量%含有するトランス油(以下、供試材という)を
使用した。供試材の組成分析結果は、炭素84.94重
量%、水素14.03重量%、塩素1.03重量%であ
った。
The organic substance used in the experiment has a high thermal stability (hardly thermally decomposable) so that the effect of the present invention can be confirmed, and a transformer containing about 2% by weight of a PCB which easily generates dioxins during the thermal decomposition operation. Oil (hereinafter referred to as test material) was used. The composition analysis result of the test material was 84.94% by weight of carbon, 14.03% by weight of hydrogen, and 1.03% by weight of chlorine.

【0024】熱分解ガスの試料採取は、図1中のサンプ
リングポート6において、文献2.{廃棄物学会誌,Vo
l.1, No.1,p20(1990)}の方法で行うとともに、
ダイオキシン類の分析もこの文献に準じて行った。
The sampling of the pyrolysis gas is performed at the sampling port 6 in FIG.誌 Journal of Waste Management Society, Vo
l.1, No.1, p20 (1990)}
Analysis of dioxins was also performed according to this document.

【0025】また、PCBの分析は文献3.{大阪市立
環境科学研究所報告 調査・研究年報No. 50(1987)p
11(1988)}に準じて行い、その他の分析はJISに基
づいて行った。
The analysis of PCB is described in Reference 3.報告 Report from Osaka City Institute of Environmental Science Research and research annual report No. 50 (1987) p
11 (1988)}, and other analyzes were based on JIS.

【0026】なお、実験に使用した熱分解炉の内容積は
64.5リットルである。
The internal volume of the pyrolysis furnace used in the experiment was 64.5 liters.

【0027】(例1)焼却実験 従来の焼却方法と比較するための実験を行った。プロパ
ンガスを燃料に、約1000℃に予熱した熱分解炉内に
供試材およびガス化剤を供給していき所定の運転条件に
設定した。なお、ガス化剤および分解炉に供給する空気
はばいじん発生量を評価するため、フィルターで除じん
した清浄空気を使用した。分析用の試料採取は熱分解炉
の運転が定常になった時点から実施した。実験結果を表
1に示す。
(Example 1) Incineration experiment An experiment was performed for comparison with a conventional incineration method. Using a propane gas as a fuel, a test material and a gasifying agent were supplied into a pyrolysis furnace preheated to about 1000 ° C., and set to predetermined operating conditions. In addition, the air supplied to the gasifying agent and the decomposition furnace was clean air that had been removed by a filter in order to evaluate the amount of generated dust. Sampling for analysis was performed when the operation of the pyrolysis furnace became steady. Table 1 shows the experimental results.

【表1】 [Table 1]

【0028】実験結果から明らかなように、熱分解炉出
口ガス中のPCBおよびダイオキシン類は検出限界以下
で、ばいじん濃度もJIS法の測定では測定誤差範囲内
であり、またNOx濃度も極めて小さい値である。
As is evident from the experimental results, PCB and dioxins in the gas at the outlet of the pyrolysis furnace were below the detection limit, the soot and dust concentrations were within the measurement error range by the JIS method, and the NOx concentration was extremely small. It is.

【0029】(例2)還元ガスの製造実験 供試材の供給量を例1と同じにし、ガス化剤に水蒸気と
酸素(純度:99容量%以上)を使用して、還元ガスの
製造実験を行った。
(Example 2) Production experiment of reducing gas Production experiment of reducing gas by using steam and oxygen (purity: 99% by volume or more) as gasifying agents, using the same supply amount of the test material as in Example 1. Was done.

【0030】例1と同様に、プロパンガスおよび空気を
使用して熱分解炉の予熱を行い、熱分解炉内温度が約1
000℃になった時点で、供試材およびガス化剤に切替
え所定の条件に設定した。熱分解炉の定常運転時の実験
結果を表2に示す。
As in Example 1, the pyrolysis furnace was preheated using propane gas and air.
When the temperature reached 000 ° C., the test material and the gasifying agent were switched to and set to predetermined conditions. Table 2 shows the experimental results at the time of steady operation of the pyrolysis furnace.

【表2】 [Table 2]

【0031】この実験結果は例1同様、PCB、ダイオ
キシン類、ばいじんなどはほとんど検出されておらず、
かつ、燃料ガスあるいは化学原料用合成ガスとして使用
できる還元ガスが得られており、本発明の効果を端的に
実証したものである。
In this experimental result, as in Example 1, almost no PCB, dioxins, dust, etc. were detected.
In addition, a reducing gas that can be used as a fuel gas or a synthesis gas for a chemical raw material is obtained, and the effect of the present invention is simply demonstrated.

【0032】[0032]

【発明の効果】本発明は熱分解が最も困難であり、か
つ、有害なダイオキシン類やその前駆体物質といわれて
いる煤などを熱分解生成物として最も生成しやすいPC
Bでも還元雰囲気で完全分解処理できるものであり、塩
素分含有有機物の無害化処理および資源化技術として画
期的なものである。
According to the present invention, a PC which is the most difficult to thermally decompose and which is most liable to produce harmful dioxins and soots which are said to be precursors thereof as a thermal decomposition product.
B can also be completely decomposed in a reducing atmosphere, and is an epoch-making technology for detoxifying and recycling chlorine-containing organic substances.

【0033】なお、本発明の方法が塩素分を含む有機物
のみならず、ガス状にできる有機物の熱分解技術として
も効果を発揮することは容易に理解できよう。
It can be easily understood that the method of the present invention is effective not only for organic matter containing chlorine but also for thermal decomposition of gaseous organic matter.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施態様の実験設備の説明図。FIG. 1 is an explanatory view of an experimental facility according to one embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹内 善幸 広島市西区観音新町四丁目6番22号 三 菱重工業株式会社 広島研究所内 (72)発明者 堀添 浩俊 広島市西区観音新町四丁目6番22号 三 菱重工業株式会社 広島研究所内 (56)参考文献 特開 昭56−100213(JP,A) 特開 昭50−114068(JP,A) 特開 平4−367502(JP,A) 特開 昭58−223602(JP,A) 実開 昭58−119021(JP,U) (58)調査した分野(Int.Cl.6,DB名) F23G 5/027 A62D 3/00 C10J 3/00 F23G 7/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Yoshiyuki Takeuchi 4-2-2, Kannonshinmachi, Nishi-ku, Hiroshima-shi Hiroshima Research Institute, Sanishi Heavy Industries Co., Ltd. (72) Hirotoshi Horizoe 4-6-1 Kannonshinmachi, Nishi-ku, Hiroshima 22 Hiroshima Research Laboratory, Mitsubishi Heavy Industries, Ltd. (56) References JP-A-56-100213 (JP, A) JP-A-50-114068 (JP, A) JP-A-4-365702 (JP, A) 58-223602 (JP, A) Fully open 58-119021 (JP, U) (58) Fields investigated (Int. Cl. 6 , DB name) F23G 5/027 A62D 3/00 C10J 3/00 F23G 7 / 00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ガス状の有機物を、水蒸気および/また
は炭酸ガスと予混合して、該有機物の熱分解温度雰囲気
にある熱分解炉内に供給することを特徴とする部分酸化
法による有機物の熱分解方法。
1. A method according to claim 1, wherein the gaseous organic substance is premixed with steam and / or carbon dioxide gas and supplied to a pyrolysis furnace in an atmosphere for pyrolyzing the organic substance. Pyrolysis method.
【請求項2】 有機物と水蒸気および/または炭酸ガス
の混合ガス体中に、さらに酸素あるいは酸素含有ガス
を、該有機物の爆発限界の酸素濃度の下限値をこえない
範囲で予混合することを特徴とする請求項1項記載の有
機物の熱分解法。
2. The method according to claim 1, wherein oxygen or an oxygen-containing gas is further premixed into the mixed gas of the organic substance and water vapor and / or carbon dioxide gas within a range not exceeding the lower limit of the oxygen concentration at the explosion limit of the organic substance. The method for thermally decomposing an organic substance according to claim 1.
JP3095269A 1991-04-25 1991-04-25 Thermal decomposition method of organic matter Expired - Fee Related JP2948344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3095269A JP2948344B2 (en) 1991-04-25 1991-04-25 Thermal decomposition method of organic matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3095269A JP2948344B2 (en) 1991-04-25 1991-04-25 Thermal decomposition method of organic matter

Publications (2)

Publication Number Publication Date
JPH04325170A JPH04325170A (en) 1992-11-13
JP2948344B2 true JP2948344B2 (en) 1999-09-13

Family

ID=14133053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3095269A Expired - Fee Related JP2948344B2 (en) 1991-04-25 1991-04-25 Thermal decomposition method of organic matter

Country Status (1)

Country Link
JP (1) JP2948344B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6645442B2 (en) 2000-12-28 2003-11-11 Mitsubishi Heavy Industries, Ltd. Method and apparatus for producing methanol making use of biomass material
US6991769B2 (en) 2000-02-29 2006-01-31 Mitsubishi Heavy Industries, Ltd. Biomass gasifycation furnace and system for methanol synthesis using gas produced by gasifying biomass

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3622132B2 (en) * 1997-10-28 2005-02-23 力也 半田 Treatment method of PCB mixed oil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6991769B2 (en) 2000-02-29 2006-01-31 Mitsubishi Heavy Industries, Ltd. Biomass gasifycation furnace and system for methanol synthesis using gas produced by gasifying biomass
US6645442B2 (en) 2000-12-28 2003-11-11 Mitsubishi Heavy Industries, Ltd. Method and apparatus for producing methanol making use of biomass material

Also Published As

Publication number Publication date
JPH04325170A (en) 1992-11-13

Similar Documents

Publication Publication Date Title
US4582004A (en) Electric arc heater process and apparatus for the decomposition of hazardous materials
US4864811A (en) Method for destroying hazardous organics
US5505909A (en) Process and a device for detoxifying the waste gases from waste incinerating plants
HU184389B (en) Method and apparatus for destroying wastes by using of plasmatechnic
JPS622207B2 (en)
JPS6399413A (en) Method and device for decomposing organic waste
US9383102B2 (en) Methods for treating waste gas streams from incineration processes
US5213492A (en) Combustion method for simultaneous control of nitrogen oxides and products of incomplete combustion
US20050070751A1 (en) Method and apparatus for treating liquid waste
JP2948344B2 (en) Thermal decomposition method of organic matter
US5242295A (en) Combustion method for simultaneous control of nitrogen oxides and products of incomplete combustion
JPS6182767A (en) Conversion of halogen-containing compound
CN111102584A (en) Polychlorinated hydrocarbon waste treatment device and method
JP2948345B2 (en) Thermal decomposition method of organic matter
US20150044115A1 (en) Waste disposal
CA2060953C (en) Combustion method for simultaneous control of nitrogen oxides and products of incomplete combustion
CN115344982A (en) System and method for simulation analysis of concentration of dioxin in furnace in solid waste incineration process
JP4244270B2 (en) Combustion decomposition method of polychlorinated biphenyl and high temperature incinerator
RU2676298C1 (en) Chemically polluted liquid fuels ecologically safe utilization method and device for its implementation
JP2005262099A (en) Treating method for making organic contaminated waste material harmless and treating apparatus
US20050079127A1 (en) Method and apparatus for destruction of liquid toxic wastes and generation of a reducing gas
RU2441183C1 (en) Method for thermal decontamination of chlorine-containing organic substances and apparatus for realising said method
KR19980065851A (en) Swivel Combustion Liquid Waste Incinerator
JPH09273727A (en) Method for decomposing organic halogen compound
JP2024026040A (en) Processing method and processing apparatus of fluid including organic compound

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990608

LAPS Cancellation because of no payment of annual fees