JPH09257788A - Method for non-destructive judgement for creep damage of crmov steel product - Google Patents

Method for non-destructive judgement for creep damage of crmov steel product

Info

Publication number
JPH09257788A
JPH09257788A JP8094866A JP9486696A JPH09257788A JP H09257788 A JPH09257788 A JP H09257788A JP 8094866 A JP8094866 A JP 8094866A JP 9486696 A JP9486696 A JP 9486696A JP H09257788 A JPH09257788 A JP H09257788A
Authority
JP
Japan
Prior art keywords
carbide
creep damage
membrane
steel product
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8094866A
Other languages
Japanese (ja)
Other versions
JP3604499B2 (en
Inventor
Hiroharu Wada
洋流 和田
Kimitoshi Kimura
公俊 木村
Yasuhiko Tanaka
泰彦 田中
Toru Ishiguro
徹 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP09486696A priority Critical patent/JP3604499B2/en
Publication of JPH09257788A publication Critical patent/JPH09257788A/en
Application granted granted Critical
Publication of JP3604499B2 publication Critical patent/JP3604499B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To judge a creep damage by bonding a membrane to the surface of a CrMoV steel product to transfer carbide of the surface part of the steel product to the membrane and peeling this membrane to take out carbide from the surface of the steel material to measure the kind and quantity ratio thereof. SOLUTION: A membrane is bonded to the surface of a steel product to transfer carbide to the membrane and this membrane is peeled to take out carbide and the kind and quantity ratio of carbide are measured to simply and accurately inspect a creep damage degree. Since carbide of the steel product can be sampled by a definite etching method, sampling can be simply and accurately performed without an individual difference of a measuring person. Sampled carbide is analyzed by X-ray analysis to efficiently obtain data in a non- destructive manner.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は発電用ロータ、車
室、蒸気管等の高温部位のクリープ損傷度を非破壊的に
かつ正確に判定することができるクリープ損傷の非破壊
的判定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nondestructive method for determining creep damage, which is capable of accurately and nondestructively determining the degree of creep damage at high temperature parts such as a rotor for power generation, a passenger compartment, and a steam pipe. Is.

【0002】[0002]

【従来の技術】発電用設備等に多く利用されているCr
MoV鋼材料は、高温応力下で長時間使用するとクリー
プ損傷と呼ばれる非可逆的な経時材料損傷を受けること
が知られており、このクリープ損傷が進行すると該材料
で構成されている設備の安全性等が損なわれる。ところ
で、現在、火力発電設備の多くは経年化が進んでおり、
設備(特にロータ、車室等の高温部位)の信頼性を確保
する為には、設備を構成する材料のクリープ損傷を非破
壊的にかつ的確に評価することが重要である。従来、材
料のクリープ損傷度合を非破壊的に評価する方法として
は材料の金属組織を薄膜に転写するレプリカ法が知られ
ており、該レプリカ法では、Aパラメータ法、ボイド面
積率法が用いられている。また、試験方法としては、こ
のレプリカ法の他に、硬さ法、超音波法がある。
2. Description of the Related Art Cr widely used in power generation equipment, etc.
It is known that MoV steel material undergoes irreversible aging material damage called creep damage when used under high temperature stress for a long time, and when this creep damage progresses, the safety of equipment constructed of the material is known. Etc. are damaged. By the way, many of the thermal power generation facilities are now aging,
In order to ensure the reliability of equipment (especially high-temperature parts such as rotors and passenger compartments), it is important to accurately and non-destructively evaluate the creep damage of the material constituting the equipment. Conventionally, as a method for nondestructively evaluating the degree of creep damage of a material, a replica method of transferring a metallographic structure of the material to a thin film is known. In the replica method, an A parameter method and a void area ratio method are used. ing. In addition to the replica method, a hardness method and an ultrasonic method are available as test methods.

【0003】[0003]

【発明が解決しようとする問題点】上記したレプリカ法
のなかで主流なのがAパラメータ法であるが、この手法
で組織判定を行うには実機から正確にレプリカ膜に組織
を転写しなければならず、この転写模様からクリープキ
ャビティを判別して定量的に計測するには熟練した技術
を要する。 また、ボイド面積率法も、同様である。さ
らに、硬さ法は実機に対して現場で測定する際、硬度計
が設置できなかったり、できても水平に設置できない場
合も多く、誤差が生じやすいなどの問題がある。超音波
法は、劣化の初期(=ボイドの体積率の少ない)には感
度が低く、ボイドを検出できない可能性がある。本発明
は、上記事情を背景として開発されたものであり、Cr
MoV鋼材で構成された発電用設備等のクリープ損傷度
合を簡易かつ正確に測定することができるCrMoV鋼
材におけるクリープ損傷の非破壊的判定方法を提供する
ことを目的とする。
The A-parameter method is the main method among the above-mentioned replica methods, but in order to determine the structure by this method, it is necessary to accurately transfer the structure from the actual machine to the replica film. First, a skillful technique is required to determine the creep cavity from this transferred pattern and quantitatively measure it. The same applies to the void area ratio method. Further, the hardness method has a problem in that when a field test is performed on an actual machine, a hardness meter cannot be installed, or even if it is possible, it cannot be installed horizontally, and an error easily occurs. The ultrasonic method has low sensitivity in the early stage of deterioration (= the void volume ratio is small), and the void may not be detected. The present invention was developed against the background of the above circumstances.
It is an object of the present invention to provide a non-destructive method for determining creep damage in CrMoV steel that can easily and accurately measure the degree of creep damage in power generation equipment and the like made of MoV steel.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
本発明のCrMoV鋼材におけるクリープ損傷の非破壊
的判定方法は、CrMoV鋼材表面に薄膜を付着させ、
この薄膜に鋼材表面部の炭化物を転写した後、該薄膜を
剥離して鋼材表面から炭化物を取り出し、この炭化物の
種別と量比を測定し、該測定結果に基づいてクリープ損
傷を判定することを特徴とする。
In order to solve the above problems, the nondestructive method for determining the creep damage in CrMoV steel material of the present invention is to attach a thin film to the surface of CrMoV steel material,
After transferring the carbide on the surface of the steel material to this thin film, peel off the thin film to take out the carbide from the surface of the steel material, measure the type and amount ratio of this carbide, and determine the creep damage based on the measurement result. Characterize.

【0005】なお、本発明で対象となる鋼材は、いわゆ
るCrMoV鋼と称され、Cr、Mo、Vを必須成分と
して含有するものであり、例えば、C:0.25%以
下、Si:0.15〜0.35%、Mn:1%以下、
P:0.012%、S:0.015%、Ni:0.75
%以下、Cr:1.05〜1.50%、Mo:1.0〜
1.5%、V:0.2〜0.3%を含有し、残部がFe
およびその他の不純物からなるものを挙げることができ
る。また、適用鋼材としては、現に実機を構成している
材料が好適であるが、本発明法としては予め耐クリープ
性を評価するために組立前の材料を対象とすることも可
能である。
The steel material targeted by the present invention is so-called CrMoV steel, which contains Cr, Mo, and V as essential components. For example, C: 0.25% or less, Si: 0. 15-0.35%, Mn: 1% or less,
P: 0.012%, S: 0.015%, Ni: 0.75
% Or less, Cr: 1.05 to 1.50%, Mo: 1.0 to
1.5%, V: 0.2 to 0.3%, balance Fe
And other impurities. Further, as the applied steel material, the material which actually constitutes the actual machine is suitable, but in the method of the present invention, it is also possible to target the material before assembling in order to evaluate the creep resistance in advance.

【0006】さらに、本発明に用いる薄膜としては、プ
ラスチック、カーボン等を適宜、使用することができ
る。また、薄膜の付着は、予め用意されたものを鋼材表
面に付着させる他に、プラスチック液等を鋼材表面に塗
り、溶媒の蒸発によって薄膜を形成するものであっても
よい。上記薄膜の付着に際しては、通常は鋼材表面を研
磨し、適当な腐食液で腐食するが、炭化物を容易に取り
出せるように、ある程度腐食性の強い腐食液を使用す
る。薄膜に転写された炭化物の判別は、例えばX線を用
いた回折によって炭化物の種別、量比(回折線強度比)
を同定することにより行うことができる。なお量比は定
量的に行う他、量の多少の程度を示すことによって行う
ものであってもよい。
Further, as the thin film used in the present invention, plastic, carbon, or the like can be appropriately used. Further, the thin film may be adhered not only by adhering a thin film prepared in advance to the surface of the steel material, but also by applying a plastic liquid or the like on the surface of the steel material and evaporating the solvent to form the thin film. When depositing the thin film, the surface of the steel material is usually polished and corroded with an appropriate corrosive liquid, but a corrosive liquid having a strong corrosiveness is used so that carbides can be easily taken out. The type of carbide and the quantity ratio (diffraction line intensity ratio) of the carbide transferred to the thin film can be determined by, for example, diffraction using X-rays.
Can be carried out by identifying The quantitative ratio may be determined quantitatively, or may be determined by indicating the degree of the amount.

【0007】[0007]

【作用】すなわち本発明によれば、CrMoV鋼材の炭
化物(例えば、M236とFe3C)の採取を一定の腐食
方法により行うことができるため、該採取を測定者の個
人差を生ずることなく簡便かつ的確に行うことができ
る。そして、採取された炭化物をX線回折等によって分
析することによって炭化物の種別と量比(例えばX線回
折強度比)に関するデータが効率的かつ非破壊的に得ら
れる。
That is, according to the present invention, since the carbides (for example, M 23 C 6 and Fe 3 C) of CrMoV steel can be collected by a certain corrosive method, the collection depends on the individual measurer. Can be performed simply and accurately without Then, by analyzing the collected carbide by X-ray diffraction or the like, data relating to the type and amount ratio (for example, X-ray diffraction intensity ratio) of the carbide can be obtained efficiently and nondestructively.

【0008】そして、本発明者達の研究によってクリー
プ損傷度合と炭化物の種別、量比との間には、相関関係
があることが明らかになっており、前記測定データをこ
の関係に当てはめることによって試験鋼材のクリープ損
傷程度を正確かつ速やかに知ることができる。上記判定
方法を実機に適用すれば、各実機に使用されている鋼材
のクリープ損傷程度を正確かつ容易に知ることができ、
したがって鋼材のクリープ損傷程度を早期に知って、該
鋼材を用いた設備の信頼性を高めることができる。
Further, it has been clarified by the study by the present inventors that there is a correlation between the degree of creep damage and the type and amount ratio of carbides. By applying the measured data to this relation, It is possible to know the creep damage degree of the test steel material accurately and promptly. By applying the above judgment method to the actual machine, it is possible to accurately and easily know the degree of creep damage of the steel material used in each actual machine,
Therefore, the degree of creep damage of the steel material can be known at an early stage, and the reliability of equipment using the steel material can be improved.

【0009】[0009]

【発明の実施の形態】以下に、本発明の一実施形態を説
明する。常法により溶製されたCrMoV鋼材で構成さ
れた機器の一部表面をダイヤモンドペースト等の研磨剤
を用いて、約60分をかけて表面研磨する。鏡面研磨す
る面積は最低でも35×25mmとするのが望ましい。
なお、研磨時間は、鋼材表面の表面性状によっても異な
るので、上記時間に限定されるものではなく、研磨方法
も特に限定されない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below. A part of the surface of the device made of CrMoV steel material melted by a conventional method is surface-polished for about 60 minutes by using an abrasive such as diamond paste. The area to be mirror-polished is preferably at least 35 × 25 mm.
Since the polishing time varies depending on the surface properties of the steel material surface, the polishing time is not limited to the above time and the polishing method is not particularly limited.

【0010】次に、前記研磨面を30%硝酸アルコール
溶液、あるいは30%硝酸+5%ピクリン酸アルコール
溶液からなる研磨液を用いてエッチングする。なお、本
発明としてはこの他の研磨液を使用することができる。
この実施形態では、上記したように鋼材の表面を機械研
磨した後、化学研磨(エッチング)したが、本発明とし
ては、その方法や内容について限定されるものではな
い。要は、炭化物を良好に採取できるように鋼材表面を
清浄化できるものであればよく、既に清浄化されている
ものであれば研磨作業を省略することも可能である。
Next, the polished surface is etched using a polishing solution composed of a 30% nitric acid alcohol solution or a 30% nitric acid + 5% picric acid alcohol solution. Note that other polishing liquids can be used in the present invention.
In this embodiment, as described above, the surface of the steel material is mechanically polished and then chemically polished (etched), but the present invention is not limited to the method and content. In short, it is only necessary that the surface of the steel material can be cleaned so that the carbide can be collected well, and if it is already cleaned, the polishing operation can be omitted.

【0011】続いて 前記エッチングにより鋼材表面が
黒色を呈したところで、アセチルセルロース製の薄膜を
酢酸メチルに浸して気泡が入らないように鋼材表面に付
着させ、付着後、3〜5分後に鋼材表面から薄膜を剥離
する。なお、本発明としてはこの薄膜の種別や付着方法
も特には限定されない。上記した表面の研磨から薄膜の
剥離までの作業を4、5回繰り返し、採取した各薄膜を
アセトンを入れたビーカーに入れ、超音波洗浄を3〜5
秒実施して、薄膜から炭化物を離脱させる。その後、直
ちに薄膜をアセトン溶液中から除去する。この作業が遅
れるとアセトン溶液中で薄膜が溶解してゼリー状にな
り、炭化物との分離が困難になる。炭化物を取り出した
後、10〜20分放置して炭化物を沈殿させ、上澄み液
を駒込ピペット等で抜き取り、上澄み液がほとんどなく
なった時点で、アルコールを加え超音波洗浄を実施す
る。最後に、吸引濾過器に注ぎ炭化物をフィルター上に
得る。フィルターは良く乾燥させ、X線回折にて炭化物
の同定を行い、炭化物の種別と量比を導き出す。なお、
炭化物の測定方法は特に限定されないが、上記したよう
にX線回折により行うのが簡便で、かつ的確に行うこと
ができるという点で有利である。
Next, when the surface of the steel material turns black due to the etching, a thin film made of acetylcellulose is immersed in methyl acetate to adhere to the surface of the steel material so that air bubbles do not enter, and 3 to 5 minutes after the adhesion, the surface of the steel material is Peel the thin film from. In addition, in the present invention, the type of the thin film and the attaching method are not particularly limited. The above-mentioned operations from surface polishing to peeling of the thin film are repeated 4 or 5 times, and each thin film thus collected is placed in a beaker containing acetone and ultrasonic cleaning is performed for 3 to 5 times.
Carry out the carbide from the thin film for 2 seconds. Immediately thereafter, the thin film is removed from the acetone solution. If this work is delayed, the thin film dissolves in the acetone solution to form a jelly, which makes it difficult to separate from the carbide. After taking out the charcoal-based material, the charcoal-based material is left to stand for 10 to 20 minutes to precipitate the charcoal-based material, and the supernatant liquid is extracted with a Komagome pipette or the like. When the supernatant liquid is almost lost, alcohol is added to carry out ultrasonic cleaning. Finally, pour into a suction filter to obtain charcoal on the filter. The filter is dried well, the carbide is identified by X-ray diffraction, and the type and amount ratio of the carbide are derived. In addition,
The method for measuring the carbide is not particularly limited, but it is advantageous to perform the X-ray diffraction as described above, because it is simple and can be performed accurately.

【0012】[0012]

【実施例】表1に示す成分の供試材を用意し、それぞれ
の供試材に対し、上記した実施形態と同様にしてX線回
折による炭化物分析を行った。なお、供試材No.1〜
5は、発電機用タービンロータの実機材であり、供試材
No.6は、クリープ試験片用鋼材、供試材No.7
は、熱時効材用の鋼材である。
[Examples] Sample materials having the components shown in Table 1 were prepared, and each sample material was analyzed for carbides by X-ray diffraction in the same manner as in the above embodiment. In addition, the sample material No. 1 to
No. 5 is the actual equipment of the turbine rotor for the generator, and the sample material No. No. 6 is a steel material for creep test piece and a test material No. 7
Is a steel material for thermal aging.

【0013】[0013]

【表1】 [Table 1]

【0014】X線回折による炭化物の同定の結果、M23
6型炭化物とFe3C型炭化物が分析された。これら炭
化物のX線回折強度比(M236型炭化物のFe3C型炭
化物に対する強度比率)を求め、この結果をラーソンミ
ラーパラメータとの関係に基づいて図1に示した。な
お、ラーソンミラーパラメータは、温度Tと経過時間t
をパラメータとして、(T+273)*(logt+2
0)の関係式で表されるものであり、高温供用の程度を
示す指数として一般に使用されている。
As a result of the identification of the carbide by X-ray diffraction, M 23
C 6 type carbides and Fe 3 C type carbides were analyzed. The X-ray diffraction intensity ratio of these carbides (the intensity ratio of the M 23 C 6 type carbide to the Fe 3 C type carbide) was determined, and the results are shown in FIG. 1 based on the relationship with the Larson Miller parameter. The Larson Miller parameters are the temperature T and the elapsed time t.
As a parameter, (T + 273) * (logt + 2
It is expressed by the relational expression (0) and is generally used as an index showing the degree of high temperature service.

【0015】図1の結果、各供試材は、ラーソンミラー
パラメータの増加、すなわち高温供用が大きくなるに連
れて回折強度比が増加(M236型炭化物の割合が増
加)している。そして透過型電子顕微鏡によっても高温
供用された供試材には粒界に粗大なM236型炭化物が
生成されていることが確認された。また、供試材のうち
で応力負荷の状態で加熱されたものとそうでないものと
の間には、強度比変化において挙動に差異があり、応力
負荷によって炭化物の経時変化挙動が異ってくることが
認められる。すなわち、図1から、炭化物の変化とクリ
ープ損傷度合との間には有為な関係があり、炭化物の量
比がクリープ損傷度合の判定に有効に使用し得ることが
示されている。
As a result of FIG. 1, in each test material, the diffraction intensity ratio increases (the proportion of M 23 C 6 type carbide increases) as the Larson mirror parameter increases, that is, as the high temperature service increases. It was also confirmed by a transmission electron microscope that coarse M 23 C 6 type carbides were formed at the grain boundaries in the test material that was used at high temperature. Also, among the test materials, there is a difference in the behavior of the strength ratio change between those that are heated under stress and those that are not, and the time-dependent behavior of carbides varies depending on the stress load. Is recognized. That is, FIG. 1 shows that there is a significant relationship between the change in carbides and the degree of creep damage, and the amount ratio of carbides can be effectively used to determine the degree of creep damage.

【0016】[0016]

【発明の効果】以上説明したように、本発明のCrMo
V鋼材におけるクリープ損傷の非破壊的判定方法によれ
ば、CrMoV鋼材表面に薄膜を付着させ、この薄膜に
鋼材表面部の炭化物を転写した後、該薄膜を剥離して鋼
材表面から炭化物を取り出し、この炭化物の種別と量比
を測定し、該測定結果に基づいてクリープ損傷を判定す
るので、正確かつ容易に対象鋼材のクリープ損傷度合を
判定することができ、実機に対しても、非破壊検査を効
率よく行うことが可能になる。
As described above, the CrMo of the present invention is used.
According to the non-destructive determination method of creep damage in V steel, a thin film is attached to the surface of a CrMoV steel, the carbide on the surface of the steel is transferred to the thin film, the thin film is peeled off, and the carbide is taken out from the surface of the steel. The type and amount ratio of this carbide is measured, and the creep damage is determined based on the measurement result. Therefore, the degree of creep damage of the target steel material can be accurately and easily determined. Can be performed efficiently.

【図面の簡単な説明】[Brief description of drawings]

【図1】 図1は、供試材におけるラーソンミラーパラ
メータと炭化物のX線回折強度比との関係を示すグラフ
である。
FIG. 1 is a graph showing the relationship between the Larson mirror parameter and the X-ray diffraction intensity ratio of carbide in the test material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石黒 徹 北海道室蘭市茶津町4番地 株式会社日本 製鋼所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toru Ishiguro 4 Chazu-cho, Muroran-shi, Hokkaido Inside Japan Steel Works, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 CrMoV鋼材表面に薄膜を付着させ、
この薄膜に鋼材表面部の炭化物を転写した後、該薄膜を
剥離して鋼材表面から炭化物を取り出し、この炭化物の
種別と量比を測定し、該測定結果に基づいてクリープ損
傷を判定することを特徴とするCrMoV鋼材における
クリープ損傷の非破壊的判定方法
1. A thin film is attached to the surface of a CrMoV steel material,
After transferring the carbide on the surface of the steel material to this thin film, peel off the thin film to take out the carbide from the surface of the steel material, measure the type and amount ratio of this carbide, and determine the creep damage based on the measurement result. Non-destructive determination method for creep damage in characteristic CrMoV steel
JP09486696A 1996-03-25 1996-03-25 Non-destructive judgment method of creep damage in CrMoV steel Expired - Fee Related JP3604499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09486696A JP3604499B2 (en) 1996-03-25 1996-03-25 Non-destructive judgment method of creep damage in CrMoV steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09486696A JP3604499B2 (en) 1996-03-25 1996-03-25 Non-destructive judgment method of creep damage in CrMoV steel

Publications (2)

Publication Number Publication Date
JPH09257788A true JPH09257788A (en) 1997-10-03
JP3604499B2 JP3604499B2 (en) 2004-12-22

Family

ID=14121974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09486696A Expired - Fee Related JP3604499B2 (en) 1996-03-25 1996-03-25 Non-destructive judgment method of creep damage in CrMoV steel

Country Status (1)

Country Link
JP (1) JP3604499B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180735A (en) * 2000-04-14 2008-08-07 Toshiba Corp Method apparatus for diagnosing life of component
JP2009139137A (en) * 2007-12-04 2009-06-25 Babcock Hitachi Kk Graphitization damage diagnosing method of carbon steel and mo steel for boiler
JP2010101848A (en) * 2008-10-27 2010-05-06 Ihi Corp Damage evaluation method of high-chromium steel product
JP2011179878A (en) * 2010-02-26 2011-09-15 Tokyo Electric Power Co Inc:The Method for evaluating toughness of high temperature use member
WO2014147830A1 (en) * 2013-03-22 2014-09-25 中国電力株式会社 Method for predicting remaining creep life expectancy of product with bainite structure and method for producing standard curve used in this prediction method
EP2971566A4 (en) * 2013-03-14 2016-04-20 United Technologies Corp Turbine disk fatigue rejuvenation
WO2016151955A1 (en) * 2015-03-26 2016-09-29 三菱重工業株式会社 Method for estimating initial creep strength of heat-resistant member, and method for assessing remaining service life thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180735A (en) * 2000-04-14 2008-08-07 Toshiba Corp Method apparatus for diagnosing life of component
JP2008249732A (en) * 2000-04-14 2008-10-16 Toshiba Corp Method and device for diagnosing life of member
JP4649497B2 (en) * 2000-04-14 2011-03-09 株式会社東芝 Method for diagnosing lifetime of member and method and apparatus for diagnosing the lifetime
JP4745366B2 (en) * 2000-04-14 2011-08-10 株式会社東芝 Method for diagnosing lifetime of member and apparatus for diagnosing the lifetime
JP2009139137A (en) * 2007-12-04 2009-06-25 Babcock Hitachi Kk Graphitization damage diagnosing method of carbon steel and mo steel for boiler
JP2010101848A (en) * 2008-10-27 2010-05-06 Ihi Corp Damage evaluation method of high-chromium steel product
JP2011179878A (en) * 2010-02-26 2011-09-15 Tokyo Electric Power Co Inc:The Method for evaluating toughness of high temperature use member
EP2971566A4 (en) * 2013-03-14 2016-04-20 United Technologies Corp Turbine disk fatigue rejuvenation
US10024162B2 (en) 2013-03-14 2018-07-17 United Technologies Corporation Turbine disk fatigue rejuvenation
WO2014147830A1 (en) * 2013-03-22 2014-09-25 中国電力株式会社 Method for predicting remaining creep life expectancy of product with bainite structure and method for producing standard curve used in this prediction method
WO2016151955A1 (en) * 2015-03-26 2016-09-29 三菱重工業株式会社 Method for estimating initial creep strength of heat-resistant member, and method for assessing remaining service life thereof
JP2016183900A (en) * 2015-03-26 2016-10-20 三菱重工業株式会社 Initial creep resistant estimation method and residual life estimation method for heat resistant member

Also Published As

Publication number Publication date
JP3604499B2 (en) 2004-12-22

Similar Documents

Publication Publication Date Title
Papazian et al. Sensors for monitoring early stage fatigue cracking
WO2000034760A1 (en) Electrochemical noise technique for corrosion
JPS63180851A (en) Creep-damage decision method of ferromagnetic work
JPH09257788A (en) Method for non-destructive judgement for creep damage of crmov steel product
Bahr et al. Relationships between acoustic emission signals and physical phenomena during indentation
JP2000304710A (en) Method for measuring degree of fatigue due to rolling fatigue
US20010005392A1 (en) Method of determining the quality of adhesion in a laminar structure
JPH0634625A (en) High temperature damage evaluation of austenitic heat resistant steel
JP3997178B2 (en) Nondestructive creep damage evaluation method for CrMoV steel
JPH1019826A (en) Apparatus for measuring corrosion of metallic material
Gl Standard practice for preparing, cleaning, and evaluation corrosion test specimens
JPH0674951A (en) Creep damage evaluating method for ferrite heat resistant steel
JPH01129154A (en) Method and apparatus for inspecting embrittlement point of metal material
JP3534373B2 (en) Stress corrosion cracking diagnostic device
JP2507760B2 (en) Deterioration diagnosis method for turbine components
JP5663896B2 (en) Method for evaluating toughness of high-temperature components
JPH08271502A (en) Method for determining hydrogen corrosion resistance of c-0.5mo steel member nondestructively
JPH04235346A (en) Method for detecting grain-boundary segregation property of metal material
JP3064110B2 (en) High-temperature damage evaluation method for austenitic heat-resistant steel
JP2732029B2 (en) Evaluation method and evaluation device for metal cleaning process
JP4434631B2 (en) Diagnosis method for neutron irradiated components
JP2615044B2 (en) Evaluation method for remaining life of heat-resistant steel
JPH0381638A (en) Method for obtaining replica of metallic structure
JPH08145864A (en) Method for measuring creep life consumption rate of material of high-temperature device
JP2000171418A (en) Non-destructive estimation method of creep strain quantity of heat-resisting steel

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040929

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071008

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees