JP2948345B2 - Thermal decomposition method of organic matter - Google Patents

Thermal decomposition method of organic matter

Info

Publication number
JP2948345B2
JP2948345B2 JP3100838A JP10083891A JP2948345B2 JP 2948345 B2 JP2948345 B2 JP 2948345B2 JP 3100838 A JP3100838 A JP 3100838A JP 10083891 A JP10083891 A JP 10083891A JP 2948345 B2 JP2948345 B2 JP 2948345B2
Authority
JP
Japan
Prior art keywords
gas
organic matter
thermal decomposition
organic
pyrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3100838A
Other languages
Japanese (ja)
Other versions
JPH04332570A (en
Inventor
正康 坂井
直晴 篠田
雅寛 徳田
竹内  善幸
浩俊 堀添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3100838A priority Critical patent/JP2948345B2/en
Publication of JPH04332570A publication Critical patent/JPH04332570A/en
Application granted granted Critical
Publication of JP2948345B2 publication Critical patent/JP2948345B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02E20/344

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Air Supply (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、有機物の部分酸化によ
る熱分解(焼却を含む)方法に関し、特に液状有機物の
処理及び熱可塑性プラスチックスなど加熱によって液状
となる有機物の熱分解および低公害焼却方法にも適用で
きる熱分解方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for thermal decomposition (including incineration) of organic matter by partial oxidation, and more particularly to thermal decomposition and low-pollution incineration of organic matter which becomes liquid by heating such as treatment of liquid organic matter and thermoplastics. The present invention relates to a pyrolysis method applicable to the method.

【0002】[0002]

【従来の技術】有機物の部分酸化(部分燃焼)による熱
分解あるいは焼却処理の方法は、従来、有機物およびガ
ス化剤(酸素および水蒸気)あるいは空気を個別に高温
の熱分解炉内に供給し、それらを熱分解炉内で接触反応
させる方式がとられている。
2. Description of the Related Art Conventionally, a method of thermal decomposition or incineration by partial oxidation (partial combustion) of an organic substance has been known in which an organic substance and a gasifying agent (oxygen and water vapor) or air are individually supplied to a high-temperature pyrolysis furnace. A method is employed in which they are contact-reacted in a pyrolysis furnace.

【0003】[0003]

【発明が解決しようとする課題】従来方法の欠点は有機
物の焼却処理においてですら、煤などのばいじんの発生
量が多いことである。その発生抑制のため通常採用され
る燃焼空気過剰率の増加及び焼却温度を高くするような
手段を講じてもばいじん発生を完全に抑制することは困
難であり、また、このような手段を講じることによって
公害源である窒素酸化物(NOx)の発生を増長するこ
とはよく知られていることである。
A disadvantage of the conventional method is that a large amount of soot and other dust is generated even in the incineration of organic matter. Even if measures to increase the excess combustion air rate and increase the incineration temperature, which are usually adopted to suppress the generation, it is difficult to completely suppress the generation of dust, and it is necessary to take such measures. It is well-known that the emission of nitrogen oxides (NOx), which is a pollutant, is increased.

【0004】焼却処理においてですら発生するばいじん
は、一種の不完全燃焼である部分酸化方法による熱分解
操作においては、その発生量が増加し、このばいじんの
発生対策が大きな技術課題であり、除塵設備の大型化の
みならず捕集ばいじんの処理・処分に多大の労力が払わ
れていることも周知である。
The amount of soot and dust generated even in the incineration process increases in a thermal decomposition operation by a partial oxidation method, which is a kind of incomplete combustion, and measures to generate soot and dust are a major technical problem. It is well known that a great deal of effort is being paid not only in the upsizing of equipment but also in the treatment and disposal of collected soot and dust.

【0005】また、各種燃焼設備から発生する煤等のば
いじんから猛毒として名高いポリ塩化ジベンゾダイオキ
シンやポリ塩化ジベンゾフランなどのダイオキシン類が
検出されていること、またこのばいじんを空気中で加熱
すると300℃付近でダイオキシン類が異常に増えるこ
とが判って依頼、煤などの未燃カーボンは公害源として
恐れられており、その発生防止技術の確立は緊急課題で
ある。特に熱分解系内に塩素分が存在する場合は、煤等
の未燃カーボンを絶対に発生させない配慮が必要であ
る。
[0005] Dioxins such as polychlorinated dibenzodioxin and polychlorinated dibenzofuran, which are known as highly toxic, have been detected from soot and soot generated from various combustion facilities. It was requested to know that the amount of dioxins increased abnormally, and unburned carbon such as soot was feared as a source of pollution, and establishment of technology to prevent its generation is an urgent issue. In particular, when chlorine is present in the thermal decomposition system, it is necessary to take care to never generate unburned carbon such as soot.

【0006】本発明者等の実験研究の結果から推察する
と有機物の燃焼あるいは熱分解時の未燃カーボンの発生
機構は次の通りである。すなわち、有機物の着火温度以
上の温度雰囲気においては、有機物の燃焼範囲下限値以
上の酸素濃度の所では燃焼が起こり、その燃焼部分の温
度が急速に高温になる。この高温の燃焼滞域においては
有機物の熱分解が急速に進行し、水素や一酸化炭素を含
む熱分解生成物が生成すると予想される。また、この熱
分解生成物のうち燃焼範囲の酸素濃度の下限値が低く、
かつ燃焼の容易な成分(水素など)が先に酸素を消費す
ると予想され、熱分解で生成する炭素の活性遊離基(フ
リーラジカル)を消費する酸素などの反応物質が不足
し、炭素のフリーラジカル同志が結合しあって煤などの
未燃カーボンを生成すると予想される。すなわち燃焼・
熱分解反応速度と反応物質の拡散速度とのアンバランス
で煤等の未燃カーボンが生成すると考えられる。
The mechanism of the generation of unburned carbon during the combustion or pyrolysis of organic matter is as follows from the results of experimental studies by the present inventors. That is, in an atmosphere having a temperature equal to or higher than the ignition temperature of the organic substance, combustion occurs at a place having an oxygen concentration equal to or higher than the lower limit of the combustion range of the organic substance, and the temperature of the combustion portion rapidly rises. In this high-temperature combustion stagnation region, it is expected that thermal decomposition of organic matter proceeds rapidly, and that thermal decomposition products containing hydrogen and carbon monoxide are generated. In addition, the lower limit of the oxygen concentration in the combustion range of the pyrolysis products is low,
In addition, components that are easily combustible (such as hydrogen) are expected to consume oxygen first, and there is a shortage of reactive substances such as oxygen that consumes active free radicals (free radicals) of carbon generated by thermal decomposition, and free radicals of carbon are consumed. It is expected that comrades will combine to produce unburned carbon such as soot. That is, combustion
It is considered that unburned carbon such as soot is generated due to an imbalance between the rate of the thermal decomposition reaction and the rate of diffusion of the reactants.

【0007】従来の方法の如く、高温の熱分解炉内に熱
分解対象の有機物と酸素含有ガスを別々に導入した場
合、両者は均一に混合する前に出会いがしらで燃焼反応
を起こし、極部的に前記状況が発生すると予想される。
As in the conventional method, when an organic substance to be thermally decomposed and an oxygen-containing gas are separately introduced into a high-temperature pyrolysis furnace, the two undergo a combustion reaction before they are uniformly mixed, resulting in an extreme reaction. It is expected that the situation will partially occur.

【0008】また、反応滞域に塩素が共存した場合、塩
素が煤に取り込まれて、ダイオキシン類の前駆体物質が
生成すると考えられる。
Further, when chlorine coexists in the reaction stagnation area, it is considered that chlorine is taken into soot and a precursor substance of dioxins is generated.

【0009】本発明は上記技術水準に鑑み、有機物の熱
分解(あるいは焼却)時に、諸悪の根元である煤などの
未燃カーボンの発生が防止できる有機物の熱分解方法を
提供しようとするものである。
The present invention has been made in view of the above technical level, and aims to provide a method for thermally decomposing organic substances, which can prevent the generation of unburned carbon such as soot, which is the root of various evils, during the thermal decomposition (or incineration) of organic substances. is there.

【0010】[0010]

【課題を解決するための手段】本発明は上記推論の結果
から、未燃カーボンの発生防止のためには燃焼などの急
激な反応を熱分解炉の一滞域で集中して発生させないこ
と、また反応開始前に反応関与剤が均一に混合されてい
ることが重要であるとの知見を得、この知見に基づいて
本発明を完成するに至った。
According to the present invention, from the results of the above inferences, in order to prevent the generation of unburned carbon, a rapid reaction such as combustion should not be caused to concentrate in one area of a pyrolysis furnace. Further, the present inventors have found that it is important that the reaction participants are uniformly mixed before the start of the reaction, and have completed the present invention based on this finding.

【0011】本発明は熱分解炉の底部に有機物の液相部
を設け、該液相部に水蒸気と酸素あるいは酸素含有ガス
の混合ガスを吹込んでその混合ガス中に有機物の蒸気を
包含させて熱分解滞域内に導入することを特徴とする有
機物の熱分解方法である。
According to the present invention, a liquid phase portion of an organic substance is provided at the bottom of a pyrolysis furnace, and a mixed gas of water vapor and oxygen or an oxygen-containing gas is blown into the liquid phase portion so that the vapor of the organic substance is contained in the mixed gas. This is a method for thermally decomposing organic substances, which is introduced into a thermal decomposition zone.

【0012】[0012]

【作用】有機物の液相中に、水蒸気と酸素あるいは酸素
含有ガスの混合ガス(以下、ガス化剤という)を吹き込
むと、該ガス化剤流中には有機物の蒸気が液相内で含有
され、その含有容積比率は略、有機物の飽和蒸気圧を熱
分解炉内圧で除した値となる。
When a mixed gas of water vapor and oxygen or an oxygen-containing gas (hereinafter referred to as a gasifying agent) is blown into the liquid phase of an organic substance, the vapor of the organic substance is contained in the liquid phase in the gasifying agent stream. The content volume ratio is substantially a value obtained by dividing the saturated vapor pressure of the organic matter by the internal pressure of the pyrolysis furnace.

【0013】ガス化剤と有機物の蒸気は混合された状態
で、有機物の液相部を流出し、熱分解あるいは燃焼滞域
内に導入されるため、混合ガス流全域で熱分解等の反応
が起こり、従来方法の如き極部燃焼反応が発生しない。
また、水蒸気は急激な燃焼反応の抑制効果があるばかり
でなく、熱分解過程での遊離炭素の生成を抑制する効果
もあり、本発明の方法によれば有機物の熱分解あるいは
焼却操作における煤等の未燃カーボンの発生が防止でき
る。
[0013] Since the gasifying agent and the vapor of the organic substance are mixed, they flow out of the liquid phase of the organic substance and are introduced into the pyrolysis or combustion stagnant zone. In addition, no extreme combustion reaction occurs unlike the conventional method.
In addition, steam not only has the effect of suppressing rapid combustion reactions, but also has the effect of suppressing the production of free carbon in the pyrolysis process. According to the method of the present invention, soot and the like in the thermal decomposition or incineration operation of organic substances are used. Of unburned carbon can be prevented.

【0014】[0014]

【実施例】以下、本発明の一実施態様を図1によって説
明する。図1は実験に使用した設備の系統図を示し、図
1中、1は熱分解炉、2は熱分解炉の底部に設けた有機
物の液相部、3は熱分解炉1の出口ガス冷却器を示す。
また、4は有機物の液相部2へのガス化剤吹込み用の導
管、5は熱分解炉1への有機物供給用導管、6は熱分解
炉1の酸素あるいは酸素含有ガス(以下、酸化ガスとい
う)の補給用導管、7は熱分解ガスの抜出し用導管、8
はスラッジ等を抜出すための導管である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIG. FIG. 1 shows a system diagram of the equipment used in the experiment. In FIG. 1, 1 is a pyrolysis furnace, 2 is a liquid phase portion of an organic substance provided at the bottom of the pyrolysis furnace, and 3 is an outlet gas cooling of the pyrolysis furnace 1. Indicates a container.
In addition, 4 is a conduit for injecting a gasifying agent into the liquid phase portion 2 of organic matter, 5 is a conduit for supplying organic matter to the pyrolysis furnace 1, and 6 is oxygen or an oxygen-containing gas (hereinafter, oxidized gas) of the pyrolysis furnace 1. 7) a conduit for extracting pyrolysis gas;
Is a conduit for extracting sludge and the like.

【0015】熱分解炉1への有機物の供給は導管5から
分解炉1中の有機物の液面が略一定になるように投入す
る。
The supply of the organic matter to the pyrolysis furnace 1 is carried out from the conduit 5 so that the liquid level of the organic matter in the decomposition furnace 1 becomes substantially constant.

【0016】導管4から吹込まれるガス化剤中の水蒸気
量は導管5から供給される有機物中の全炭素量に対し、
該有機物と水蒸気の全水素量のモル比(H2/C比)が
1以上になるように投入し、希望とする熱分解ガス組成
および熱分解炉1内温度によって調節する。ガス化剤中
の酸化ガス流量は分解炉1に供給される有機物を蒸発さ
せるに足る量供給される。
The amount of water vapor in the gasifying agent blown from the conduit 4 is based on the total amount of carbon in the organic matter supplied from the conduit 5.
The organic substance and the steam are introduced so that the molar ratio of the total amount of hydrogen (H 2 / C ratio) becomes 1 or more, and the temperature is adjusted according to a desired pyrolysis gas composition and a temperature in the pyrolysis furnace 1. The flow rate of the oxidizing gas in the gasifying agent is supplied in an amount sufficient to evaporate the organic matter supplied to the cracking furnace 1.

【0017】また、導管6から供給する酸化ガス流量は
希望とする熱分解ガス組成および熱分解炉1内温度によ
って調節される。
The flow rate of the oxidizing gas supplied from the conduit 6 is adjusted according to the desired composition of the pyrolysis gas and the temperature inside the pyrolysis furnace 1.

【0018】熱分解炉1底部の有機物液相部2の温度の
調節手段としては、実験では導管4から供給するガス化
剤温度によって調節したが、工業的実施においては間接
加熱、冷却等の公知の手段を併用することも可能であ
る。
In the experiment, the temperature of the organic liquid phase 2 at the bottom of the pyrolysis furnace 1 was controlled by the temperature of the gasifying agent supplied from the conduit 4, but in industrial practice, known methods such as indirect heating and cooling were used. It is also possible to use the means in combination.

【0019】熱分解ガスは冷却器3で100〜200℃
に冷却された後、ガス精製装置(図示なし)で清浄化さ
れる。なお、冷却器3のかわりに廃熱回収ボイラをおき
熱回収することもできる。導管8はスラッジ等の抜き出
し用として使用される。
The pyrolysis gas is cooled to 100 to 200 ° C. in the cooler 3.
After being cooled, it is cleaned by a gas purification device (not shown). Note that a waste heat recovery boiler may be provided instead of the cooler 3 to recover heat. The conduit 8 is used for extracting sludge or the like.

【0020】実験に使用した有機物は、本発明の効果が
確認できるよう熱安定性が高く、かつ熱分解操作時にダ
イオキシン類を生成しやすいPCBを約2重量%含有す
るトランス油(以下、供試材という)を使用した。供試
材の組成分析結果は炭素84.94重量%、水素14.
03重量%、塩素1.03重量%であり、燃焼時に煤等
の未燃カーボンを発生しやすい組成である。
The organic material used in the experiment was a transformer oil (hereinafter referred to as a test oil) having high thermal stability so that the effect of the present invention could be confirmed, and containing about 2% by weight of PCB which was liable to generate dioxins during the thermal decomposition operation. Material). The composition analysis result of the test material was 84.94% by weight of carbon and 14.
The composition is 03% by weight and 1.03% by weight of chlorine, and is a composition that easily generates unburned carbon such as soot during combustion.

【0021】熱分解ガスの試料採取は冷却器3出口の導
管7から文献1〔廃棄物学会誌、Vol.1、No.1、
P20(1990)〕に紹介されている方法で行うとと
もに、ダイオキシン類の分析もこの文献に準じて行っ
た。また、PCBの分析は文献2〔大阪市立環境科学研
究所報告調査研究年報、No.50(1987)P11
(1988)〕に準じて行い、その他の分析はJISに
基づいて行った。実験に使用した熱分解炉1の総内容積
は、64.5リットルでそのうち熱分解炉1底部の有機
物液だめ用として20リットルを供した。
Sampling of the pyrolysis gas is carried out from the conduit 7 at the outlet of the cooler 3 through the literature 1 [Journal of the Waste Society of Japan, Vol. 1, No. 1,
P20 (1990)], and the analysis of dioxins was performed according to this document. In addition, the analysis of PCB is described in Reference 2 [Osaka Municipal Environmental Science Research Institute Annual Report, No. 50 (1987) P11
(1988)], and other analyzes were performed based on JIS. The total internal volume of the thermal cracking furnace 1 used in the experiment was 64.5 liters, of which 20 liters were provided as a reservoir for organic substances at the bottom of the thermal cracking furnace 1.

【0022】(例1)焼却実験 燃焼焼却操作における煤等の未燃カーボンの発生状況、
PCBの分解状況、ダイオキシン類の生成状況、NOx
の発生状況を主体に調査した。熱分解炉1底部に予め供
試材20リットルを仕込んだ後、熱分解炉1の導管6取
付け部に併設されたプロパンガスバーナ(図示なし)で
分解炉1内を約1000℃に予熱した後、導管4からの
ガス化剤を徐々に吹込んでいく。その間有機物は分解炉
1底部の有機物液面が一定になるよう補給していき、こ
の補給有機物量が所定値になるようガス化剤供給量を調
節する。
(Example 1) Incineration experiment The state of generation of unburned carbon such as soot in a combustion incineration operation,
PCB decomposition status, dioxin generation status, NOx
The survey was conducted mainly on the situation of occurrence. After preliminarily charging 20 liters of the test material to the bottom of the pyrolysis furnace 1, the inside of the pyrolysis furnace 1 is preheated to about 1000 ° C. with a propane gas burner (not shown) attached to the conduit 6 mounting portion of the pyrolysis furnace 1. The gasifying agent from the conduit 4 is gradually blown. During this time, the organic matter is replenished so that the liquid level of the organic matter at the bottom of the cracking furnace 1 becomes constant, and the supply amount of the gasifying agent is adjusted so that the replenished organic matter amount becomes a predetermined value.

【0023】また、分解炉1内温度が所定値になるよ
う、導管6からの酸化ガス吹込み量を調節する。なお、
ガス化剤および導管6から供給される酸化ガスは、ばい
じん発生量を正確に評価するためフィルターで予め除じ
んしたものを使用した。
Further, the amount of oxidizing gas blown from the conduit 6 is adjusted so that the temperature inside the cracking furnace 1 becomes a predetermined value. In addition,
As the gasifying agent and the oxidizing gas supplied from the conduit 6, those which had been removed in advance by a filter were used in order to accurately evaluate the amount of generated dust.

【0024】分解炉1出口ガスの分析用試料採取は分解
炉1の運転が定常になった時点から実施した。実験結果
を表1に示す。
The sampling of the gas at the outlet of the cracking furnace 1 for analysis was carried out when the operation of the cracking furnace 1 became steady. Table 1 shows the experimental results.

【表1】 [Table 1]

【0025】実験結果から明らかなように、熱分解炉1
出口ガス中のPCBおよびダイオキシン類は検出限界以
下で、ばいじん濃度を測定誤差範囲内である。またNO
x濃度も極めて小さい値である。
As is clear from the experimental results, the pyrolysis furnace 1
PCB and dioxins in the outlet gas are below the detection limit, and the soot concentration is within the measurement error range. Also NO
The x concentration is also a very small value.

【0026】(例2)還元ガスの製造実験 供試材の供給量を例1と同じにし、ガス化剤に水蒸気と
酸素(純度:99容量%以上)を使用して還元ガスの製
造実験を例1と同様の手順で行った。
(Example 2) Production experiment of reducing gas The production amount of the test material was made the same as in Example 1, and the production experiment of the reducing gas was carried out using steam and oxygen (purity: 99% by volume or more) as the gasifying agent. The procedure was performed in the same manner as in Example 1.

【0027】熱分解炉1の定常運転時の実験結果を表2
に示す。
Table 2 shows the experimental results during steady operation of the pyrolysis furnace 1.
Shown in

【表2】 [Table 2]

【0028】この実験結果においても、PCB、
ダイオキシン類、ばいじんなどはほとんど検出されてお
らず、かつ燃料ガスあるいは化学原料用合成ガスとして
使用できる還元ガスが得られている。
In the results of this experiment, PCB,
Dioxins, dust and the like are hardly detected, and a reducing gas that can be used as a fuel gas or a synthesis gas for chemical raw materials is obtained.

【0029】PCBは熱分解が最も困難で、かつ熱分解
操作時に煤などが生成しやすい物質として知られている
が、かかる物質でも還元雰囲気で完全分解できることを
実験結果は示しており、本発明の効果は理解できよう。
Although PCB is known to be the most difficult to thermally decompose and is liable to produce soot and the like during the pyrolysis operation, experimental results show that such a substance can be completely decomposed in a reducing atmosphere. You can understand the effect.

【0030】なお、実施例では液状有機物の熱分解例を
示したが、熱可塑性プラスチックなど、加熱によって液
状となる有機物にも、本発明の方法が適用できること
は、同業者なら容易に理解できよう。
Although examples of thermal decomposition of liquid organic substances are shown in the examples, those skilled in the art can easily understand that the method of the present invention can be applied to organic substances which become liquid by heating, such as thermoplastics. .

【0031】[0031]

【発明の効果】本発明によれば、有機物、特に液状有機
物を有害物質を発生させることなく熱分解させることが
できるばかりでなく、化学原料として有益な還元ガスも
同時に生成させることができる。
According to the present invention, not only can organic substances, especially liquid organic substances be thermally decomposed without generating harmful substances, but also a reducing gas useful as a chemical raw material can be produced at the same time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の有機物の熱分解方法の一実施例の説明
FIG. 1 is an explanatory view of one embodiment of a method for thermally decomposing an organic substance of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹内 善幸 広島市西区観音新町四丁目6番22号 三 菱重工業株式会社 広島研究所内 (72)発明者 堀添 浩俊 広島市西区観音新町四丁目6番22号 三 菱重工業株式会社 広島研究所内 (56)参考文献 特開 平4−292689(JP,A) 特開 平6−135855(JP,A) 特開 昭51−28882(JP,A) 特開 平4−284206(JP,A) 特開 平2−218484(JP,A) 特開 昭53−39669(JP,A) 特開 昭62−46117(JP,A) 実開 昭60−38331(JP,U) (58)調査した分野(Int.Cl.6,DB名) F23G 5/027 A62D 3/00 B09B 3/00 C10J 3/00 F23G 7/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Yoshiyuki Takeuchi 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City Inside Hiroshima Research Laboratory, Sanishi Heavy Industries Co., Ltd. 22 Hiroshima Laboratory, Mitsubishi Heavy Industries, Ltd. (56) References JP-A-4-292689 (JP, A) JP-A-6-135855 (JP, A) JP-A-51-28882 (JP, A) JP JP-A-4-284206 (JP, A) JP-A-2-218484 (JP, A) JP-A-53-39669 (JP, A) JP-A-62-46117 (JP, A) JP-A-60-38331 (JP , U) (58) Fields investigated (Int. Cl. 6 , DB name) F23G 5/027 A62D 3/00 B09B 3/00 C10J 3/00 F23G 7/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 熱分解炉の底部に有機物の液相部を設
け、該液相部に水蒸気と酸素あるいは酸素含有ガスの混
合ガスを吹込んでその混合ガス中に有機物の蒸気を包含
させて熱分解滞域内に導入することを特徴とする有機物
の熱分解方法。
An organic liquid phase is provided at the bottom of a pyrolysis furnace, and a mixed gas of water vapor and oxygen or an oxygen-containing gas is blown into the liquid phase to contain the organic vapor in the mixed gas. A method for thermally decomposing organic substances, which is introduced into a decomposed region.
JP3100838A 1991-05-02 1991-05-02 Thermal decomposition method of organic matter Expired - Fee Related JP2948345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3100838A JP2948345B2 (en) 1991-05-02 1991-05-02 Thermal decomposition method of organic matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3100838A JP2948345B2 (en) 1991-05-02 1991-05-02 Thermal decomposition method of organic matter

Publications (2)

Publication Number Publication Date
JPH04332570A JPH04332570A (en) 1992-11-19
JP2948345B2 true JP2948345B2 (en) 1999-09-13

Family

ID=14284461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3100838A Expired - Fee Related JP2948345B2 (en) 1991-05-02 1991-05-02 Thermal decomposition method of organic matter

Country Status (1)

Country Link
JP (1) JP2948345B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6645442B2 (en) 2000-12-28 2003-11-11 Mitsubishi Heavy Industries, Ltd. Method and apparatus for producing methanol making use of biomass material
US6991769B2 (en) 2000-02-29 2006-01-31 Mitsubishi Heavy Industries, Ltd. Biomass gasifycation furnace and system for methanol synthesis using gas produced by gasifying biomass

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9410470D0 (en) * 1994-05-25 1994-07-13 Compact Power Ltd A combined pyrolysing gasifier and method of its operation
ATE198652T1 (en) * 1994-09-29 2001-01-15 Von Roll Umwelttechnik Ag METHOD FOR THE THERMAL TREATMENT OF WASTE MATERIAL, IN PARTICULAR WASTE
US8722002B2 (en) * 2011-09-06 2014-05-13 Dearborn Financial, Inc. System for recycling captured agglomerated diesel soot and related method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6991769B2 (en) 2000-02-29 2006-01-31 Mitsubishi Heavy Industries, Ltd. Biomass gasifycation furnace and system for methanol synthesis using gas produced by gasifying biomass
US6645442B2 (en) 2000-12-28 2003-11-11 Mitsubishi Heavy Industries, Ltd. Method and apparatus for producing methanol making use of biomass material

Also Published As

Publication number Publication date
JPH04332570A (en) 1992-11-19

Similar Documents

Publication Publication Date Title
US20230031504A1 (en) Two-stage plasma process for converting waste into fuel gas and apparatus therefor
US4864811A (en) Method for destroying hazardous organics
JP5227951B2 (en) Combined gasification and vitrification system
JPH06505667A (en) Method and device for detoxifying waste gas from waste incinerators
US5269235A (en) Three stage combustion apparatus
JP2948345B2 (en) Thermal decomposition method of organic matter
KR20220147600A (en) Raw material processing equipment and processing method
US20050070751A1 (en) Method and apparatus for treating liquid waste
JPS6182767A (en) Conversion of halogen-containing compound
JP2948344B2 (en) Thermal decomposition method of organic matter
EP0331723A1 (en) Method and system for clean incineration of wastes
JP2002089820A (en) Incinerating method for waste liquid/waste gas containing organic substance
US5022848A (en) Apparatus and method for heating a waste disposal system
JPH09273727A (en) Method for decomposing organic halogen compound
US5067978A (en) Method for the removal of lead from waste products
KR200204708Y1 (en) Apparatus for recycling industrial waste
JP3072981B2 (en) Smoke exhaust treatment method and apparatus
JP2000102777A (en) Heating system for waste
US20050079127A1 (en) Method and apparatus for destruction of liquid toxic wastes and generation of a reducing gas
JPH06220464A (en) Waste plastic treatment system
JPH1176755A (en) Decomposing method of dioxin derived from incineration furnace
JP2000266324A (en) Waste thermal decomposing disposal apparatus
JPS62169913A (en) Disposing method and device for organic chlorine series compound or waste containing organic chlorine series compound
Streichsbier Non-catalytic nitrogen oxide removal from gas turbine exhaust with cyanuric acid in a recirculating reactor
Santoleri Heat recovery—an economic benefit to hazardous waste incineration systems

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990608

LAPS Cancellation because of no payment of annual fees