JP2941683B2 - Non-destructive determination method of hydrogen erosion resistance in C-0.5Mo steel - Google Patents

Non-destructive determination method of hydrogen erosion resistance in C-0.5Mo steel

Info

Publication number
JP2941683B2
JP2941683B2 JP7094148A JP9414895A JP2941683B2 JP 2941683 B2 JP2941683 B2 JP 2941683B2 JP 7094148 A JP7094148 A JP 7094148A JP 9414895 A JP9414895 A JP 9414895A JP 2941683 B2 JP2941683 B2 JP 2941683B2
Authority
JP
Japan
Prior art keywords
thin film
steel
carbide
steel material
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7094148A
Other languages
Japanese (ja)
Other versions
JPH08271502A (en
Inventor
公俊 木村
良次 石垣
輝雄 渋谷
好則 鹿野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SEIKOSHO KK
Original Assignee
NIPPON SEIKOSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SEIKOSHO KK filed Critical NIPPON SEIKOSHO KK
Priority to JP7094148A priority Critical patent/JP2941683B2/en
Publication of JPH08271502A publication Critical patent/JPH08271502A/en
Application granted granted Critical
Publication of JP2941683B2 publication Critical patent/JP2941683B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、圧力容器等を構成する
C−0.5Mo鋼材の水素侵食抵抗性を非破壊的に、か
つ正確に判定することができる水素侵食抵抗性の非破壊
判定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-destructive method for determining the hydrogen erosion resistance of a C-0.5Mo steel material constituting a pressure vessel or the like in a non-destructive and accurate manner. It is about the method.

【0002】[0002]

【従来の技術】石油精製および石油化学工業で利用され
る圧力容器用材料は、高温・高圧水素環境下で長時間使
用すると、材料と環境の組み合わせによっては、水素侵
食と呼ばれる非可逆的な経時材料損傷を受けることが報
告されている。この水素侵食に対する抵抗性はCr、M
o等の合金元素を材料中に添加することにより改善され
ることが広く知られており、API(アメリカ石油協
会)が定めた通称ネルソン線図が材料選定指針として利
用されている。このネルソン線図では、例えば、炭素
鋼、C−0.5Mo鋼、1.0Cr−0.5Mo鋼等に
ついて、水素圧と稼働温度との関係において安全領域を
定めたものであり、安全限界を超えるものでは水素侵食
の可能性を示唆している。
2. Description of the Related Art Materials for pressure vessels used in petroleum refining and petrochemical industries are subject to irreversible aging, called hydrogen erosion, depending on the combination of materials and the environment when used under a high-temperature and high-pressure hydrogen environment for a long time. Material damage has been reported. The resistance to this hydrogen attack is Cr, M
It is widely known that improvement can be achieved by adding an alloying element such as o to a material, and a so-called Nelson diagram defined by an API (American Petroleum Institute) is used as a material selection guideline. In this Nelson diagram, for example, for carbon steel, C-0.5Mo steel, 1.0Cr-0.5Mo steel, etc., a safety region is determined in relation to hydrogen pressure and operating temperature, and a safety limit is set. Anything above indicates a possible hydrogen attack.

【0003】しかし、C−0.5Mo鋼はネルソン線図
の安全領域でも、非常に低い確率で水素侵食損傷を受け
る事例が報告されており、1990年刊行第4版のネル
ソン線図では、C−0.5Mo鋼は材料選定指針から除
外され、より水素侵食抵抗性が低い炭素鋼と同等に扱わ
れている。上記指針からの削除により、今後、上記の用
途に新規にC−0.5Mo鋼を使用することは事実上禁
止されたが、現在も長期運転を継続中の機器は多数現存
しており、これらに対しては超音波探傷試験等の非破壊
検査によって安全性を確認しながら使用することが推奨
されている。
[0003] However, it has been reported that C-0.5Mo steel suffers hydrogen erosion damage with a very low probability even in the safety region of the Nelson diagram. -0.5Mo steel is excluded from the material selection guidelines and is treated as equivalent to carbon steel having lower resistance to hydrogen erosion. Due to the removal from the above guidelines, the use of new C-0.5Mo steel for the above applications has been virtually prohibited in the future, but there are still a number of devices that are still in long-term operation. It is recommended that non-destructive testing such as ultrasonic testing be used while confirming safety.

【0004】[0004]

【発明が解決しようとする問題点】ところで、現在では
検査すべき対象機器の水素侵食抵抗性を明瞭に判定する
方法がなく、検査対象の優先順位を機器毎に決定するこ
とができない。このため、検査時期は、実際には水素侵
食抵抗性が高いものも含めて、最も水素侵食抵抗性が低
いものを基準として比較的短い間隔で設定している。し
かしながら、上記検査に際しては検査対象の機器の稼働
を停止して、長い時間をかけて検査を行うため運転休止
期間が長く、稼働効率が大幅に低下するという問題があ
る。また、水素侵食が発生しているおそれの高いものを
優先的に検査できないので、水素侵食の発見が遅れる可
能性もある。
By the way, at present, there is no method for clearly determining the hydrogen erosion resistance of the equipment to be inspected, and the priority of the inspection object cannot be determined for each equipment. For this reason, the inspection time is set at relatively short intervals based on the lowest hydrogen erosion resistance, including those with high hydrogen erosion resistance. However, at the time of the above inspection, the operation of the device to be inspected is stopped, and the inspection is performed over a long time, so that there is a problem that the operation suspension period is long and the operation efficiency is greatly reduced. In addition, since it is not possible to preferentially inspect an object having a high possibility of occurrence of hydrogen erosion, the discovery of hydrogen erosion may be delayed.

【0005】本発明は、上記事情を背景としてなされた
ものであり、鋼材の水素侵食抵抗性を効率よく、しかも
正確に判定することができる、C−0.5Mo鋼材にお
ける水素侵食抵抗性の非破壊判定方法を提供することを
目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and it has been found that the resistance to hydrogen erosion of C-0.5Mo steel can be determined efficiently and accurately. An object of the present invention is to provide a destruction determination method.

【0006】[0006]

【課題を解決するための手段】すなわち本発明のうち、
第1の発明のC−0.5Mo鋼材における水素侵食抵抗
性の非破壊判定方法は、C−0.5Mo鋼材表面に薄膜
を付着させ、この薄膜に鋼材表面部の金属組織様を転写
した後、この薄膜を剥離してパーライト組織とベイナイ
ト組織の量比を測定し、一方、鋼材表面に他の薄膜を付
着させ、該薄膜に鋼材表面部の炭化物を付着させた後、
この薄膜を剥離して鋼材表面から炭化物を取り出し、
23 炭化物とFe C炭化物の量比を測定し、上記
金属組織と炭化物の種別および量に基づいて鋼材の水
素侵食抵抗性を判定することを特徴とする。
Means for Solving the Problems That is, in the present invention,
The nondestructive method for determining hydrogen erosion resistance in a C-0.5Mo steel material according to the first invention is as follows: a thin film is adhered to a surface of a C-0.5Mo steel material, and a metal structure of a steel material surface portion is transferred to the thin film. The thin film was peeled off and the pearlite structure and bainite
After measuring the quantitative ratio of the microstructure, on the other hand, attaching another thin film to the steel surface, and attaching the carbide of the steel surface to the thin film,
Removed carbides from the steel surface by peeling the thin film, M
The method is characterized in that the amount ratio between 23 C 6 carbide and Fe 3 C carbide is measured, and the hydrogen erosion resistance of the steel material is determined based on the metal structure and the type and amount ratio of the carbide.

【0007】第2の発明のC−0.5Mo鋼材における
水素侵食抵抗性の非破壊試験方法は、第1の発明におい
て、C−0.5Mo鋼材表面の所定箇所を研磨した後、
薄膜による金属組織様の転写を行い、引き続き、鋼材表
面の同一箇所を研磨した後、薄膜による炭化物の取り出
しを行うことを特徴とする。
[0007] The nondestructive test method for hydrogen erosion resistance of C-0.5Mo steel material according to the second invention is characterized in that, in the first invention, after polishing a predetermined portion of the surface of the C-0.5Mo steel material,
It is characterized in that the metal structure is transferred by a thin film, and then the same portion of the steel material surface is polished, and then the carbide is removed by the thin film.

【0008】本発明で対象となる鋼材は、いわゆるC−
0.5Mo鋼と称されるものであり、Moを0.40〜
0.65%程度含有する鋼である。この鋼種は規格にお
いても示されており、ASTM規格ではA204Gr.
A,B,C(主に鋼板)やA182−F1(主に鍛造
品)として示されており、その代表的成分範囲(重量
%)を示すと以下のとおりである。 C:0.28以下、Si:0.13〜0.45、Mn:
1.0以下、P:0.045以下、S:0.045以
下、Mo:0.40〜0.65 残部:Feおよびその他不純物 なお、本発明の判定方法は、C−0.5Mo鋼材を判定
するものとして開発されたが、その他に、いわゆる1.
0Cr−0.5Mo鋼材や1.25Cr−0.5Mo鋼
材等の低Cr低Mo鋼材の水素侵食抵抗性の判定方法と
して使用することも可能である。対象鋼材としては、現
に実機を構成している材料が好適であるが、本発明法と
しては予め水素侵食抵抗性を知るために組立前の材料を
対象とすることも可能である。また、本発明に用いる薄
膜としては、プラスチック、カーボン等を適宜、使用す
ることができ、金属組織の転写用と、炭化物の取り出し
用とで異なる種別の薄膜を用いることも可能である。ま
た、薄膜の付着は、予め用意されたものを鋼材表面に付
着させる他に、プラスチック液等を鋼材表面に塗り、溶
媒の蒸発によって薄膜を形成するものであってもよい。
[0008] The steel material targeted in the present invention is a so-called C-
It is called 0.5Mo steel, and Mo is set to 0.40 to
Steel containing about 0.65%. This steel type is also shown in the standard, and according to the ASTM standard, A204 Gr.
It is shown as A, B, C (mainly steel plate) or A182-F1 (mainly forged product), and the typical component range (% by weight) is as follows. C: 0.28 or less, Si: 0.13 to 0.45, Mn:
1.0 or less, P: 0.045 or less, S: 0.045 or less, Mo: 0.40 to 0.65 Remainder: Fe and other impurities The determination method of the present invention uses a C-0.5Mo steel material. It was developed as a judge, but in addition, so-called 1.
It can also be used as a method for determining the hydrogen erosion resistance of low Cr low Mo steels such as 0Cr-0.5Mo steel and 1.25Cr-0.5Mo steel. As the target steel material, a material that actually constitutes an actual machine is suitable. However, in the method of the present invention, a material before assembly can be used in order to know hydrogen corrosion resistance in advance. In addition, as the thin film used in the present invention, plastic, carbon, or the like can be appropriately used, and different types of thin films can be used for transferring a metal structure and taking out carbide. In addition, the thin film may be formed by applying a plastic liquid or the like to the surface of the steel material and forming the thin film by evaporating the solvent, instead of applying a prepared material to the surface of the steel material.

【0009】上記薄膜の付着に際しては、通常は鋼材表
面を研磨し、適当な腐食液で腐食する。なお、炭化物の
取り出しに際しては、炭化物を容易に取り出せるよう
に、金属組織の転写の場合よりも腐食性の強い腐食液を
使用する。金属組織についての測定は、金属組織の種
別、量比(例えば面積比)を例えば顕微鏡等による観察
によって行い、また、炭化物の判別では、例えばX線を
用いた回折によって炭化物の種別、量比(回折線強度
比)によって同定する。なお量比は、金属組織または炭
化物のそれぞれの種別における面積等の量を比較した結
果であり、比較される量の種別も適宜選定される。ま
た、その比較は定量的に行うほか、量の多少の程度を示
すことによって行うものであってもよい。
When the thin film is attached, usually, the surface of the steel material is polished and corroded with an appropriate etchant. When removing the carbide, a corrosive liquid that is more corrosive than in the case of transferring the metal structure is used so that the carbide can be easily removed. The measurement of the metal structure is performed by observing the type and amount ratio (for example, the area ratio) of the metal structure by, for example, a microscope or the like. In the determination of the carbide, the type and the amount ratio of the carbide are determined by, for example, diffraction using X-rays. (Diffraction line intensity ratio). In addition, the quantitative ratio is a result of comparing the amounts such as the area in each type of the metal structure or the carbide, and the type of the amount to be compared is appropriately selected. In addition, the comparison may be performed quantitatively, or may be performed by indicating the degree of the quantity.

【0010】[0010]

【作用】すなわち本発明によれば、C−0.5Mo鋼材
の金属組織および炭化物の種別と量比に関するデータが
効率的かつ非破壊的に得られる。また、本発明者達の研
究によって水素侵食抵抗性と、金属組織(パーライト組
織とベイナイト組織)および炭化物(M 23 炭化物
とFe C炭化物)の種別、量比との間には、相関関係
があることが明らかになっており、前記測定データをこ
の関係に当てはめることによって試験鋼材の水素侵食抵
抗性を正確かつ速やかに知ることができる。また、金属
組織と炭化物との間にも相関関係があるため、この相関
関係に基づいて前記測定データが適正なものであるかど
うかの判定を行うこともでき、これにより水素侵食抵抗
性の判定結果がより正確になる。 上記判定方法を実機
に適用すれば、各実機に使用されている鋼材の水素侵食
抵抗性を正確かつ容易に知ることができ、複数の実機材
料について水素侵食抵抗性に基づいた位置付けを行うこ
とができる。したがって、超音波探傷等の非破壊検査の
優先順位を容易に定めることができ、この順位に従って
超音波探傷等の非破壊検査を行うことにより効率的な検
査が可能になり、また水素侵食の早期発見を可能にし
て、機器の安全性を高めることもできる。
According to the present invention, data relating to the metal structure of C-0.5Mo steel and the type and quantity ratio of carbide can be obtained efficiently and nondestructively. In addition, the present inventors' research has shown that hydrogen erosion resistance and metallographic structure (Perlite group)
Texture and bainite structure) and carbide (M 23 C 6 carbide)
It has been clarified that there is a correlation between the type and the amount ratio of Fe 3 C carbide) , and by applying the measured data to this relationship, the hydrogen erosion resistance of the test steel material can be accurately and promptly determined. You can know. Further, since there is also a correlation between the metal structure and the carbide, it is also possible to determine whether the measurement data is appropriate based on the correlation, thereby determining the hydrogen erosion resistance. The result will be more accurate. If the above determination method is applied to actual machines, it is possible to accurately and easily know the hydrogen erosion resistance of the steel material used in each actual machine, and to perform positioning based on the hydrogen erosion resistance for a plurality of actual machines. it can. Therefore, priorities of non-destructive inspection such as ultrasonic inspection can be easily determined, and by performing non-destructive inspection such as ultrasonic inspection in accordance with this order, efficient inspection becomes possible. It also allows for discovery and increases the security of the device.

【0011】さらに第2の発明によれば、金属組織の転
写に先立って必要な研磨がなされているため、炭化物の
取り出しに際しては簡略な研磨で足り、研磨に要する作
業が大幅に軽減されて作業性が大幅に向上する。特に実
機では表面の腐食が激しいため相当な研磨が必要である
が、上記方法によれば、負担の大きな研磨作業は最初の
作業で足りることになり、その後の研磨作業の負担は極
めて小さなものとなる。また、採取場所が同一となるた
め、金属組織および炭化物が正確に把握され、より正確
な判定結果が得られる。
Further, according to the second aspect of the invention, since the necessary polishing is performed prior to the transfer of the metal structure, simple removal is sufficient for removing the carbide, and the work required for the removal is greatly reduced. The performance is greatly improved. Particularly in actual equipment, the surface is severely corroded, so considerable polishing is necessary.However, according to the above method, a heavy polishing work is sufficient for the first work, and the burden of subsequent polishing work is extremely small. Become. In addition, since the sampling location is the same, the metal structure and the carbide can be accurately grasped, and a more accurate determination result can be obtained.

【0012】[0012]

【実施例】表1に示す組成のC−0.5Mo鋼を真空誘
導加熱炉で溶製して25kg鋼塊を製造し、この鋼塊を
35mm厚に鍛造した後、表2に示すように冷却速度を
変えて焼準し、さらに焼戻し処理を行って試験片を作製
した(未暴露材)。次ぎに、上記鋼材の表面をダイヤモ
ンドペースト等の研磨剤を用いて、約60分をかけて表
面研磨を実施した。鏡面研磨する面積は最低でも35×
25mmとする。鏡面研磨後、アルコールに浸したネル
で鋼材表面をふき取り洗浄し、2%硝酸アルコール溶液
からなる腐食液を用いてエッチングし、この表面にアセ
チルセルロース製の薄膜を付着させた。鋼材表面はエッ
チングによって金属組織様が露呈しており、その様が薄
膜に転写された。その後、薄膜を剥離して光学顕微鏡に
よって金属組織の種別とその面積比を測定した。
EXAMPLE A C-0.5Mo steel having the composition shown in Table 1 was melted in a vacuum induction heating furnace to produce a 25 kg ingot, and this ingot was forged to a thickness of 35 mm. A test piece was prepared by normalizing at a different cooling rate and further performing a tempering treatment (unexposed material). Next, the surface of the steel material was polished using an abrasive such as a diamond paste for about 60 minutes. Mirror polishing area is at least 35x
25 mm. After mirror polishing, the surface of the steel material was wiped off with a flannel dipped in alcohol, washed and etched using a corrosive solution composed of a 2% alcohol nitric acid solution, and a thin film made of acetyl cellulose was adhered to the surface. The metal surface was exposed on the surface of the steel material by etching, which was transferred to the thin film. Thereafter, the thin film was peeled off, and the type of the metal structure and the area ratio thereof were measured by an optical microscope.

【0013】[0013]

【表1】 [Table 1]

【0014】次ぎに、炭化物を取り出すため前記研磨面
と同一の箇所を約5分をかけて表面研磨し、その後、3
0%硝酸アルコール溶液、あるいは30%硝酸+5%ピ
クリン酸アルコール溶液からなる研磨液を用いて鋼材表
面をエッチングした。エッチングにより鋼材表面が黒色
を呈したところで、アセチルセルロース製の薄膜を酢酸
メチルに浸して気泡が入らないように鋼材表面に付着さ
せ、付着後、3〜5分後に鋼材表面から薄膜を剥離し
た。上記した表面の研磨から薄膜の剥離までの作業を
4、5回繰り返し、採取した各薄膜をアセトンを入れた
ビーカーに入れ、超音波洗浄を3〜5秒実施して、薄膜
から炭化物を離脱させた。その後、直ちに薄膜をアセト
ン溶液中から除去した。この作業が遅れるとアセトン溶
液中で薄膜が溶解してゼリー状になり、炭化物との分離
が困難になる。炭化物を取り出した後、10〜20分放
置して炭化物を沈殿させ、上澄み液を駒込ピペット等で
抜き取り、上澄み液がほとんどなくなった時点で、アル
コールを加え超音波洗浄を実施した。最後に、吸引濾過
器に注ぎ炭化物をフィルター上に得た。フィルターは良
く乾燥させ、X線回折にて炭化物の同定を行った。
Next, in order to remove carbides, the same portion as the polished surface is polished for about 5 minutes, and
The steel material surface was etched using a polishing solution consisting of a 0% nitric acid alcohol solution or a 30% nitric acid + 5% picric acid alcohol solution. When the surface of the steel material turned black by etching, the thin film made of acetylcellulose was immersed in methyl acetate and attached to the surface of the steel material so as to prevent air bubbles from entering. The above-mentioned operations from polishing of the surface to peeling of the thin film are repeated four or five times, and each collected thin film is put into a beaker containing acetone, and ultrasonic cleaning is performed for 3 to 5 seconds to remove carbides from the thin film. Was. Thereafter, the thin film was immediately removed from the acetone solution. If this operation is delayed, the thin film dissolves in the acetone solution and becomes jelly-like, which makes it difficult to separate from the carbide. After removing the carbide, the carbide was allowed to settle for 10 to 20 minutes, and the supernatant was extracted with a Komagome pipette or the like. When the supernatant almost disappeared, alcohol was added and ultrasonic cleaning was performed. Finally, it was poured into a suction filter to obtain char on the filter. The filter was dried well and the carbide was identified by X-ray diffraction.

【0015】上記のようにして行った金属組織観察、お
よび炭化物のX線回折による同定の結果を表2に示す。
図1は、予め、C−0.5Mo鋼材で金属組織と炭化物
をパラメータとして水素侵食の損傷結果を調査した結果
を示すグラフである。このグラフから明らかなように、
金属組織と炭化物との間には相関関係があり、パーライ
ト組織(M236炭化物)が主体であるほど水素侵食損
傷が発生しており、また、ベイナイト組織(Fe3C炭
化物)を主体とする場合には水素侵食損傷が発生してい
ない。前記した試験結果を図1に当てはめると、初析フ
ェライト/パーライト組織(炭化物はM236)主体で
ある鋼材は、初析フェライト/ベイナイト組織(炭化物
はFe3C)が主体である鋼材に比較して水素侵食抵抗
性が小さいと判定される。
Table 2 shows the results of observation of the metal structure and identification of carbides by X-ray diffraction performed as described above.
FIG. 1 is a graph showing the results of an examination of the damage result of hydrogen erosion in a C-0.5Mo steel material in advance using the metal structure and carbide as parameters. As is clear from this graph,
There is a correlation between the metal structure and the carbide, and the more the pearlite structure (M 23 C 6 carbide) is the main, the more hydrogen erosion damage occurs, and the more the bainite structure (Fe 3 C carbide) is the main. No hydrogen erosion damage has occurred. When the above test results are applied to FIG. 1, a steel material mainly composed of a pro-eutectoid ferrite / pearlite structure (carbide is M 23 C 6 ) is a steel material mainly composed of a pro-eutectoid ferrite / bainite structure (carbide is Fe 3 C). It is determined that the hydrogen erosion resistance is small in comparison.

【0016】[0016]

【表2】 [Table 2]

【0017】次ぎに、前記各試験片に対し、実際の水素
侵食損傷を試験するため、水素暴露試験を行った。具体
的には、オートクレーブで500℃、水素圧力125k
gf/cm2で400時間保持して水素に暴露させた
後、引張試験による破断延性および水素侵食により生成
したメタンに相当する水素分析を行った。 図2に暴露
試験前後の引張試験における破断絞りおよび暴露試験後
の水素量(侵食量)を示す。この結果から、Fe3C型
炭化物を有する初析フェライト/ベイナイト組織(試験
片No.1,2)は破断絞りの低下が認められず、水素
侵食に対し十分な安全性が確保されている。一方、M23
6型炭化物を有する初析フェライト/パーライト組織
(試験片No.3,4)が出現すると暴露後の破断絞り
が急激に低下し、脆化が相当進行しており、これらはパ
ーライト組織の量が多いほど顕著となっている。これら
の結果は、前記した水素侵食抵抗性の判定結果と一致し
ており、本発明法によって水素侵食抵抗性に対する適正
な判定が行われていることが明らかとなった。
Next, a hydrogen exposure test was performed on each of the test pieces in order to test actual hydrogen erosion damage. Specifically, at 500 ° C. in an autoclave and a hydrogen pressure of 125 k
After holding at gf / cm 2 for 400 hours and exposing to hydrogen, analysis of hydrogen equivalent to methane generated by hydrogen erosion and fracture ductility by a tensile test was performed. FIG. 2 shows the drawing reduction in the tensile test before and after the exposure test and the hydrogen amount (erosion amount) after the exposure test. From these results, the proeutectoid ferrite / bainite structure having Fe 3 C-type carbide (specimen Nos. 1 and 2) did not show a decrease in fracture drawing, and sufficient safety against hydrogen erosion was secured. On the other hand, M 23
When a pro-eutectoid ferrite / pearlite structure having C 6 type carbide (specimen Nos. 3 and 4) appears, the rupture drawing after exposure sharply decreases and embrittlement considerably progresses. The more the number, the more remarkable. These results are consistent with the above-described determination results of the hydrogen erosion resistance, and it has been clarified that the proper determination of the hydrogen erosion resistance has been performed by the method of the present invention.

【0018】次ぎに、C−0.5Mo鋼が使用された実
機の石油精製用圧力容器において、同様の判定を行い、
その水素侵食抵抗性について順位付けを行った。この順
位付けに従って安全性を確認するための超音波探傷等の
優先順位を定めた。この優先順位に基づいて超音波探傷
等の非破壊検査を行う方法によれば、効率的な検査およ
び安全性の向上が期待される。
Next, the same judgment is made in an actual oil refining pressure vessel using C-0.5Mo steel.
The hydrogen erosion resistance was ranked. According to this ranking, the priorities of ultrasonic flaw detection and the like for confirming safety were determined. According to the method of performing non-destructive inspection such as ultrasonic inspection based on this priority, efficient inspection and improvement of safety are expected.

【0019】[0019]

【発明の効果】以上説明したように本発明のC−0.5
Mo鋼材の水素侵食抵抗性の非破壊的判定方法は、C−
0.5Mo鋼材表面に薄膜を付着させ、この薄膜に鋼材
表面部の金属組織様を転写した後、この薄膜を剥離して
パーライト組織とベイナイト組織の量比を測定し、一
方、鋼材表面に他の薄膜を付着させ、該薄膜に鋼材表面
部の炭化物を付着させた後、この薄膜を剥離して鋼材表
面から炭化物を取り出し、 23 炭化物とFe
炭化物の量比を測定し、上記金属組織と炭化物の種別お
よび量比に基づいて鋼材の水素侵食抵抗性を判定するの
で、正確かつ容易に対象鋼材の水素侵食抵抗性を判定す
ることができ、実機への応用において、非破壊検査を効
率よく行うことが可能になる。さらに、石油精製工業お
よび石油化学工業に利用され、さらに高温・高圧水素環
境中でC−0.5Mo鋼を必要とする装置等の信頼性・
安全性が向上する効果もある。
As described above, according to the present invention, C-0.5
The non-destructive method for determining the hydrogen erosion resistance of Mo steel is C-C
A thin film is adhered to the surface of the 0.5Mo steel material, and after transferring the metal structure on the surface of the steel material to the thin film, the thin film is peeled off.
The quantitative ratio of the pearlite structure and the bainite structure was measured.On the other hand, another thin film was adhered to the steel surface, and the carbide on the steel surface was adhered to the thin film. , M 23 C 6 carbide and Fe 3 C
Since the amount ratio of carbide is measured and the hydrogen erosion resistance of the steel material is determined based on the metal structure and the type and amount ratio of the carbide, it is possible to accurately and easily determine the hydrogen erosion resistance of the target steel material, In application to actual equipment, nondestructive inspection can be performed efficiently. Furthermore, the reliability of equipment used in the petroleum refining and petrochemical industries and requiring C-0.5Mo steel in a high-temperature, high-pressure hydrogen environment.
There is also an effect of improving safety.

【0020】また、上記判定方法において、鋼材表面の
所定箇所を研磨した後、薄膜による金属組織様の転写を
行い、引き続き、鋼材表面の同一箇所を研磨した後、薄
膜による炭化物の取り出しを行えば、研磨作業が簡略化
され、判定作業を効率よく行うことができ、作業性が大
幅に向上する。
Further, in the above-mentioned determination method, after polishing a predetermined portion of the surface of the steel material, the metal structure is transferred by a thin film, and subsequently, the same portion of the surface of the steel material is polished, and then the carbide is removed by the thin film. In addition, the polishing operation is simplified, the judgment operation can be performed efficiently, and the workability is greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1は、金属組織と炭化物とによる水素侵食
損傷傾向を示すグラフである。
FIG. 1 is a graph showing a tendency of hydrogen erosion damage caused by a metal structure and a carbide.

【図2】 図2は、実施例における各試験片の水素暴露
試験結果である。
FIG. 2 shows a result of a hydrogen exposure test of each test piece in an example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鹿野 好則 北海道室蘭市茶津町4番地1 日鋼検査 サービス株式会社内 (56)参考文献 特開 平5−87803(JP,A) 特開 平2−263160(JP,A) 特開 平5−164685(JP,A) 特開 平1−97859(JP,A) 特開 昭55−101855(JP,A) 特開 平6−148062(JP,A) 特開 平6−74951(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01N 33/20 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Yoshinori Kano 4-1, Chazu-cho, Muroran-shi, Hokkaido Japan Steel Inspection Service Co., Ltd. (56) References JP-A-5-87803 (JP, A) JP-A-2 JP-A-263160 (JP, A) JP-A-5-164685 (JP, A) JP-A-1-97859 (JP, A) JP-A-55-101855 (JP, A) JP-A-6-148806 (JP, A) JP-A-6-74951 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G01N 33/20

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 C−0.5Mo鋼材表面に薄膜を付着さ
せ、この薄膜に鋼材表面部の金属組織様を転写した後、
この薄膜を剥離してパーライト組織とベイナイト組織の
量比を測定し、一方、鋼材表面に他の薄膜を付着させ、
該薄膜に鋼材表面部の炭化物を付着させた後、この薄膜
を剥離して鋼材表面から炭化物を取り出し、 23
炭化物とFe C炭化物の量比を測定し、上記金属組織
と炭化物の種別および量に基づいて鋼材の水素侵食抵
抗性を判定することを特徴とするC−0.5Mo鋼材に
おける水素侵食抵抗性の非破壊判定方法
1. A thin film is adhered to the surface of a C-0.5Mo steel material, and after transferring a metal structure on the surface of the steel material to the thin film,
The thin film was peeled off and the ratio of the pearlite structure to the bainite structure was measured.On the other hand, another thin film was adhered to the steel material surface,
After depositing the carbides of the steel surface portion the thin film, removed carbides from the steel surface by peeling the thin film, M 23 C 6
Measuring the amount ratio of carbide and Fe 3 C carbide, and determining the hydrogen erosion resistance of the steel material based on the metal structure and the type and amount ratio of the carbide, wherein the hydrogen erosion resistance of the C-0.5Mo steel material is characterized. Non-destructive method of determining sex
【請求項2】 C−0.5Mo鋼材表面の所定箇所を研
磨した後、薄膜による金属組織様の転写を行い、引き続
き、鋼材表面の同一箇所を研磨した後、薄膜による炭化
物の取り出しを行うことを特徴とする請求項1記載のC
−0.5Mo鋼材における水素侵食抵抗性の非破壊判定
方法
2. Polishing a predetermined portion of the surface of a C-0.5Mo steel material, transferring a metal structure like a thin film, and subsequently polishing the same portion of the steel material surface, and then taking out carbide by the thin film. C according to claim 1, characterized in that:
Non-destructive determination method of hydrogen erosion resistance in -0.5Mo steel
JP7094148A 1995-03-29 1995-03-29 Non-destructive determination method of hydrogen erosion resistance in C-0.5Mo steel Expired - Fee Related JP2941683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7094148A JP2941683B2 (en) 1995-03-29 1995-03-29 Non-destructive determination method of hydrogen erosion resistance in C-0.5Mo steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7094148A JP2941683B2 (en) 1995-03-29 1995-03-29 Non-destructive determination method of hydrogen erosion resistance in C-0.5Mo steel

Publications (2)

Publication Number Publication Date
JPH08271502A JPH08271502A (en) 1996-10-18
JP2941683B2 true JP2941683B2 (en) 1999-08-25

Family

ID=14102306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7094148A Expired - Fee Related JP2941683B2 (en) 1995-03-29 1995-03-29 Non-destructive determination method of hydrogen erosion resistance in C-0.5Mo steel

Country Status (1)

Country Link
JP (1) JP2941683B2 (en)

Also Published As

Publication number Publication date
JPH08271502A (en) 1996-10-18

Similar Documents

Publication Publication Date Title
Chang et al. Understanding the effect of surface finish on stress corrosion crack initiation in warm-forged stainless steel 304L in high-temperature water
KR20210073759A (en) Austenite Stainless Steel Life Evaluation Method
JP2941683B2 (en) Non-destructive determination method of hydrogen erosion resistance in C-0.5Mo steel
Parker Initiation of stress corrosion cracks in a low alloy steel
JP3064107B2 (en) High-temperature damage evaluation method for austenitic heat-resistant steel
EP2895839B1 (en) Element for making replicas in material surface investigations and method suited to carry out such investigations
JP2011179083A (en) Etching solution and etching method for high-chromium steel, replica sampling method and creep damage assessment method
JP7295412B2 (en) Evaluation method for metallic materials
Farrar Inclusions and susceptibility to lamellar tearing of welded structural steels
CN114136746A (en) Use method of martensite precipitation hardening stainless steel free ferrite corrosive agent
Isselin et al. Assessment of the effects of cold work on crack initiation in a light water environment using the small-punch test
JPH0674951A (en) Creep damage evaluating method for ferrite heat resistant steel
Scheil Some Observations of Stress-Corrosion Cracking in Austenitic Stainless Alloys
JP2000097843A (en) Corrosion evaluation method for zirconium-series metal and zirconium-based alloy
Singh et al. Low temperature sensitization on the orthogonal surfaces of prior deformed AISI 304LN and aged at 673 K to 873 K (400° C to 600° C)
JPH09257788A (en) Method for non-destructive judgement for creep damage of crmov steel product
JP2001264227A (en) Deterioration evaluation method of coating layer
JPH10227754A (en) High temperature damage evaluation method for temper martensite stainless steel
JP7279860B2 (en) Method for evaluating creep life of Ni alloy parts
Rhodes et al. Fracture analysis of exfoliation in an aluminium alloy
Sivanathan Effect of Chloride Concentrations and Temperature on Prestressed Austenitic Stainless Steel 304 Based on Pressure Vessel in Oil and Gas Industry
Ahmed et al. Stress corrosion cracking of austenitic stainless steel in chloride environment
Duma et al. Damage State Assessment of Metal Pipes of a Power Plant, Subjected to Thermal Stresses
US2531154A (en) Process for producing stainless steel immune to intercrystalline corrosion
Groeneveld et al. Mechanical testing methods

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees