WO2014147830A1 - Method for predicting remaining creep life expectancy of product with bainite structure and method for producing standard curve used in this prediction method - Google Patents
Method for predicting remaining creep life expectancy of product with bainite structure and method for producing standard curve used in this prediction method Download PDFInfo
- Publication number
- WO2014147830A1 WO2014147830A1 PCT/JP2013/058372 JP2013058372W WO2014147830A1 WO 2014147830 A1 WO2014147830 A1 WO 2014147830A1 JP 2013058372 W JP2013058372 W JP 2013058372W WO 2014147830 A1 WO2014147830 A1 WO 2014147830A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- product
- relationship
- hardness
- creep
- difference
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/40—Investigating hardness or rebound hardness
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0058—Kind of property studied
- G01N2203/0069—Fatigue, creep, strain-stress relations or elastic constants
- G01N2203/0071—Creep
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/0202—Control of the test
- G01N2203/0212—Theories, calculations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/0202—Control of the test
- G01N2203/0212—Theories, calculations
- G01N2203/0218—Calculations based on experimental data
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/022—Environment of the test
- G01N2203/0222—Temperature
- G01N2203/0226—High temperature; Heating means
Definitions
- the present invention relates to a method for predicting the remaining creep life of a product having a bainite structure and a method for creating a calibration curve used in this prediction method.
- An object of the present invention is to provide a method for predicting the creep remaining life of a product having a bainite structure and a method for creating a calibration curve used in this prediction method.
- the method for producing a calibration curve used in the method for predicting the creep remaining life of a product having a bainite structure according to the present invention is the first relationship between hardness and Larson mirror parameters of a first product having a bainite structure and deteriorated by heating.
- a calibration curve representing the third relationship between the hardness of the second product and the difference is created by calculating the difference between the hardness of the first product and the hardness of the second product at a predetermined Larson mirror parameter using And the step of obtaining the fourth relationship between the hardness and the damage rate of the second product, the third relationship and the fourth relationship, and the difference and the damage rate of the second product.
- the method for predicting the creep remaining life of a product having a bainite structure according to the present invention may use a calibration curve created in this way.
- the method for predicting the remaining creep life of a product having a bainite structure includes a step of obtaining a first relationship between hardness and Larson mirror parameter of a first product having a bainite structure and deteriorated by heating, and a bainite structure.
- a predetermined Larson using a step of obtaining a second relationship between the hardness and the Larson mirror parameter of the second product deteriorated by heating and pressurization, and the first relationship and the second relationship. Determining the third relationship between the hardness of the second product and the difference by determining the difference between the hardness of the first product and the hardness of the second product in the mirror parameters; and the hardness and damage of the second product.
- the products that predict the creep remaining life, the first product, and the second product are preferably hollow tubes, and may be, for example, boiler piping having a bent portion.
- the pressurization is preferably performed by applying an internal pressure.
- the hardness is Vickers hardness.
- the temperature applied to the first product and the temperature applied to the second product are the same.
- the creep remaining amount is determined from the relationship between the amount of plastic deformation when the product is subjected to high temperature and high pressure conditions and the damage rate of the product.
- a method for obtaining the lifetime has been generally used.
- an attempt was made to predict the remaining creep life from the relationship between the amount of plastic deformation and the damage rate of the product. occured.
- Products with a bainite structure are firmer than products with a ferrite or pearlite structure, so the amount of deformation is very small when the damage rate is low, and the remaining life at the stage where the damage rate is low is accurate. It is difficult to predict.
- a product having a bainite structure undergoes a large deformation only when the damage rate is high, but once the deformation occurs, it suddenly breaks, so the life expectancy at the stage where the damage rate is high is predicted. Is complicated because it requires frequent measurement.
- the damage rate may be lower than the actual rate, resulting in the risk of unexpected breakage.
- the present inventor has completed the method for predicting the remaining creep life of a product having a bainite structure according to the present invention by paying attention to the hardness of the product having a bainite structure.
- the method for predicting the remaining creep life according to the present invention can predict the remaining creep life of a product having a bainite structure even when the damage rate of the product is small. Further, the creep remaining life prediction method according to the present invention can predict the remaining creep life of a product having a bainite structure even at a stage where the damage rate of the product is large.
- the creep remaining life prediction method according to the present invention can appropriately predict the creep remaining life of a product having a bainite structure. Specifically, it is as follows.
- the method for predicting the remaining creep life of a product having a bainite structure includes a step of obtaining a first relationship between hardness and Larson mirror parameter of a first product having a bainite structure and deteriorated by heating, and a bainite structure.
- a predetermined Larson using a step of obtaining a second relationship between the hardness and the Larson mirror parameter of the second product deteriorated by heating and pressurization, and the first relationship and the second relationship. Determining the third relationship between the hardness of the second product and the difference by determining the difference between the hardness of the first product and the hardness of the second product in the mirror parameters; and the hardness and damage of the second product.
- the first product deteriorated by heating refers to a product having a bainite structure deteriorated by being placed under normal pressure and a constant high temperature.
- the temperature range is not particularly limited as long as the first product has a bainite structure.
- the temperature range may be 210 ° C to 550 ° C, and preferably 350 ° C to 550 ° C.
- the 2nd product deteriorated by heating and pressurization means the product which has a bainite structure
- the temperature range is not particularly limited as long as the second product has a bainite structure.
- the temperature range may be 210 ° C to 550 ° C, and preferably 350 ° C to 550 ° C.
- the temperature applied to the first product and the temperature applied to the second product may be the same or different, but are preferably the same.
- the pressure range is not particularly limited as long as it is higher than normal pressure (0.1 MPa), but may be, for example, 0.2 MPa to 1000 MPa, preferably 0.3 MPa to 500 MPa, and preferably 0.5 MPa to 300 MPa. It is more preferable that
- the method of applying pressure is not particularly limited. For example, it may be performed by a uniaxial creep test or an internal pressure creep test. However, when the structure of the second product is a hollow tube, it is performed by an internal pressure creep test. It is preferable.
- the internal pressure creep test is a method for predicting or measuring the remaining life or life of a hollow tube by applying an internal pressure to the hollow tube in a high-temperature furnace and creep-breaking the hollow tube as necessary.
- the internal pressure creep test can be performed on hollow tubes, the effects of altered layers such as oxides on the outer surface and inner surface of the hollow tube that occur when the hollow tube is actually used as boiler piping, for example. It is excellent in that it can be tested. Furthermore, since the stress due to the internal pressure is applied to the hollow tube as in the case where it is actually used in a boiler, it is possible to accurately predict or measure the remaining life or life.
- the structure of the first product and the second product, and the structure of the product having a bainite structure that is the target of the creep remaining life are not particularly limited, and can be, for example, a hollow tube, a plate, or a rod. Is preferably a hollow tube.
- the cross section of the hollow tube may have any shape, for example, it may be circular, elliptical, or polygonal, but it does not have corners considering the strength of the hollow tube. It is preferably a circle or an ellipse, and more preferably a circle.
- a hollow tube for example, a boiler pipe having a bent portion can be cited.
- boiler piping has been considered to have a ferrite structure or a pearlite structure, and thus the creep remaining life has been predicted according to a method for predicting the creep remaining life of a product having a ferrite structure or pearlite structure.
- the present inventor has found that the bent portion changes into a bainite structure with the slow heating when the bent portion of the boiler piping is created. Therefore, if the creep remaining life of a boiler pipe having a bent portion is predicted using the creep remaining life prediction method according to the present invention, it is possible to accurately predict the creep remaining life of the boiler pipe. .
- the structure of the first product, the structure of the second product, and the structure of the product having a bainite structure that is the target of prediction of the remaining creep life are the same as long as they are made of the same material having the bainite structure. It may be different or different, but the same is preferable.
- the method for measuring the hardness of each product is not particularly limited, and a known method can be used. However, it is preferable to measure Vickers hardness or micro Vickers hardness, and measure Vickers hardness. Is more preferable. When measuring the Vickers hardness, a load of 1 kg or more is used, and when measuring the micro Vickers hardness, a load of less than 1 kg is used. Hardness measurement may be performed at only one location of the product, but considering the improvement of accuracy, it is performed at multiple locations and the average value of the measured values obtained is adopted as the hardness of the product. It is preferable. The hardness of the product is preferably measured at a plurality of different damage rates of the product.
- the product damage rate is a ratio representing how much time has elapsed with respect to the life of the product.
- the lifetime of a product can be determined by known methods, for example, by measuring a product of the same structure made from the same material as the product by heating and / or pressurizing until it actually breaks.
- the Larson mirror parameter LMP is calculated from the heating temperature, heating time and hardness of the first product and the second product.
- T heating temperature expressed in absolute temperature (K)
- t r is the heating time (h)
- C is a constant
- 20 is preferably used as C.
- the first relationship between the hardness of the first product and the Larson mirror parameter obtained in this way is obtained. If this relationship is made into a graph, for example, it becomes a curve.
- this relationship is made into a graph, for example, it becomes a curve.
- the relationship between the hardness of the first product and the Larson mirror parameter is obtained. Also good.
- the hardness and Larson mirror in each of these products A relationship with parameters may be obtained, and a relationship common to these products may be obtained.
- Example 1 of the present application two types of products, a product heated at 525 ° C. and a product heated at 550 ° C., were used, and the approximate curve shown in FIG. 1 was obtained as a relationship common to these products.
- the hardness of the second product is measured, and further, the Larson mirror parameter LMP is calculated from the heating temperature, heating time, and hardness of the second product.
- a second relationship between the hardness of the second product thus obtained and the Larson mirror parameter is determined. If this relationship is made into a graph, for example, it becomes a curve.
- the relationship between the hardness of the second product and the Larson mirror parameter only the product a heated at a certain temperature and pressurized at a certain pressure is used as a product deteriorated by heating and pressurization. You may obtain
- Example 1 of the present application two types of products, a product heated at 525 ° C. and pressurized at 240 MPa and a product heated at 550 ° C. and pressurized at 145 MPa, are common to these products. As a relationship, an approximate curve shown in FIG. 1 was obtained.
- the lifetime of these 2 or more types of products is comparable.
- the same degree means that the lifetimes of two or more types of products are preferably within 20% of each other, and more preferably within 10% of each other.
- a person skilled in the art can appropriately set the temperature and pressure applied to each product so that two or more types of products have the same life.
- the difference between the hardness of the first product deteriorated by heating and the hardness of the second product deteriorated by heating and pressurization in the Larson mirror parameter is obtained.
- the hardness of the first product is 191 HV and the hardness of the second product is 190 HV when the Larson mirror parameter is 19.0
- the hardness of the first product and the first The difference between the hardness of the two products is 1.
- the third relationship between the hardness difference between the two products and the hardness of the second product is obtained. It is preferable that the obtained relationship is substantially proportional at least in part, and desirably in whole. That is, when a calibration curve representing this relationship is created, it becomes a substantially straight line at least partially, preferably as a whole.
- the accuracy of the creep remaining life prediction method according to the present invention can be evaluated based on whether or not the third relationship between the hardness difference between the two products and the hardness of the second product is proportional. . For example, if there is a proportional relationship between the hardness difference between the two products and the hardness of the second product in the entire measured region, the creep remaining life prediction method according to the present invention is applied to the entire region. By using it, the creep remaining life of a product having a bainite structure can be accurately measured.
- the relationship between the hardness difference between the two products and the hardness of the second product is proportional, but the hardness of the second product is In the region of less than 150, if this relationship is an exponential function or the like and is not proportional, by using the method for predicting the remaining creep life according to the present invention when the hardness of the product to be predicted is 150 or more, It can be seen that the creep remaining life of the product can be accurately predicted. In this case, although the accuracy decreases in the region where the hardness of the product to be predicted is less than 150, the creep remaining life of the product can be predicted using the creep remaining life prediction method according to the present invention. Alternatively, the remaining creep life of the product may be predicted using known alternative methods.
- the third relationship between the hardness difference between the first product and the second product and the hardness of the second product is proportional.
- the fourth relationship between the hardness of the second product and the damage rate is obtained by converting the hardness of the second product into the damage rate of the second product when the hardness is given.
- the fifth relationship between the difference in hardness between the two products and the damage rate of the second product is obtained. It is preferable that the obtained relationship is substantially proportional at least in part, and desirably in whole. That is, when a calibration curve representing this relationship is created, it becomes a substantially straight line at least partially, preferably as a whole.
- the fifth relationship between the hardness difference between the two products and the damage rate of the second product is proportional.
- the accuracy of the creep remaining life prediction method according to the present invention can be evaluated depending on whether or not it is present. For example, if the relationship between the hardness difference between the two products and the damage rate of the second product is proportional to the total damage rate, the prediction is made by using the creep remaining life prediction method according to the present invention. Regardless of the value of the damage rate of the target product, the creep remaining life of the product having a bainite structure can be accurately measured.
- the relationship between the hardness difference between the two products and the damage rate of the second product is proportional.
- the damage rate of the product to be predicted is 0.8 or less, the remaining creep life according to the present invention It can be seen that the creep remaining life of the product can be accurately predicted by using this prediction method. In this case, when the damage rate of the product to be predicted is greater than 0.8, the accuracy decreases, but the creep remaining life of the product is predicted using the method for predicting the remaining creep life according to the present invention. Alternatively, the remaining creep life of the product may be predicted using a known alternative method.
- the method for predicting the remaining creep life according to the present invention is based on whether the difference in hardness between the first product and the second product and the damage rate of the second product are in a proportional relationship.
- a product having a bainite structure it is possible to evaluate to what extent the remaining creep life can be predicted. For this reason, it is possible to prevent an accident such as the target product being damaged early against the prediction.
- the creep remaining life prediction method includes the third relationship between the difference in hardness between the first product and the second product and the hardness of the second product, and the two products.
- the fifth relationship between the difference in hardness and the damage rate of the second product the remaining creep life of the product having a bainite structure can be predicted. That is, the third relationship is used to determine the difference in hardness between products from the hardness of the product that predicts the creep remaining life, and the fifth relationship is used to determine the difference in hardness obtained.
- the damage rate of the product to be obtained the damage rate of the product that predicts the remaining creep life can be obtained.
- the method for creating a calibration curve used in the creep remaining life prediction method according to the present invention is the difference between the hardness difference between the first product and the second product and the hardness of the second product obtained in this way.
- a calibration curve representing the third relationship and a calibration curve representing the fifth relationship are obtained using the relationship of 3 and the fifth relationship between the difference in hardness between the two products and the damage rate of the second product. Can be created.
- the damage rate corresponding to the measured value can be obtained. From the obtained damage rate, it is possible to predict the remaining life of the pipe of the hoiler that is the prediction target.
- the creep remaining life prediction method includes “a third relationship between the hardness difference between the first product and the second product and the hardness of the second product”, and “the difference in hardness between the two products. And the fifth relationship between the damage rate of the second product and the remaining life of the product having a bainite structure is predicted.
- the method for predicting the remaining creep life according to the present invention is based on the temperature applied to the first product and the second product. Even if the product is used under conditions of temperature and pressure different from the pressure, the remaining creep life can be accurately predicted using these relationships.
- Example 1 A deterioration test due to thermal aging and an internal pressure creep test were performed using a cylindrical tube (outer diameter ⁇ 56.5 mm, inner diameter 47.5 mm, length 35.0 mm) made of chromium molybdenum steel material and having a bainite structure as a sample.
- the deterioration test by thermal aging is performed under the condition of a temperature of 525 ° C. (Test 1) or 550 ° C. (Test 2), and the internal pressure creep test is performed by applying an internal pressure of 240 MPa when the temperature is 525 ° C. (Test 3). When the temperature was 550 ° C., an internal pressure of 145 MPa was applied (Test 4). Note that the life of the sample in Test 3 and the life of the sample in Test 4 are within 10% of each other and are almost the same.
- Example 2 In Example 2, the remaining creep life of a hollow tube having a bainite structure was predicted using FIGS. 2 and 3 created in Example 1.
- FIG. Piping STPA 22, JIS standard G 3457 “arc-welded carbon steel pipe for piping”) made of chromium molybdenum steel was slowly bent while heating so that it could be used in a boiler of a thermal power plant.
- TEM transmission electron microscope
- a bainite structure was generated.
- An internal pressure of 145 MPa was applied to the pipe thus processed at a temperature of 550 ° C.
- the Vickers hardness of the bent part of the pipe was measured and found to be 190 HV. From FIG.
- ⁇ H at 190 HV is determined to be 1.0
- the damage rate when ⁇ H is 1.0 is determined to be 0.10.
- Example 3 In Example 1, when the damage rate is 0, when the damage rate is about 0.5 and about 0.9 in Test 2, and when the damage rate is about 0.5 in Test 4, the structure of the sample by TEM Inspected. Specifically, the structure was examined at two magnifications of each sample at a magnification of 10,000 times and 40 million times centering on the inside of the crystal grains.
- FIG. 4 shows the results when the damage rate is 0,
- FIG. 5 shows the results when the damage rate in test 2 is 0.5
- FIG. 6 shows the results when the damage rate in test 2 is 0.9
- the results when the damage rate in Test 4 is 0.5 are shown in FIG.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
The present invention provides a method for predicting the remaining creep life expectancy of a product with a bainite structure. More specifically, the method for predicting remaining creep life expectancy includes a step for determining a first relationship between the hardness and Larson-Miller parameter of a first product that has a bainite structure and has deteriorated as a result of heating, a step for determining a second relationship between the hardness and Larson-Miller parameter of a second product that has a bainite structure and has deteriorated as a result of heating and pressure, a step for using the first relationship and the second relationship to determine the difference between the hardness of the first product and the second product for a given Larson-Miller parameter and thereby determine a third relationship between the hardness of the second product and said difference, a step for determining a fourth relationship between the hardness and damage rate of the second product, a step for using the third relationship and the fourth relationship to determine a fifth relationship between said difference and the damage rate of the second product, a step for using the third relationship to obtain the difference corresponding to the hardness of a product for which remaining creep life expectancy is to be predicted, and a step for using the fifth relationship to determine the product damage rate corresponding to the obtained difference.
Description
本発明は、ベイナイト組織を有する製品のクリープ余寿命の予測方法、及び、この予測方法に用いる検量線の作成方法に関する。
The present invention relates to a method for predicting the remaining creep life of a product having a bainite structure and a method for creating a calibration curve used in this prediction method.
火力発電設備や原子力発電設備等において用いられる機械部品は、長期間に渡って高温・高圧条件におかれることから、徐々に塑性変形を起こし、クリープ寿命に達すると破断してしまう。従って、火力発電設備や原子力発電設備を安全かつ経済的に運転するためには、用いられている機械部品のクリープ余寿命を的確に予測することによって、最適な時期に機械部品の交換を行うことが求められる。
Mechanical parts used in thermal power generation facilities and nuclear power generation facilities are subjected to high temperature and high pressure conditions for a long period of time, so that they gradually undergo plastic deformation and break when the creep life is reached. Therefore, in order to operate thermal power generation facilities and nuclear power generation facilities safely and economically, the machine parts must be replaced at the optimal time by accurately predicting the remaining creep life of the machine parts used. Is required.
このような機械部品に使用されている耐熱鋼のクリープ余寿命を予測する方法としては、例えば、目視検査、磁粉探傷検査、超音波探傷検査及び放射線探傷検査等の寿命末期に発生する亀裂を検出する方法、並びに、レプリカ法によるボイドや微視亀裂を検出する方法が知られているが、これらの方法では、亀裂が生じる前の余寿命を予測することができない。
亀裂が生じる前に余寿命を予測する方法として、特開昭63-235861号公報に開示されているように、実際に稼動している火力発電設備や原子力発電設備の機械部品の耐熱鋼から試験片を切り出して、クリープ破断試験を行い、その破断時間から余寿命を予測する方法が知られているが、この方法では、実際に稼動している設備から試験片を切り出して長時間に渡って試験をする必要があり、煩雑である。 As a method of predicting the remaining creep life of heat-resistant steel used in such machine parts, for example, detection of cracks occurring at the end of life such as visual inspection, magnetic particle inspection, ultrasonic inspection, and radiation inspection There are known methods for detecting voids and microcracks by the replica method, but these methods cannot predict the remaining life before cracks occur.
As a method of predicting the remaining life before cracks are generated, as disclosed in Japanese Patent Laid-Open No. 63-235861, testing is performed from heat-resistant steel of mechanical components of a thermal power generation facility or a nuclear power generation facility that is actually operating. A method is known in which a piece is cut out, a creep rupture test is performed, and the remaining life is predicted from the rupture time. In this method, a piece of specimen is cut out from a facility that is actually in operation for a long time. It is necessary to test and is complicated.
亀裂が生じる前に余寿命を予測する方法として、特開昭63-235861号公報に開示されているように、実際に稼動している火力発電設備や原子力発電設備の機械部品の耐熱鋼から試験片を切り出して、クリープ破断試験を行い、その破断時間から余寿命を予測する方法が知られているが、この方法では、実際に稼動している設備から試験片を切り出して長時間に渡って試験をする必要があり、煩雑である。 As a method of predicting the remaining creep life of heat-resistant steel used in such machine parts, for example, detection of cracks occurring at the end of life such as visual inspection, magnetic particle inspection, ultrasonic inspection, and radiation inspection There are known methods for detecting voids and microcracks by the replica method, but these methods cannot predict the remaining life before cracks occur.
As a method of predicting the remaining life before cracks are generated, as disclosed in Japanese Patent Laid-Open No. 63-235861, testing is performed from heat-resistant steel of mechanical components of a thermal power generation facility or a nuclear power generation facility that is actually operating. A method is known in which a piece is cut out, a creep rupture test is performed, and the remaining life is predicted from the rupture time. In this method, a piece of specimen is cut out from a facility that is actually in operation for a long time. It is necessary to test and is complicated.
本発明は、ベイナイト組織を有する製品のクリープ余寿命の予測方法、及び、この予測方法に用いる検量線の作成方法を提供することを目的とする。
An object of the present invention is to provide a method for predicting the creep remaining life of a product having a bainite structure and a method for creating a calibration curve used in this prediction method.
本発明に係るベイナイト組織を有する製品のクリープ余寿命の予測方法に用いる検量線の作製方法は、ベイナイト組織を有し加熱により劣化した第1製品の、硬さとラーソンミラーパラメータとの第1の関係を求める工程と、ベイナイト組織を有し加熱及び加圧により劣化した第2製品の、硬さとラーソンミラーパラメータとの間の第2の関係を求める工程と、第1の関係と第2の関係とを用いて、所定のラーソンミラーパラメータにおける、第1製品の硬さと第2製品の硬さとの差を求めることによって、第2製品の硬さと前記差との第3の関係を表す検量線を作成する工程と、第2の製品の硬さと損傷率との間の第4の関係を求める工程と、第3の関係と第4の関係とを用いて、前記差と、第2製品の損傷率との第5の関係を表す検量線を作成する工程と、を含む。
The method for producing a calibration curve used in the method for predicting the creep remaining life of a product having a bainite structure according to the present invention is the first relationship between hardness and Larson mirror parameters of a first product having a bainite structure and deteriorated by heating. Determining the second relationship between the hardness and the Larson mirror parameter of the second product having a bainite structure and deteriorated by heating and pressing, the first relationship and the second relationship A calibration curve representing the third relationship between the hardness of the second product and the difference is created by calculating the difference between the hardness of the first product and the hardness of the second product at a predetermined Larson mirror parameter using And the step of obtaining the fourth relationship between the hardness and the damage rate of the second product, the third relationship and the fourth relationship, and the difference and the damage rate of the second product. Calibration representing the fifth relationship with And a step to create a.
本発明に係るベイナイト組織を有する製品のクリープ余寿命の予測方法は、このようにして作成された検量線を用いても良い。
The method for predicting the creep remaining life of a product having a bainite structure according to the present invention may use a calibration curve created in this way.
本発明に係るベイナイト組織を有する製品のクリープ余寿命の予測方法は、ベイナイト組織を有し加熱により劣化した第1製品の、硬さとラーソンミラーパラメータとの第1の関係を求める工程と、ベイナイト組織を有し加熱及び加圧により劣化した第2製品の、硬さとラーソンミラーパラメータとの間の第2の関係を求める工程と、第1の関係と第2の関係とを用いて、所定のラーソンミラーパラメータにおける、第1製品の硬さと第2製品の硬さとの差を求めることによって、第2製品の硬さと前記差との第3の関係を求める工程と、第2の製品の硬さと損傷率との間の第4の関係を求める工程と、第3の関係と第4の関係とを用いて、前記差と、第2製品の損傷率との第5の関係を求める工程と、第3の関係を用いて、クリープ余寿命を予測する製品の硬さから、対応する前記差を得る工程と、第5の関係を用いて、前記得られた差から、対応する当該製品の損傷率を求める工程とを含む。
The method for predicting the remaining creep life of a product having a bainite structure according to the present invention includes a step of obtaining a first relationship between hardness and Larson mirror parameter of a first product having a bainite structure and deteriorated by heating, and a bainite structure. A predetermined Larson using a step of obtaining a second relationship between the hardness and the Larson mirror parameter of the second product deteriorated by heating and pressurization, and the first relationship and the second relationship. Determining the third relationship between the hardness of the second product and the difference by determining the difference between the hardness of the first product and the hardness of the second product in the mirror parameters; and the hardness and damage of the second product. Determining a fourth relationship between the rate, a third relationship and a fourth relationship, and determining a fifth relationship between the difference and the damage rate of the second product; Creep afterlife using the relationship of 3 From the hardness of the product for predicting comprises the step of obtaining the difference corresponding, using a fifth relationship, from the resulting difference, and a step of determining the damage rate of the corresponding the product.
クリープ余寿命を予測する製品の硬さに対応する差を求めるために、第3の関係のうち、実質的に比例関係である硬さの範囲を用いることが好ましい。また、クリープ余寿命を予測する製品の損傷率を求めるために、第5の関係のうち、実質的に比例関係である差の範囲を用いることが好ましい。
In order to obtain the difference corresponding to the hardness of the product that predicts the remaining creep life, it is preferable to use a hardness range that is substantially proportional among the third relationships. Further, in order to obtain the damage rate of a product that predicts the creep remaining life, it is preferable to use a range of difference that is substantially proportional among the fifth relation.
クリープ余寿命を予測する製品、第1製品及び第2製品が中空管であることが好ましく、例えば、曲がり部分を有するボイラ用配管であっても良い。これらの場合に、加圧は内圧を加えることによって行うことが好ましい。
The products that predict the creep remaining life, the first product, and the second product are preferably hollow tubes, and may be, for example, boiler piping having a bent portion. In these cases, the pressurization is preferably performed by applying an internal pressure.
また、硬さが、ビッカース硬さであることが好ましい。
Moreover, it is preferable that the hardness is Vickers hardness.
第1製品に加えられた温度と、第2製品に加えられた温度とが、同じであることが好ましい。
It is preferable that the temperature applied to the first product and the temperature applied to the second product are the same.
本発明によって、ベイナイト組織を有する製品のクリープ余寿命の予測方法、及び、この予測方法に用いる検量線の作成方法を提供することが可能となった。
According to the present invention, it is possible to provide a method for predicting the remaining creep life of a product having a bainite structure and a method for creating a calibration curve used in this prediction method.
以下、上記知見に基づき完成した本発明の実施の形態を詳細に説明する。なお、本発明の目的、特徴、利点、および、そのアイデアは、本明細書の記載により、当業者には明らかであり、本明細書の記載から、当業者であれば容易に本発明を再現できる。以下に記載された発明の実施の形態及び具体的な実施例などは、本発明の好ましい実施態様を示すものであり、例示又は説明のために示されているのであって、本発明をそれらに限定するものではない。本明細書で開示されている本発明の意図並びに範囲内で、本明細書の記載に基づき、様々な改変並びに修飾ができることは、当業者にとって明らかである。
Hereinafter, an embodiment of the present invention completed based on the above knowledge will be described in detail. The objects, features, advantages, and ideas of the present invention will be apparent to those skilled in the art from the description of the present specification, and those skilled in the art can easily reproduce the present invention from the description of the present specification. it can. The embodiments and specific examples of the invention described below show preferred embodiments of the present invention and are shown for illustration or explanation, and the present invention is not limited to them. It is not limited. It will be apparent to those skilled in the art that various modifications and variations can be made based on the description of the present specification within the spirit and scope of the present invention disclosed herein.
従来、フェライト組織またはパーライト組織を有する製品のクリープ余寿命を予測する場合には、この製品を高温及び高圧条件においた場合の塑性変形の量と、この製品の損傷率との関係から、クリープ余寿命を求める方法が一般的に用いられてきた。
しかしながら、ベイナイト組織を有する製品について、フェライト組織またはパーライト組織を有する製品と同様に、塑性変形の量と製品の損傷率との関係から、クリープ余寿命を予測しようと試みたところ、以下の問題が生じた。
(1)ベイナイト組織を有する製品は、フェライト組織またはパーライト組織を有する製品と比べると堅固であるために、損傷率が小さい段階では変形量が非常に小さく、損傷率が小さい段階の余寿命を正確に予測することが困難である。
(2)ベイナイト組織を有する製品は、損傷率が大きい段階になって初めて大きい変形が生じるが、一度変形が生じると急激に破断に至るため、損傷率が大きい段階の余寿命を予測するためには、小まめに測定を行う必要があり煩雑である。
(3)ベイナイト組織を有する製品は、フェライト組織またはパーライト組織を有する製品と比較すると、塑性変形の量が小さいことから、いずれの組織を有するか不明である製品の余寿命を、フェライト組織またはパーライト組織を有する製品の変形量と損傷率との関係を用いて求めると、実際よりも低く損傷率が求まる可能性があり、結果として予期しない破断を招く危険性がある。 Conventionally, when predicting the remaining creep life of a product having a ferrite structure or pearlite structure, the creep remaining amount is determined from the relationship between the amount of plastic deformation when the product is subjected to high temperature and high pressure conditions and the damage rate of the product. A method for obtaining the lifetime has been generally used.
However, as with products having a bainite structure, as in the case of products having a ferrite structure or pearlite structure, an attempt was made to predict the remaining creep life from the relationship between the amount of plastic deformation and the damage rate of the product. occured.
(1) Products with a bainite structure are firmer than products with a ferrite or pearlite structure, so the amount of deformation is very small when the damage rate is low, and the remaining life at the stage where the damage rate is low is accurate. It is difficult to predict.
(2) A product having a bainite structure undergoes a large deformation only when the damage rate is high, but once the deformation occurs, it suddenly breaks, so the life expectancy at the stage where the damage rate is high is predicted. Is complicated because it requires frequent measurement.
(3) Since the product having a bainite structure has a smaller amount of plastic deformation than a product having a ferrite structure or a pearlite structure, the remaining life of the product whose structure is unknown is given as a ferrite structure or a pearlite. When the relationship between the amount of deformation of a product having a structure and the damage rate is used, the damage rate may be lower than the actual rate, resulting in the risk of unexpected breakage.
しかしながら、ベイナイト組織を有する製品について、フェライト組織またはパーライト組織を有する製品と同様に、塑性変形の量と製品の損傷率との関係から、クリープ余寿命を予測しようと試みたところ、以下の問題が生じた。
(1)ベイナイト組織を有する製品は、フェライト組織またはパーライト組織を有する製品と比べると堅固であるために、損傷率が小さい段階では変形量が非常に小さく、損傷率が小さい段階の余寿命を正確に予測することが困難である。
(2)ベイナイト組織を有する製品は、損傷率が大きい段階になって初めて大きい変形が生じるが、一度変形が生じると急激に破断に至るため、損傷率が大きい段階の余寿命を予測するためには、小まめに測定を行う必要があり煩雑である。
(3)ベイナイト組織を有する製品は、フェライト組織またはパーライト組織を有する製品と比較すると、塑性変形の量が小さいことから、いずれの組織を有するか不明である製品の余寿命を、フェライト組織またはパーライト組織を有する製品の変形量と損傷率との関係を用いて求めると、実際よりも低く損傷率が求まる可能性があり、結果として予期しない破断を招く危険性がある。 Conventionally, when predicting the remaining creep life of a product having a ferrite structure or pearlite structure, the creep remaining amount is determined from the relationship between the amount of plastic deformation when the product is subjected to high temperature and high pressure conditions and the damage rate of the product. A method for obtaining the lifetime has been generally used.
However, as with products having a bainite structure, as in the case of products having a ferrite structure or pearlite structure, an attempt was made to predict the remaining creep life from the relationship between the amount of plastic deformation and the damage rate of the product. occured.
(1) Products with a bainite structure are firmer than products with a ferrite or pearlite structure, so the amount of deformation is very small when the damage rate is low, and the remaining life at the stage where the damage rate is low is accurate. It is difficult to predict.
(2) A product having a bainite structure undergoes a large deformation only when the damage rate is high, but once the deformation occurs, it suddenly breaks, so the life expectancy at the stage where the damage rate is high is predicted. Is complicated because it requires frequent measurement.
(3) Since the product having a bainite structure has a smaller amount of plastic deformation than a product having a ferrite structure or a pearlite structure, the remaining life of the product whose structure is unknown is given as a ferrite structure or a pearlite. When the relationship between the amount of deformation of a product having a structure and the damage rate is used, the damage rate may be lower than the actual rate, resulting in the risk of unexpected breakage.
本発明者は、ベイナイト組織を有する製品の硬さに着目することによって、本発明に係るベイナイト組織を有する製品のクリープ余寿命の予測方法を完成するに至った。
本発明に係るクリープ余寿命の予測方法は、製品の損傷率が小さい段階でも、ベイナイト組織を有する製品のクリープ余寿命を予測することができる。また、本発明に係るクリープ余寿命の予測方法は、製品の損傷率が大きい段階でも、ベイナイト組織を有する製品のクリープ余寿命を予測することができる。加えて、本発明に係るクリープ余寿命の予測方法は、ベイナイト組織を有する製品のクリープ余寿命を適切に予測することができる。
具体的には、以下の通りである。 The present inventor has completed the method for predicting the remaining creep life of a product having a bainite structure according to the present invention by paying attention to the hardness of the product having a bainite structure.
The method for predicting the remaining creep life according to the present invention can predict the remaining creep life of a product having a bainite structure even when the damage rate of the product is small. Further, the creep remaining life prediction method according to the present invention can predict the remaining creep life of a product having a bainite structure even at a stage where the damage rate of the product is large. In addition, the creep remaining life prediction method according to the present invention can appropriately predict the creep remaining life of a product having a bainite structure.
Specifically, it is as follows.
本発明に係るクリープ余寿命の予測方法は、製品の損傷率が小さい段階でも、ベイナイト組織を有する製品のクリープ余寿命を予測することができる。また、本発明に係るクリープ余寿命の予測方法は、製品の損傷率が大きい段階でも、ベイナイト組織を有する製品のクリープ余寿命を予測することができる。加えて、本発明に係るクリープ余寿命の予測方法は、ベイナイト組織を有する製品のクリープ余寿命を適切に予測することができる。
具体的には、以下の通りである。 The present inventor has completed the method for predicting the remaining creep life of a product having a bainite structure according to the present invention by paying attention to the hardness of the product having a bainite structure.
The method for predicting the remaining creep life according to the present invention can predict the remaining creep life of a product having a bainite structure even when the damage rate of the product is small. Further, the creep remaining life prediction method according to the present invention can predict the remaining creep life of a product having a bainite structure even at a stage where the damage rate of the product is large. In addition, the creep remaining life prediction method according to the present invention can appropriately predict the creep remaining life of a product having a bainite structure.
Specifically, it is as follows.
本発明に係るベイナイト組織を有する製品のクリープ余寿命の予測方法は、ベイナイト組織を有し加熱により劣化した第1製品の、硬さとラーソンミラーパラメータとの第1の関係を求める工程と、ベイナイト組織を有し加熱及び加圧により劣化した第2製品の、硬さとラーソンミラーパラメータとの間の第2の関係を求める工程と、第1の関係と第2の関係とを用いて、所定のラーソンミラーパラメータにおける、第1製品の硬さと第2製品の硬さとの差を求めることによって、第2製品の硬さと前記差との第3の関係を求める工程と、第2の製品の硬さと損傷率との間の第4の関係を求める工程と、第3の関係と第4の関係とを用いて、前記差と、第2製品の損傷率との第5の関係を求める工程と、第3の関係を用いて、クリープ余寿命を予測する製品の硬さから、対応する前記差を求める工程と、第5の関係を用いて、前記得られた差から、対応する当該製品の損傷率を求める工程とを含む。
The method for predicting the remaining creep life of a product having a bainite structure according to the present invention includes a step of obtaining a first relationship between hardness and Larson mirror parameter of a first product having a bainite structure and deteriorated by heating, and a bainite structure. A predetermined Larson using a step of obtaining a second relationship between the hardness and the Larson mirror parameter of the second product deteriorated by heating and pressurization, and the first relationship and the second relationship. Determining the third relationship between the hardness of the second product and the difference by determining the difference between the hardness of the first product and the hardness of the second product in the mirror parameters; and the hardness and damage of the second product. Determining a fourth relationship between the rate, a third relationship and a fourth relationship, and determining a fifth relationship between the difference and the damage rate of the second product; Creep afterlife using the relationship of 3 From the hardness of the product for predicting comprises the step of determining the difference corresponding, using a fifth relationship, from the resulting difference, and a step of determining the damage rate of the corresponding the product.
加熱により劣化した第1製品とは、常圧及び一定の高温の条件下に置くことにより劣化した、ベイナイト組織を有する製品をいう。温度の範囲は、第1製品がベイナイト組織を有する限り特に限定されないが、例えば、210℃~550℃の範囲であっても良く、350℃~550℃の範囲であることが好ましい。
The first product deteriorated by heating refers to a product having a bainite structure deteriorated by being placed under normal pressure and a constant high temperature. The temperature range is not particularly limited as long as the first product has a bainite structure. For example, the temperature range may be 210 ° C to 550 ° C, and preferably 350 ° C to 550 ° C.
また、加熱及び加圧により劣化した第2製品とは、一定の高温、及び、常圧よりも高い一定の圧力の条件下に置くことにより劣化した、ベイナイト組織を有する製品をいう。
温度の範囲は、第2製品がベイナイト組織を有する限り特に限定されないが、例えば、210℃~550℃の範囲であっても良く、350℃~550℃の範囲であることが好ましい。第1製品に加えられた温度と、第2製品に加えられた温度とは、同じであっても異なっていても良いが、同じであることが好ましい。
圧力の範囲は、常圧(0.1MPa)よりも高ければ特に限定されないが、例えば、0.2MPa~1000MPaであっても良く、0.3MPa~500MPaであることが好ましく、0.5MPa~300MPaであることがより好ましい。
圧力を加える方法は、特に限定されず、例えば、単軸クリープ試験、または、内圧クリープ試験により行っても良いが、第2製品の構造が中空管である場合には、内圧クリープ試験により行うことが好ましい。内圧クリープ試験は、高温炉中で中空管に内圧を加え、必要に応じて中空管をクリープ破断させることによって、中空管の余寿命または寿命を予測または測定する方法である。内圧クリープ試験は、中空管を試験対象とできるため、例えば中空管をボイラの配管として実際に用いた場合に生じる、中空管の外表面および内表面の酸化物など変質層の影響を含めて試験できる点で優れている。さらに、ボイラで実際に用いられる場合と同様に、内圧による応力を中空管に加えることから、精度よく余寿命または寿命を予測または測定することが可能である。 Moreover, the 2nd product deteriorated by heating and pressurization means the product which has a bainite structure | tissue which deteriorated by putting on the conditions of constant high temperature and constant pressure higher than normal pressure.
The temperature range is not particularly limited as long as the second product has a bainite structure. For example, the temperature range may be 210 ° C to 550 ° C, and preferably 350 ° C to 550 ° C. The temperature applied to the first product and the temperature applied to the second product may be the same or different, but are preferably the same.
The pressure range is not particularly limited as long as it is higher than normal pressure (0.1 MPa), but may be, for example, 0.2 MPa to 1000 MPa, preferably 0.3 MPa to 500 MPa, and preferably 0.5 MPa to 300 MPa. It is more preferable that
The method of applying pressure is not particularly limited. For example, it may be performed by a uniaxial creep test or an internal pressure creep test. However, when the structure of the second product is a hollow tube, it is performed by an internal pressure creep test. It is preferable. The internal pressure creep test is a method for predicting or measuring the remaining life or life of a hollow tube by applying an internal pressure to the hollow tube in a high-temperature furnace and creep-breaking the hollow tube as necessary. Since the internal pressure creep test can be performed on hollow tubes, the effects of altered layers such as oxides on the outer surface and inner surface of the hollow tube that occur when the hollow tube is actually used as boiler piping, for example. It is excellent in that it can be tested. Furthermore, since the stress due to the internal pressure is applied to the hollow tube as in the case where it is actually used in a boiler, it is possible to accurately predict or measure the remaining life or life.
温度の範囲は、第2製品がベイナイト組織を有する限り特に限定されないが、例えば、210℃~550℃の範囲であっても良く、350℃~550℃の範囲であることが好ましい。第1製品に加えられた温度と、第2製品に加えられた温度とは、同じであっても異なっていても良いが、同じであることが好ましい。
圧力の範囲は、常圧(0.1MPa)よりも高ければ特に限定されないが、例えば、0.2MPa~1000MPaであっても良く、0.3MPa~500MPaであることが好ましく、0.5MPa~300MPaであることがより好ましい。
圧力を加える方法は、特に限定されず、例えば、単軸クリープ試験、または、内圧クリープ試験により行っても良いが、第2製品の構造が中空管である場合には、内圧クリープ試験により行うことが好ましい。内圧クリープ試験は、高温炉中で中空管に内圧を加え、必要に応じて中空管をクリープ破断させることによって、中空管の余寿命または寿命を予測または測定する方法である。内圧クリープ試験は、中空管を試験対象とできるため、例えば中空管をボイラの配管として実際に用いた場合に生じる、中空管の外表面および内表面の酸化物など変質層の影響を含めて試験できる点で優れている。さらに、ボイラで実際に用いられる場合と同様に、内圧による応力を中空管に加えることから、精度よく余寿命または寿命を予測または測定することが可能である。 Moreover, the 2nd product deteriorated by heating and pressurization means the product which has a bainite structure | tissue which deteriorated by putting on the conditions of constant high temperature and constant pressure higher than normal pressure.
The temperature range is not particularly limited as long as the second product has a bainite structure. For example, the temperature range may be 210 ° C to 550 ° C, and preferably 350 ° C to 550 ° C. The temperature applied to the first product and the temperature applied to the second product may be the same or different, but are preferably the same.
The pressure range is not particularly limited as long as it is higher than normal pressure (0.1 MPa), but may be, for example, 0.2 MPa to 1000 MPa, preferably 0.3 MPa to 500 MPa, and preferably 0.5 MPa to 300 MPa. It is more preferable that
The method of applying pressure is not particularly limited. For example, it may be performed by a uniaxial creep test or an internal pressure creep test. However, when the structure of the second product is a hollow tube, it is performed by an internal pressure creep test. It is preferable. The internal pressure creep test is a method for predicting or measuring the remaining life or life of a hollow tube by applying an internal pressure to the hollow tube in a high-temperature furnace and creep-breaking the hollow tube as necessary. Since the internal pressure creep test can be performed on hollow tubes, the effects of altered layers such as oxides on the outer surface and inner surface of the hollow tube that occur when the hollow tube is actually used as boiler piping, for example. It is excellent in that it can be tested. Furthermore, since the stress due to the internal pressure is applied to the hollow tube as in the case where it is actually used in a boiler, it is possible to accurately predict or measure the remaining life or life.
第1製品及び第2製品の構造、並びに、クリープ余寿命の予測対象となるベイナイト組織を有する製品の構造は、特に限定されず、例えば、中空管、板、または、棒であることができるが、中空管であることが好ましい。中空管の断面は、どのような形であっても良く、例えば、円形、楕円形、または、多角形であることができるが、中空管の強度を考慮すれば、角を有さない円形または楕円形であることが好ましく、円形であることがより好ましい。
このような中空管として、例えば、曲がり部分を有するボイラ用配管が挙げられる。ボイラ用配管は、従来は、フェライト組織またはパーライト組織を有すると考えられていたため、フェライト組織またはパーライト組織を有する製品のクリープ余寿命を予測する方法に従って、そのクリープ余寿命が予測されてきた。しかし、本発明者は、ボイラ用配管の曲がり部分を作成する際のゆっくりとした加熱に伴い、この曲がり部分がベイナイト組織へと変化することを発見した。従って、本発明に係るクリープ余寿命の予測方法を用いて、曲がり部分を有するボイラ用配管のクリープ余寿命を予測すれば、このボイラ用配管のクリープ余寿命を精度良く予測することが可能となる。
なお、第1製品の構造と、第2製品の構造と、クリープ余寿命の予測対象となるベイナイト組織を有する製品の構造とは、ベイナイト組織を有する同じ材料から構成されてさえいれば、同じであっても異なっていても良いが、同じであることが好ましい。 The structure of the first product and the second product, and the structure of the product having a bainite structure that is the target of the creep remaining life are not particularly limited, and can be, for example, a hollow tube, a plate, or a rod. Is preferably a hollow tube. The cross section of the hollow tube may have any shape, for example, it may be circular, elliptical, or polygonal, but it does not have corners considering the strength of the hollow tube. It is preferably a circle or an ellipse, and more preferably a circle.
As such a hollow tube, for example, a boiler pipe having a bent portion can be cited. Conventionally, boiler piping has been considered to have a ferrite structure or a pearlite structure, and thus the creep remaining life has been predicted according to a method for predicting the creep remaining life of a product having a ferrite structure or pearlite structure. However, the present inventor has found that the bent portion changes into a bainite structure with the slow heating when the bent portion of the boiler piping is created. Therefore, if the creep remaining life of a boiler pipe having a bent portion is predicted using the creep remaining life prediction method according to the present invention, it is possible to accurately predict the creep remaining life of the boiler pipe. .
It should be noted that the structure of the first product, the structure of the second product, and the structure of the product having a bainite structure that is the target of prediction of the remaining creep life are the same as long as they are made of the same material having the bainite structure. It may be different or different, but the same is preferable.
このような中空管として、例えば、曲がり部分を有するボイラ用配管が挙げられる。ボイラ用配管は、従来は、フェライト組織またはパーライト組織を有すると考えられていたため、フェライト組織またはパーライト組織を有する製品のクリープ余寿命を予測する方法に従って、そのクリープ余寿命が予測されてきた。しかし、本発明者は、ボイラ用配管の曲がり部分を作成する際のゆっくりとした加熱に伴い、この曲がり部分がベイナイト組織へと変化することを発見した。従って、本発明に係るクリープ余寿命の予測方法を用いて、曲がり部分を有するボイラ用配管のクリープ余寿命を予測すれば、このボイラ用配管のクリープ余寿命を精度良く予測することが可能となる。
なお、第1製品の構造と、第2製品の構造と、クリープ余寿命の予測対象となるベイナイト組織を有する製品の構造とは、ベイナイト組織を有する同じ材料から構成されてさえいれば、同じであっても異なっていても良いが、同じであることが好ましい。 The structure of the first product and the second product, and the structure of the product having a bainite structure that is the target of the creep remaining life are not particularly limited, and can be, for example, a hollow tube, a plate, or a rod. Is preferably a hollow tube. The cross section of the hollow tube may have any shape, for example, it may be circular, elliptical, or polygonal, but it does not have corners considering the strength of the hollow tube. It is preferably a circle or an ellipse, and more preferably a circle.
As such a hollow tube, for example, a boiler pipe having a bent portion can be cited. Conventionally, boiler piping has been considered to have a ferrite structure or a pearlite structure, and thus the creep remaining life has been predicted according to a method for predicting the creep remaining life of a product having a ferrite structure or pearlite structure. However, the present inventor has found that the bent portion changes into a bainite structure with the slow heating when the bent portion of the boiler piping is created. Therefore, if the creep remaining life of a boiler pipe having a bent portion is predicted using the creep remaining life prediction method according to the present invention, it is possible to accurately predict the creep remaining life of the boiler pipe. .
It should be noted that the structure of the first product, the structure of the second product, and the structure of the product having a bainite structure that is the target of prediction of the remaining creep life are the same as long as they are made of the same material having the bainite structure. It may be different or different, but the same is preferable.
各製品の硬さを測定する方法は、特に限定されず、公知の方法を用いることができるが、ビッカース硬さ、または、マイクロビッカース硬さを測定することが好ましく、ビッカース硬さを測定することがより好ましい。なお、ビッカース硬さを測定する際には、1kg以上の荷重を用い、マイクロビッカース硬さを測定する際には、1kg未満の荷重を用いる。
硬さの測定は、製品の1箇所のみについて行っても良いが、精度を向上させることを考慮に入れれば、複数個所について行い、得られた測定値の平均値を製品の硬さとして採用することが好ましい。
製品の硬さは、その製品の異なる複数の損傷率において、測定することが好ましい。 The method for measuring the hardness of each product is not particularly limited, and a known method can be used. However, it is preferable to measure Vickers hardness or micro Vickers hardness, and measure Vickers hardness. Is more preferable. When measuring the Vickers hardness, a load of 1 kg or more is used, and when measuring the micro Vickers hardness, a load of less than 1 kg is used.
Hardness measurement may be performed at only one location of the product, but considering the improvement of accuracy, it is performed at multiple locations and the average value of the measured values obtained is adopted as the hardness of the product. It is preferable.
The hardness of the product is preferably measured at a plurality of different damage rates of the product.
硬さの測定は、製品の1箇所のみについて行っても良いが、精度を向上させることを考慮に入れれば、複数個所について行い、得られた測定値の平均値を製品の硬さとして採用することが好ましい。
製品の硬さは、その製品の異なる複数の損傷率において、測定することが好ましい。 The method for measuring the hardness of each product is not particularly limited, and a known method can be used. However, it is preferable to measure Vickers hardness or micro Vickers hardness, and measure Vickers hardness. Is more preferable. When measuring the Vickers hardness, a load of 1 kg or more is used, and when measuring the micro Vickers hardness, a load of less than 1 kg is used.
Hardness measurement may be performed at only one location of the product, but considering the improvement of accuracy, it is performed at multiple locations and the average value of the measured values obtained is adopted as the hardness of the product. It is preferable.
The hardness of the product is preferably measured at a plurality of different damage rates of the product.
なお、製品の損傷率とは、その製品の寿命に対して、どれだけの時間が経過したのかを表す割合である。製品の寿命とは、加熱及び/又は加圧によって、その製品が破断するのに要する時間である。例えば、ある製品の寿命が10000時間であり、経過時間が8000時間である場合には、損傷率は、8000÷10000=0.80と求めることができる。逆に、ある製品の寿命が10000であり、損傷率が0.80の場合には、その製品の余寿命は、10000x0.80=2000時間と求めることができる。
製品の寿命は、公知の方法で求めることができ、例えば、その製品と同じ材料から作られた同一構造の製品を、実際に壊れるまで加熱及び/又は加圧することによって測定することができる。 The product damage rate is a ratio representing how much time has elapsed with respect to the life of the product. The life of a product is the time required for the product to break due to heating and / or pressurization. For example, when the lifetime of a certain product is 10,000 hours and the elapsed time is 8000 hours, the damage rate can be calculated as 8000 ÷ 10000 = 0.80. Conversely, when the lifetime of a product is 10,000 and the damage rate is 0.80, the remaining lifetime of the product can be calculated as 10000 × 0.80 = 2000 hours.
The lifetime of a product can be determined by known methods, for example, by measuring a product of the same structure made from the same material as the product by heating and / or pressurizing until it actually breaks.
製品の寿命は、公知の方法で求めることができ、例えば、その製品と同じ材料から作られた同一構造の製品を、実際に壊れるまで加熱及び/又は加圧することによって測定することができる。 The product damage rate is a ratio representing how much time has elapsed with respect to the life of the product. The life of a product is the time required for the product to break due to heating and / or pressurization. For example, when the lifetime of a certain product is 10,000 hours and the elapsed time is 8000 hours, the damage rate can be calculated as 8000 ÷ 10000 = 0.80. Conversely, when the lifetime of a product is 10,000 and the damage rate is 0.80, the remaining lifetime of the product can be calculated as 10000 × 0.80 = 2000 hours.
The lifetime of a product can be determined by known methods, for example, by measuring a product of the same structure made from the same material as the product by heating and / or pressurizing until it actually breaks.
第1製品及び第2製品の加熱温度、加熱時間及び硬さから、ラーソンミラーパラメータLMPを算出する。ラーソンミラーパラメータLMPは、LMP=T(C+logtr)、[式中、Tは絶対温度(K)で表した加熱温度であり、trは加熱時間(h)であり、Cは定数である]、を用いて求めることができる。ベイナイト組織を有する製品においては、Cとして20を用いることが好ましい。
The Larson mirror parameter LMP is calculated from the heating temperature, heating time and hardness of the first product and the second product. Larson-Miller parameter LMP is, LMP = T (C + logt r), [ wherein, T is heating temperature expressed in absolute temperature (K), t r is the heating time (h), C is a constant] , Can be obtained using. In a product having a bainite structure, 20 is preferably used as C.
このようにして得た、第1製品の硬さとラーソンミラーパラメータとの間の第1の関係を求める。この関係を例えばグラフにすると、曲線となる。
第1製品の硬さとラーソンミラーパラメータとの関係を求めるにあたっては、加熱により劣化した製品として、ある温度で加熱した製品Aのみを用いて、製品Aの硬さとラーソンミラーパラメータとの関係を求めても良い。または、ある温度で加熱した製品A及びある温度とは異なる温度で加熱した製品Bの2種類、もしくは、それぞれ異なる温度で加熱した3種類以上の製品を用いて、これら各製品における硬さとラーソンミラーパラメータとの関係を求め、これら各製品に共通する関係を求めても良い。例えば、本願の実施例1では、525℃で加熱した製品と550℃で加熱した製品との2種類の製品を用いて、これら製品に共通する関係として、図1に示す近似曲線を求めた。 The first relationship between the hardness of the first product and the Larson mirror parameter obtained in this way is obtained. If this relationship is made into a graph, for example, it becomes a curve.
In determining the relationship between the hardness of the first product and the Larson mirror parameter, only the product A heated at a certain temperature is used as the product deteriorated by heating, and the relationship between the hardness of the product A and the Larson mirror parameter is obtained. Also good. Or using two types of products A heated at a certain temperature and a product B heated at a different temperature, or three or more types of products heated at different temperatures, the hardness and Larson mirror in each of these products A relationship with parameters may be obtained, and a relationship common to these products may be obtained. For example, in Example 1 of the present application, two types of products, a product heated at 525 ° C. and a product heated at 550 ° C., were used, and the approximate curve shown in FIG. 1 was obtained as a relationship common to these products.
第1製品の硬さとラーソンミラーパラメータとの関係を求めるにあたっては、加熱により劣化した製品として、ある温度で加熱した製品Aのみを用いて、製品Aの硬さとラーソンミラーパラメータとの関係を求めても良い。または、ある温度で加熱した製品A及びある温度とは異なる温度で加熱した製品Bの2種類、もしくは、それぞれ異なる温度で加熱した3種類以上の製品を用いて、これら各製品における硬さとラーソンミラーパラメータとの関係を求め、これら各製品に共通する関係を求めても良い。例えば、本願の実施例1では、525℃で加熱した製品と550℃で加熱した製品との2種類の製品を用いて、これら製品に共通する関係として、図1に示す近似曲線を求めた。 The first relationship between the hardness of the first product and the Larson mirror parameter obtained in this way is obtained. If this relationship is made into a graph, for example, it becomes a curve.
In determining the relationship between the hardness of the first product and the Larson mirror parameter, only the product A heated at a certain temperature is used as the product deteriorated by heating, and the relationship between the hardness of the product A and the Larson mirror parameter is obtained. Also good. Or using two types of products A heated at a certain temperature and a product B heated at a different temperature, or three or more types of products heated at different temperatures, the hardness and Larson mirror in each of these products A relationship with parameters may be obtained, and a relationship common to these products may be obtained. For example, in Example 1 of the present application, two types of products, a product heated at 525 ° C. and a product heated at 550 ° C., were used, and the approximate curve shown in FIG. 1 was obtained as a relationship common to these products.
同様に、第2製品の硬さを測定し、さらに、第2製品の加熱温度、加熱時間及び硬さから、ラーソンミラーパラメータLMPを算出する。
このようにして得られた第2製品の硬さとラーソンミラーパラメータとの間の第2の関係を求める。この関係を例えばグラフにすると、曲線となる。
第2製品の硬さとラーソンミラーパラメータとの関係を求めるにあたっては、加熱及び加圧により劣化した製品として、ある温度で加熱し、かつ、ある圧力で加圧した製品aのみを用い、製品aの硬さとラーソンミラーパラメータとの関係を求めても良い。または、ある温度で加熱し、かつ、ある圧力で加圧した製品a及びある温度とは異なる温度で加熱し、かつ、ある圧力とは異なる圧力で加圧した製品bの2種類、もしくは、それぞれ異なる温度で加熱し、かつ、それぞれ異なる圧力で加圧した3種類以上の製品を用いて、各製品における硬さとラーソンミラーパラメータとの関係を求め、これらに共通する関係を求めても良い。例えば、本願の実施例1では、525℃で加熱し、240MPaで加圧した製品と、550℃で加熱し、145MPaで加圧した製品との2種類の製品を用いて、これら製品に共通する関係として、図1に示す近似曲線を求めた。
なお、第2の製品として、2種類以上の製品を用いてこれらに共通する関係を求める場合には、これら2種類以上の製品の寿命が、同程度であることが好ましい。同程度とは、2種類以上の製品の寿命が、例えば互いに2割以内の差であることが好ましく、1割以内の差であることがより好ましい。当業者であれば、2種類以上の製品の寿命が同程度となるように、各製品に加える温度と圧力とを適切に設定することができる。 Similarly, the hardness of the second product is measured, and further, the Larson mirror parameter LMP is calculated from the heating temperature, heating time, and hardness of the second product.
A second relationship between the hardness of the second product thus obtained and the Larson mirror parameter is determined. If this relationship is made into a graph, for example, it becomes a curve.
In determining the relationship between the hardness of the second product and the Larson mirror parameter, only the product a heated at a certain temperature and pressurized at a certain pressure is used as a product deteriorated by heating and pressurization. You may obtain | require the relationship between hardness and a Larson mirror parameter. Or two types of products b heated at a certain temperature and pressurized at a certain pressure and products b heated at a temperature different from a certain temperature and pressurized at a pressure different from a certain pressure, or respectively Using three or more types of products heated at different temperatures and pressurized at different pressures, the relationship between hardness and Larson mirror parameters in each product may be obtained, and a relationship common to these may be obtained. For example, in Example 1 of the present application, two types of products, a product heated at 525 ° C. and pressurized at 240 MPa and a product heated at 550 ° C. and pressurized at 145 MPa, are common to these products. As a relationship, an approximate curve shown in FIG. 1 was obtained.
In addition, when the relationship common to these is calculated | required using 2 or more types of products as a 2nd product, it is preferable that the lifetime of these 2 or more types of products is comparable. The same degree means that the lifetimes of two or more types of products are preferably within 20% of each other, and more preferably within 10% of each other. A person skilled in the art can appropriately set the temperature and pressure applied to each product so that two or more types of products have the same life.
このようにして得られた第2製品の硬さとラーソンミラーパラメータとの間の第2の関係を求める。この関係を例えばグラフにすると、曲線となる。
第2製品の硬さとラーソンミラーパラメータとの関係を求めるにあたっては、加熱及び加圧により劣化した製品として、ある温度で加熱し、かつ、ある圧力で加圧した製品aのみを用い、製品aの硬さとラーソンミラーパラメータとの関係を求めても良い。または、ある温度で加熱し、かつ、ある圧力で加圧した製品a及びある温度とは異なる温度で加熱し、かつ、ある圧力とは異なる圧力で加圧した製品bの2種類、もしくは、それぞれ異なる温度で加熱し、かつ、それぞれ異なる圧力で加圧した3種類以上の製品を用いて、各製品における硬さとラーソンミラーパラメータとの関係を求め、これらに共通する関係を求めても良い。例えば、本願の実施例1では、525℃で加熱し、240MPaで加圧した製品と、550℃で加熱し、145MPaで加圧した製品との2種類の製品を用いて、これら製品に共通する関係として、図1に示す近似曲線を求めた。
なお、第2の製品として、2種類以上の製品を用いてこれらに共通する関係を求める場合には、これら2種類以上の製品の寿命が、同程度であることが好ましい。同程度とは、2種類以上の製品の寿命が、例えば互いに2割以内の差であることが好ましく、1割以内の差であることがより好ましい。当業者であれば、2種類以上の製品の寿命が同程度となるように、各製品に加える温度と圧力とを適切に設定することができる。 Similarly, the hardness of the second product is measured, and further, the Larson mirror parameter LMP is calculated from the heating temperature, heating time, and hardness of the second product.
A second relationship between the hardness of the second product thus obtained and the Larson mirror parameter is determined. If this relationship is made into a graph, for example, it becomes a curve.
In determining the relationship between the hardness of the second product and the Larson mirror parameter, only the product a heated at a certain temperature and pressurized at a certain pressure is used as a product deteriorated by heating and pressurization. You may obtain | require the relationship between hardness and a Larson mirror parameter. Or two types of products b heated at a certain temperature and pressurized at a certain pressure and products b heated at a temperature different from a certain temperature and pressurized at a pressure different from a certain pressure, or respectively Using three or more types of products heated at different temperatures and pressurized at different pressures, the relationship between hardness and Larson mirror parameters in each product may be obtained, and a relationship common to these may be obtained. For example, in Example 1 of the present application, two types of products, a product heated at 525 ° C. and pressurized at 240 MPa and a product heated at 550 ° C. and pressurized at 145 MPa, are common to these products. As a relationship, an approximate curve shown in FIG. 1 was obtained.
In addition, when the relationship common to these is calculated | required using 2 or more types of products as a 2nd product, it is preferable that the lifetime of these 2 or more types of products is comparable. The same degree means that the lifetimes of two or more types of products are preferably within 20% of each other, and more preferably within 10% of each other. A person skilled in the art can appropriately set the temperature and pressure applied to each product so that two or more types of products have the same life.
このようにして得られた、第1製品の硬さとラーソンミラーパラメータとの間の第1の関係と、第2製品の硬さとラーソンミラーパラメータとの間の第2の関係を用いて、所定のラーソンミラーパラメータにおける、加熱により劣化した第1製品の硬さと、加熱及び加圧により劣化した第2製品の硬さとの差を求める。例えば、ラーソンミラーパラメータが19.0の時に、第1製品の硬さが191HVであり、第2製品の硬さが190HVである場合には、このラーソンミラーパラメータにおける、第1製品の硬さと第2製品の硬さとの差は1となる。
Using the first relationship between the hardness of the first product and the Larson mirror parameter and the second relationship between the hardness of the second product and the Larson mirror parameter obtained in this way, The difference between the hardness of the first product deteriorated by heating and the hardness of the second product deteriorated by heating and pressurization in the Larson mirror parameter is obtained. For example, when the hardness of the first product is 191 HV and the hardness of the second product is 190 HV when the Larson mirror parameter is 19.0, the hardness of the first product and the first The difference between the hardness of the two products is 1.
次いで、この作業を、複数のラーソンミラーパラメータで行うことにより、両製品間の硬さの差と、第2製品の硬さとの第3の関係を求める。求めた関係は、少なくとも一部分、望ましくは全体において実質的に比例関係になることが好ましい。即ち、この関係を表す検量線を作成すると、少なくとも一部分、望ましくは全体において実質的に直線となる。
Next, by performing this operation with a plurality of Larson mirror parameters, the third relationship between the hardness difference between the two products and the hardness of the second product is obtained. It is preferable that the obtained relationship is substantially proportional at least in part, and desirably in whole. That is, when a calibration curve representing this relationship is created, it becomes a substantially straight line at least partially, preferably as a whole.
両製品間の硬さの差と、第2製品の硬さとの第3の関係が、比例関係にあるか否かで、本発明に係るクリープ余寿命の予測方法の精度を評価することができる。例えば、測定した全領域において、両製品間の硬さの差と、第2製品の硬さとの関係が比例関係にあるならば、この全領域において、本発明に係るクリープ余寿命の予測方法を用いることによって、ベイナイト組織を有する製品のクリープ余寿命を精度良く測定することができる。
一方で、例えば、第2製品の硬さが150以上の領域では、両製品間の硬さの差と、第2製品の硬さとの関係が比例関係にあるが、第2製品の硬さが150未満の領域では、この関係が指数関数などとなり比例関係にない場合には、予測対象となる製品の硬さが150以上の場合に、本発明に係るクリープ余寿命の予測方法を用いることによって、その製品のクリープ余寿命を精度良く予測することができると分かる。なお、この場合、予測対象となる製品の硬さが150未満の領域では、精度は下がるものの、本発明に係るクリープ余寿命の予測方法を用いて、その製品のクリープ余寿命を予測しても良く、または、公知の別法を用いて、その製品のクリープ余寿命を予測しても良い。 The accuracy of the creep remaining life prediction method according to the present invention can be evaluated based on whether or not the third relationship between the hardness difference between the two products and the hardness of the second product is proportional. . For example, if there is a proportional relationship between the hardness difference between the two products and the hardness of the second product in the entire measured region, the creep remaining life prediction method according to the present invention is applied to the entire region. By using it, the creep remaining life of a product having a bainite structure can be accurately measured.
On the other hand, for example, in the region where the hardness of the second product is 150 or more, the relationship between the hardness difference between the two products and the hardness of the second product is proportional, but the hardness of the second product is In the region of less than 150, if this relationship is an exponential function or the like and is not proportional, by using the method for predicting the remaining creep life according to the present invention when the hardness of the product to be predicted is 150 or more, It can be seen that the creep remaining life of the product can be accurately predicted. In this case, although the accuracy decreases in the region where the hardness of the product to be predicted is less than 150, the creep remaining life of the product can be predicted using the creep remaining life prediction method according to the present invention. Alternatively, the remaining creep life of the product may be predicted using known alternative methods.
一方で、例えば、第2製品の硬さが150以上の領域では、両製品間の硬さの差と、第2製品の硬さとの関係が比例関係にあるが、第2製品の硬さが150未満の領域では、この関係が指数関数などとなり比例関係にない場合には、予測対象となる製品の硬さが150以上の場合に、本発明に係るクリープ余寿命の予測方法を用いることによって、その製品のクリープ余寿命を精度良く予測することができると分かる。なお、この場合、予測対象となる製品の硬さが150未満の領域では、精度は下がるものの、本発明に係るクリープ余寿命の予測方法を用いて、その製品のクリープ余寿命を予測しても良く、または、公知の別法を用いて、その製品のクリープ余寿命を予測しても良い。 The accuracy of the creep remaining life prediction method according to the present invention can be evaluated based on whether or not the third relationship between the hardness difference between the two products and the hardness of the second product is proportional. . For example, if there is a proportional relationship between the hardness difference between the two products and the hardness of the second product in the entire measured region, the creep remaining life prediction method according to the present invention is applied to the entire region. By using it, the creep remaining life of a product having a bainite structure can be accurately measured.
On the other hand, for example, in the region where the hardness of the second product is 150 or more, the relationship between the hardness difference between the two products and the hardness of the second product is proportional, but the hardness of the second product is In the region of less than 150, if this relationship is an exponential function or the like and is not proportional, by using the method for predicting the remaining creep life according to the present invention when the hardness of the product to be predicted is 150 or more, It can be seen that the creep remaining life of the product can be accurately predicted. In this case, although the accuracy decreases in the region where the hardness of the product to be predicted is less than 150, the creep remaining life of the product can be predicted using the creep remaining life prediction method according to the present invention. Alternatively, the remaining creep life of the product may be predicted using known alternative methods.
このように、本発明に係るクリープ余寿命の予測方法は、第1製品及び第2製品間の硬さの差と、第2製品の硬さとの第3の関係が、比例関係になるか否かで、対象となるベイナイト組織を有する製品において、どの程度の精度でクリープ余寿命を予測できるのかを評価することができる。このため、対象製品が予測に反して早期に破損するなどの事故を防ぐことができる。
Thus, in the method for predicting the remaining creep life according to the present invention, the third relationship between the hardness difference between the first product and the second product and the hardness of the second product is proportional. However, it is possible to evaluate to what extent the remaining creep life can be predicted in a product having a target bainite structure. For this reason, it is possible to prevent an accident such as the target product being damaged early against the prediction.
さらに、第2製品の硬さを、この硬さを与えた時の第2製品の損傷率に変換することによって、第2の製品の硬さと損傷率との間の第4の関係を求める。
Furthermore, the fourth relationship between the hardness of the second product and the damage rate is obtained by converting the hardness of the second product into the damage rate of the second product when the hardness is given.
そして、第3の関係と第4の関係とを用いて、両製品間の硬さの差と、第2製品の損傷率との第5の関係を求める。求めた関係は、少なくとも一部分、望ましくは全体において実質的に比例関係になることが好ましい。即ち、この関係を表す検量線を作成すると、少なくとも一部分、望ましくは全体において実質的に直線となる。
Then, using the third relationship and the fourth relationship, the fifth relationship between the difference in hardness between the two products and the damage rate of the second product is obtained. It is preferable that the obtained relationship is substantially proportional at least in part, and desirably in whole. That is, when a calibration curve representing this relationship is created, it becomes a substantially straight line at least partially, preferably as a whole.
両製品間の硬さの差と第2製品の硬さとの第3の関係と同様に、両製品間の硬さの差と、第2製品の損傷率との第5の関係が、比例関係にあるか否かで、本発明に係るクリープ余寿命の予測方法の精度を評価することができる。例えば、全損傷率において、両製品間の硬さの差と、第2製品の損傷率との関係が比例関係にあるならば、本発明に係るクリープ余寿命の予測方法を用いることによって、予測対象となる製品の損傷率がどのような値であっても、ベイナイト組織を有する製品のクリープ余寿命を精度良く測定することができる。
一方で、例えば、第2製品の損傷率が0.8以下の領域では、両製品間の硬さの差と、第2製品の損傷率との関係が比例関係にあるが、第2製品の損傷率が0.8より大きい領域では、この関係が指数関数などとなり比例関係にない場合には、予測対象となる製品の損傷率が0.8以下の場合に、本発明に係るクリープ余寿命の予測方法を用いることによって、その製品のクリープ余寿命を精度良く予測することができると分かる。なお、この場合、予測対象となる製品の損傷率が0.8より大きい時には、精度は下がるものの、本発明に係るクリープ余寿命の予測方法を用いて、その製品のクリープ余寿命を予測しても良く、または、公知の別法を用いて、その製品のクリープ余寿命を予測しても良い。 Similar to the third relationship between the hardness difference between the two products and the hardness of the second product, the fifth relationship between the hardness difference between the two products and the damage rate of the second product is proportional. The accuracy of the creep remaining life prediction method according to the present invention can be evaluated depending on whether or not it is present. For example, if the relationship between the hardness difference between the two products and the damage rate of the second product is proportional to the total damage rate, the prediction is made by using the creep remaining life prediction method according to the present invention. Regardless of the value of the damage rate of the target product, the creep remaining life of the product having a bainite structure can be accurately measured.
On the other hand, for example, in the region where the damage rate of the second product is 0.8 or less, the relationship between the hardness difference between the two products and the damage rate of the second product is proportional. In a region where the damage rate is greater than 0.8, when this relationship is not an exponential function or the like and is not proportional, if the damage rate of the product to be predicted is 0.8 or less, the remaining creep life according to the present invention It can be seen that the creep remaining life of the product can be accurately predicted by using this prediction method. In this case, when the damage rate of the product to be predicted is greater than 0.8, the accuracy decreases, but the creep remaining life of the product is predicted using the method for predicting the remaining creep life according to the present invention. Alternatively, the remaining creep life of the product may be predicted using a known alternative method.
一方で、例えば、第2製品の損傷率が0.8以下の領域では、両製品間の硬さの差と、第2製品の損傷率との関係が比例関係にあるが、第2製品の損傷率が0.8より大きい領域では、この関係が指数関数などとなり比例関係にない場合には、予測対象となる製品の損傷率が0.8以下の場合に、本発明に係るクリープ余寿命の予測方法を用いることによって、その製品のクリープ余寿命を精度良く予測することができると分かる。なお、この場合、予測対象となる製品の損傷率が0.8より大きい時には、精度は下がるものの、本発明に係るクリープ余寿命の予測方法を用いて、その製品のクリープ余寿命を予測しても良く、または、公知の別法を用いて、その製品のクリープ余寿命を予測しても良い。 Similar to the third relationship between the hardness difference between the two products and the hardness of the second product, the fifth relationship between the hardness difference between the two products and the damage rate of the second product is proportional. The accuracy of the creep remaining life prediction method according to the present invention can be evaluated depending on whether or not it is present. For example, if the relationship between the hardness difference between the two products and the damage rate of the second product is proportional to the total damage rate, the prediction is made by using the creep remaining life prediction method according to the present invention. Regardless of the value of the damage rate of the target product, the creep remaining life of the product having a bainite structure can be accurately measured.
On the other hand, for example, in the region where the damage rate of the second product is 0.8 or less, the relationship between the hardness difference between the two products and the damage rate of the second product is proportional. In a region where the damage rate is greater than 0.8, when this relationship is not an exponential function or the like and is not proportional, if the damage rate of the product to be predicted is 0.8 or less, the remaining creep life according to the present invention It can be seen that the creep remaining life of the product can be accurately predicted by using this prediction method. In this case, when the damage rate of the product to be predicted is greater than 0.8, the accuracy decreases, but the creep remaining life of the product is predicted using the method for predicting the remaining creep life according to the present invention. Alternatively, the remaining creep life of the product may be predicted using a known alternative method.
このように、本発明に係るクリープ余寿命の予測方法は、第1製品及び第2製品間の硬さの差と、第2製品の損傷率とが、比例関係になるか否かで、対象となるベイナイト組織を有する製品において、どの程度の精度でクリープ余寿命を予測できるのかを評価することができる。このため、対象製品が予測に反して早期に破損するなどの事故を防ぐことができる。
Thus, the method for predicting the remaining creep life according to the present invention is based on whether the difference in hardness between the first product and the second product and the damage rate of the second product are in a proportional relationship. In a product having a bainite structure, it is possible to evaluate to what extent the remaining creep life can be predicted. For this reason, it is possible to prevent an accident such as the target product being damaged early against the prediction.
本発明に係るクリープ余寿命の予測方法は、このようにして求めた、第1製品及び第2製品間の硬さの差と第2製品の硬さとの第3の関係、並びに、両製品の硬さの差と第2製品の損傷率との第5の関係を用いて、ベイナイト組織を有する製品のクリープ余寿命を予測することができる。すなわち、第3の関係を用いて、クリープ余寿命を予測する製品の硬さから、製品間の硬さの差を求め、第5の関係を用いて、得られた硬さの差から、対応する製品の損傷率を求めることによって、クリープ余寿命を予測する製品の損傷率を求めることができる。
The creep remaining life prediction method according to the present invention includes the third relationship between the difference in hardness between the first product and the second product and the hardness of the second product, and the two products. By using the fifth relationship between the difference in hardness and the damage rate of the second product, the remaining creep life of the product having a bainite structure can be predicted. That is, the third relationship is used to determine the difference in hardness between products from the hardness of the product that predicts the creep remaining life, and the fifth relationship is used to determine the difference in hardness obtained. By obtaining the damage rate of the product to be obtained, the damage rate of the product that predicts the remaining creep life can be obtained.
また、本発明に係るクリープ余寿命の予測方法に用いる検量線の作成方法は、このようにして求めた、第1製品及び第2製品間の硬さの差と第2製品の硬さとの第3の関係、並びに、両製品の硬さの差と第2製品の損傷率との第5の関係を用いて、第3の関係を表す検量線、及び、第5の関係を表す検量線を作成することができる。
In addition, the method for creating a calibration curve used in the creep remaining life prediction method according to the present invention is the difference between the hardness difference between the first product and the second product and the hardness of the second product obtained in this way. A calibration curve representing the third relationship and a calibration curve representing the fifth relationship are obtained using the relationship of 3 and the fifth relationship between the difference in hardness between the two products and the damage rate of the second product. Can be created.
以下、ボイラの配管として使用されることにより加熱及び加圧された、ベイナイト組織を有する製品を予測対象とする場合を例にして、本発明に係るクリープ余寿命の予測方法を用いて、クリープ余寿命を予測する方法を説明する。
まず、このボイラの配管の硬さを測定する。次に、「第1製品及び第2製品の硬さの差と、第2製品の硬さとの第3の関係」における第2製品の硬さに、測定された硬さの値を代入することによって、測定値に対応する硬さの差を求める。「両製品の硬さの差と、第2製品の損傷率との第5の関係」における両製品の硬さの差に、測定値に対応する硬さの差の値を代入することによって、測定値に対応する損傷率を求めることができる。求めた損傷率から、予測対象であるホイラの配管の余寿命を、予測することができる。 Hereinafter, using the method for predicting the remaining life of creep according to the present invention as an example of the case where a product having a bainite structure, which is heated and pressurized by being used as a boiler pipe, is used as a prediction target, A method for predicting the lifetime will be described.
First, the hardness of the boiler piping is measured. Next, the value of the measured hardness is substituted for the hardness of the second product in the “third relationship between the hardness difference of the first product and the second product and the hardness of the second product”. To obtain the difference in hardness corresponding to the measured value. By substituting the value of the difference in hardness corresponding to the measured value into the difference in hardness between the two products in the “fifth relationship between the difference in hardness between the two products and the damage rate of the second product”, The damage rate corresponding to the measured value can be obtained. From the obtained damage rate, it is possible to predict the remaining life of the pipe of the hoiler that is the prediction target.
まず、このボイラの配管の硬さを測定する。次に、「第1製品及び第2製品の硬さの差と、第2製品の硬さとの第3の関係」における第2製品の硬さに、測定された硬さの値を代入することによって、測定値に対応する硬さの差を求める。「両製品の硬さの差と、第2製品の損傷率との第5の関係」における両製品の硬さの差に、測定値に対応する硬さの差の値を代入することによって、測定値に対応する損傷率を求めることができる。求めた損傷率から、予測対象であるホイラの配管の余寿命を、予測することができる。 Hereinafter, using the method for predicting the remaining life of creep according to the present invention as an example of the case where a product having a bainite structure, which is heated and pressurized by being used as a boiler pipe, is used as a prediction target, A method for predicting the lifetime will be described.
First, the hardness of the boiler piping is measured. Next, the value of the measured hardness is substituted for the hardness of the second product in the “third relationship between the hardness difference of the first product and the second product and the hardness of the second product”. To obtain the difference in hardness corresponding to the measured value. By substituting the value of the difference in hardness corresponding to the measured value into the difference in hardness between the two products in the “fifth relationship between the difference in hardness between the two products and the damage rate of the second product”, The damage rate corresponding to the measured value can be obtained. From the obtained damage rate, it is possible to predict the remaining life of the pipe of the hoiler that is the prediction target.
本発明に係るクリープ余寿命の予測方法は、「第1製品及び第2製品の硬さの差と、第2製品の硬さとの第3の関係」、並びに、「両製品の硬さの差と、第2製品の損傷率との第5の関係」に基づいて、ベイナイト組織を有する製品のクリープ余寿命を予測する。基づく両関係のいずれにも、温度及び圧力のパラメータが用いられていないことから明らかなように、本発明に係るクリープ余寿命の予測方法は、第1製品及び第2製品に加えられた温度及び圧力とは異なる温度及び圧力の条件下で使用された製品であっても、これらの関係を用いて、クリープ余寿命を精度良く予測することができる。
The creep remaining life prediction method according to the present invention includes “a third relationship between the hardness difference between the first product and the second product and the hardness of the second product”, and “the difference in hardness between the two products. And the fifth relationship between the damage rate of the second product and the remaining life of the product having a bainite structure is predicted. As is apparent from the fact that neither temperature nor pressure parameters are used in both of the relations based on the above, the method for predicting the remaining creep life according to the present invention is based on the temperature applied to the first product and the second product. Even if the product is used under conditions of temperature and pressure different from the pressure, the remaining creep life can be accurately predicted using these relationships.
[実施例1]
クロムモリブデン鉄鋼鋼材から作られたベイナイト組織を有する円筒管(外径φ56.5mm、内径47.5mm、長さ35.0mm)を試料として、熱時効による劣化試験と内圧クリープ試験とを行った。熱時効による劣化試験は、温度が525℃(試験1)または550℃(試験2)の条件下で行い、内圧クリープ試験は、温度が525℃の場合には240MPaの内圧を加え(試験3)、また、温度が550℃の場合には145MPaの内圧を加えて行った(試験4)。なお、試験3における試料の寿命と、試験4における試料の寿命とは、互いに1割以内の誤差であり、ほぼ同じであった。 [Example 1]
A deterioration test due to thermal aging and an internal pressure creep test were performed using a cylindrical tube (outer diameter φ56.5 mm, inner diameter 47.5 mm, length 35.0 mm) made of chromium molybdenum steel material and having a bainite structure as a sample. The deterioration test by thermal aging is performed under the condition of a temperature of 525 ° C. (Test 1) or 550 ° C. (Test 2), and the internal pressure creep test is performed by applying an internal pressure of 240 MPa when the temperature is 525 ° C. (Test 3). When the temperature was 550 ° C., an internal pressure of 145 MPa was applied (Test 4). Note that the life of the sample in Test 3 and the life of the sample inTest 4 are within 10% of each other and are almost the same.
クロムモリブデン鉄鋼鋼材から作られたベイナイト組織を有する円筒管(外径φ56.5mm、内径47.5mm、長さ35.0mm)を試料として、熱時効による劣化試験と内圧クリープ試験とを行った。熱時効による劣化試験は、温度が525℃(試験1)または550℃(試験2)の条件下で行い、内圧クリープ試験は、温度が525℃の場合には240MPaの内圧を加え(試験3)、また、温度が550℃の場合には145MPaの内圧を加えて行った(試験4)。なお、試験3における試料の寿命と、試験4における試料の寿命とは、互いに1割以内の誤差であり、ほぼ同じであった。 [Example 1]
A deterioration test due to thermal aging and an internal pressure creep test were performed using a cylindrical tube (outer diameter φ56.5 mm, inner diameter 47.5 mm, length 35.0 mm) made of chromium molybdenum steel material and having a bainite structure as a sample. The deterioration test by thermal aging is performed under the condition of a temperature of 525 ° C. (Test 1) or 550 ° C. (Test 2), and the internal pressure creep test is performed by applying an internal pressure of 240 MPa when the temperature is 525 ° C. (Test 3). When the temperature was 550 ° C., an internal pressure of 145 MPa was applied (Test 4). Note that the life of the sample in Test 3 and the life of the sample in
各試験について、損傷率が0.19、0.26、0.50、0.70、0.80および0.90の時に、試料の10箇所についてビッカース硬さを測定し、その平均を求めた。得られた平均硬さとラーソンミラーパラメータとの関係を、図1に示す。なお、ラーソンミラーパラメータLMPは、LMP=T(C+logtr)、[式中、Tは絶対温度(K)で表した加熱温度であり、trは加熱時間(h)であり、Cは定数20である]、を用いて求めた。
図1が示すように、熱時効による劣化(試験1および2)の測定結果から求めた近似曲線と、内圧クリープによる劣化(試験3および4)の測定結果から求めた近似曲線との間で、同一のLMPに対する硬さに差が生じた。この硬さの差をΔHとして算出し、算出されたΔHと、そのΔHを与える場合の内圧クリープによる劣化時の硬さとの関係を求めた。結果を図2に示す。図2から明らかなように、ΔHと内圧クリープによる劣化時の硬さとは、比例関係にあることが示された。
さらに、図2の内圧クリープによる劣化時の硬さを、その硬さを与えた場合の損傷率に変換した結果を図3に示す。図3は、ΔHと損傷率との関係を示している。図3から明らかなように、ΔHと損傷率との関係も、比例関係にあることが示された。 For each test, when the damage rate was 0.19, 0.26, 0.50, 0.70, 0.80 and 0.90, Vickers hardness was measured at 10 points of the sample, and the average was obtained. . The relationship between the obtained average hardness and the Larson mirror parameter is shown in FIG. Incidentally, Larson-Miller parameter LMP is, LMP = T (C + logt r), in the Expression, T is heating temperature expressed in absolute temperature (K), t r is the heating time (h), C is a constant 20 ].
As shown in FIG. 1, between the approximate curve obtained from the measurement result of degradation due to thermal aging (Tests 1 and 2) and the approximate curve obtained from the measurement result of degradation due to internal pressure creep (Tests 3 and 4), There was a difference in hardness for the same LMP. The difference in hardness was calculated as ΔH, and the relationship between the calculated ΔH and the hardness at the time of deterioration due to internal pressure creep when the ΔH was given was obtained. The results are shown in FIG. As is clear from FIG. 2, it is shown that ΔH and the hardness at the time of deterioration due to internal pressure creep are in a proportional relationship.
Furthermore, the result of converting the hardness at the time of deterioration due to internal pressure creep in FIG. 2 into the damage rate when the hardness is given is shown in FIG. FIG. 3 shows the relationship between ΔH and the damage rate. As is clear from FIG. 3, the relationship between ΔH and the damage rate is also proportional.
図1が示すように、熱時効による劣化(試験1および2)の測定結果から求めた近似曲線と、内圧クリープによる劣化(試験3および4)の測定結果から求めた近似曲線との間で、同一のLMPに対する硬さに差が生じた。この硬さの差をΔHとして算出し、算出されたΔHと、そのΔHを与える場合の内圧クリープによる劣化時の硬さとの関係を求めた。結果を図2に示す。図2から明らかなように、ΔHと内圧クリープによる劣化時の硬さとは、比例関係にあることが示された。
さらに、図2の内圧クリープによる劣化時の硬さを、その硬さを与えた場合の損傷率に変換した結果を図3に示す。図3は、ΔHと損傷率との関係を示している。図3から明らかなように、ΔHと損傷率との関係も、比例関係にあることが示された。 For each test, when the damage rate was 0.19, 0.26, 0.50, 0.70, 0.80 and 0.90, Vickers hardness was measured at 10 points of the sample, and the average was obtained. . The relationship between the obtained average hardness and the Larson mirror parameter is shown in FIG. Incidentally, Larson-Miller parameter LMP is, LMP = T (C + logt r), in the Expression, T is heating temperature expressed in absolute temperature (K), t r is the heating time (h), C is a constant 20 ].
As shown in FIG. 1, between the approximate curve obtained from the measurement result of degradation due to thermal aging (Tests 1 and 2) and the approximate curve obtained from the measurement result of degradation due to internal pressure creep (Tests 3 and 4), There was a difference in hardness for the same LMP. The difference in hardness was calculated as ΔH, and the relationship between the calculated ΔH and the hardness at the time of deterioration due to internal pressure creep when the ΔH was given was obtained. The results are shown in FIG. As is clear from FIG. 2, it is shown that ΔH and the hardness at the time of deterioration due to internal pressure creep are in a proportional relationship.
Furthermore, the result of converting the hardness at the time of deterioration due to internal pressure creep in FIG. 2 into the damage rate when the hardness is given is shown in FIG. FIG. 3 shows the relationship between ΔH and the damage rate. As is clear from FIG. 3, the relationship between ΔH and the damage rate is also proportional.
[実施例2]
実施例2では、実施例1で作成した図2及び図3を用いて、ベイナイト組織を有する中空管のクリープ余寿命を予測した。
クロムモリブデン鉄鋼鋼材で作られた配管(STPA22、JIS規格 G 3457「配管用アーク溶接炭素鋼鋼管」)を、火力発電所のボイラで使用できるように、加熱しながらゆっくりと曲げ加工した。加工した配管の曲がり部分の組織を透過型電子顕微鏡(TEM)で検査したところ、ベイナイト組織が生成していた。このようにして加工した配管に対し、550℃の温度下で、145MPaの内圧を加えた。
ある時間経過したところで、配管の曲がり部分のビッカース硬さを測定したところ190HVであった。図2より、190HVの時のΔHは1.0であると求まり、そして、図3より、ΔHが1.0の時の損傷率は0.10と求まることから、配管の曲がり部分の損傷率は0.10であると予測することができた。即ち、この配管の曲がり部分の余寿命は、現在までの使用時間の約9倍であると予測することができた。 [Example 2]
In Example 2, the remaining creep life of a hollow tube having a bainite structure was predicted using FIGS. 2 and 3 created in Example 1. FIG.
Piping (STPA 22, JIS standard G 3457 “arc-welded carbon steel pipe for piping”) made of chromium molybdenum steel was slowly bent while heating so that it could be used in a boiler of a thermal power plant. When the structure of the bent part of the processed piping was examined with a transmission electron microscope (TEM), a bainite structure was generated. An internal pressure of 145 MPa was applied to the pipe thus processed at a temperature of 550 ° C.
When a certain time had elapsed, the Vickers hardness of the bent part of the pipe was measured and found to be 190 HV. From FIG. 2, ΔH at 190 HV is determined to be 1.0, and from FIG. 3, the damage rate when ΔH is 1.0 is determined to be 0.10. Could be predicted to be 0.10. In other words, it was possible to predict that the remaining life of the bent portion of this pipe was about 9 times the service time up to now.
実施例2では、実施例1で作成した図2及び図3を用いて、ベイナイト組織を有する中空管のクリープ余寿命を予測した。
クロムモリブデン鉄鋼鋼材で作られた配管(STPA22、JIS規格 G 3457「配管用アーク溶接炭素鋼鋼管」)を、火力発電所のボイラで使用できるように、加熱しながらゆっくりと曲げ加工した。加工した配管の曲がり部分の組織を透過型電子顕微鏡(TEM)で検査したところ、ベイナイト組織が生成していた。このようにして加工した配管に対し、550℃の温度下で、145MPaの内圧を加えた。
ある時間経過したところで、配管の曲がり部分のビッカース硬さを測定したところ190HVであった。図2より、190HVの時のΔHは1.0であると求まり、そして、図3より、ΔHが1.0の時の損傷率は0.10と求まることから、配管の曲がり部分の損傷率は0.10であると予測することができた。即ち、この配管の曲がり部分の余寿命は、現在までの使用時間の約9倍であると予測することができた。 [Example 2]
In Example 2, the remaining creep life of a hollow tube having a bainite structure was predicted using FIGS. 2 and 3 created in Example 1. FIG.
Piping (
When a certain time had elapsed, the Vickers hardness of the bent part of the pipe was measured and found to be 190 HV. From FIG. 2, ΔH at 190 HV is determined to be 1.0, and from FIG. 3, the damage rate when ΔH is 1.0 is determined to be 0.10. Could be predicted to be 0.10. In other words, it was possible to predict that the remaining life of the bent portion of this pipe was about 9 times the service time up to now.
なお、本実施例では、図1~図3を作成する場合と、実際に余寿命を予測する際とで、同じ温度及び圧力を適用したが、図2及び図3において温度及び圧力のパラメータが用いられていないことからも明らかなように、異なる温度及び圧力の条件下で使用された配管であっても、同一材料で構成されてさえいれば、図2及び図3を用いて、その余寿命を予測することができる。
In the present embodiment, the same temperature and pressure were applied when creating FIGS. 1 to 3 and when actually estimating the remaining life, but the parameters of temperature and pressure in FIGS. As is clear from the fact that it is not used, even if the pipes are used under different temperature and pressure conditions, as long as they are made of the same material, the remainder will be described with reference to FIGS. Life expectancy can be predicted.
[実施例3]
実施例1において、損傷率が0の時、試験2で損傷率が約0.5及び約0.9の時、並びに、試験4で損傷率が約0.5の時に、TEMによる試料の組織検査を行った。具体的には、各試料について2箇所を、結晶粒内を中心として、10000倍及び40000万倍の倍率で組織検査した。
損傷率が0の時の結果を図4に、試験2における損傷率が0.5の時の結果を図5に、試験2における損傷率が0.9の時に結果を図6に、そして、試験4における損傷率が0.5の時の結果を図7に示す。 [Example 3]
In Example 1, when the damage rate is 0, when the damage rate is about 0.5 and about 0.9 in Test 2, and when the damage rate is about 0.5 inTest 4, the structure of the sample by TEM Inspected. Specifically, the structure was examined at two magnifications of each sample at a magnification of 10,000 times and 40 million times centering on the inside of the crystal grains.
FIG. 4 shows the results when the damage rate is 0, FIG. 5 shows the results when the damage rate in test 2 is 0.5, FIG. 6 shows the results when the damage rate in test 2 is 0.9, and The results when the damage rate inTest 4 is 0.5 are shown in FIG.
実施例1において、損傷率が0の時、試験2で損傷率が約0.5及び約0.9の時、並びに、試験4で損傷率が約0.5の時に、TEMによる試料の組織検査を行った。具体的には、各試料について2箇所を、結晶粒内を中心として、10000倍及び40000万倍の倍率で組織検査した。
損傷率が0の時の結果を図4に、試験2における損傷率が0.5の時の結果を図5に、試験2における損傷率が0.9の時に結果を図6に、そして、試験4における損傷率が0.5の時の結果を図7に示す。 [Example 3]
In Example 1, when the damage rate is 0, when the damage rate is about 0.5 and about 0.9 in Test 2, and when the damage rate is about 0.5 in
FIG. 4 shows the results when the damage rate is 0, FIG. 5 shows the results when the damage rate in test 2 is 0.5, FIG. 6 shows the results when the damage rate in test 2 is 0.9, and The results when the damage rate in
図4が示すように、損傷率が0の時は、結晶粒内に黒線として見える転位が数多く入っており、試料全体が堅固であることが分かる。これに対し、図5及び図6が示すように、熱時効により劣化した試料は、加熱時間が多くなるに従って、転位が減少していき、試料が柔らかくなったことが分かる。さらに、図5及び図7が示すように、損傷率は約0.5でほぼ同じであるが、熱時効により劣化した試料と内圧クリープにより劣化した試料とを比較すると、内圧クリープにより劣化した試料の方が転位が少なく、組織がより柔らかくなったことが分かる。
このように、熱時効により劣化した試料と内圧クリープにより劣化した試料との間では、同一の材料からできた試料を、同一の損傷率で比較した場合であっても、両者の固さには差があることが、組織検査によっても示された。 As shown in FIG. 4, when the damage rate is 0, it can be seen that there are many dislocations appearing as black lines in the crystal grains, and the entire sample is solid. On the other hand, as shown in FIGS. 5 and 6, it can be seen that in the sample deteriorated by thermal aging, the dislocation decreased as the heating time increased, and the sample became softer. Further, as shown in FIG. 5 and FIG. 7, the damage rate is approximately the same at about 0.5. However, comparing the sample deteriorated by thermal aging with the sample deteriorated by internal pressure creep, the sample deteriorated by internal pressure creep It can be seen that there were fewer dislocations and the tissue became softer.
In this way, between samples degraded by thermal aging and samples degraded by internal pressure creep, even if samples made of the same material are compared at the same damage rate, Differences were also shown by histology.
このように、熱時効により劣化した試料と内圧クリープにより劣化した試料との間では、同一の材料からできた試料を、同一の損傷率で比較した場合であっても、両者の固さには差があることが、組織検査によっても示された。 As shown in FIG. 4, when the damage rate is 0, it can be seen that there are many dislocations appearing as black lines in the crystal grains, and the entire sample is solid. On the other hand, as shown in FIGS. 5 and 6, it can be seen that in the sample deteriorated by thermal aging, the dislocation decreased as the heating time increased, and the sample became softer. Further, as shown in FIG. 5 and FIG. 7, the damage rate is approximately the same at about 0.5. However, comparing the sample deteriorated by thermal aging with the sample deteriorated by internal pressure creep, the sample deteriorated by internal pressure creep It can be seen that there were fewer dislocations and the tissue became softer.
In this way, between samples degraded by thermal aging and samples degraded by internal pressure creep, even if samples made of the same material are compared at the same damage rate, Differences were also shown by histology.
Claims (10)
- ベイナイト組織を有する製品のクリープ余寿命の予測方法に用いる検量線の作成方法であって、
ベイナイト組織を有し加熱により劣化した第1製品の、硬さとラーソンミラーパラメータとの第1の関係を求める工程と、
ベイナイト組織を有し加熱及び加圧により劣化した第2製品の、硬さとラーソンミラーパラメータとの間の第2の関係を求める工程と、
第1の関係と第2の関係を用いて、所定のラーソンミラーパラメータにおける、第1製品の硬さと第2製品の硬さとの差を求めることによって、第2製品の硬さと前記差との第3の関係を表す検量線を作成する工程と、
第2の製品の硬さと損傷率との間の第4の関係を求める工程と、
第3の関係と第4の関係を用いて、前記差と、第2製品の損傷率との第5の関係を表す検量線を作成する工程と、を含む方法。 A method for preparing a calibration curve used in a method for predicting the remaining creep life of a product having a bainite structure,
Obtaining a first relationship between hardness and Larson mirror parameters of a first product having a bainite structure and deteriorated by heating;
Determining a second relationship between hardness and Larson mirror parameters of a second product having a bainite structure and degraded by heating and pressing;
By using the first relationship and the second relationship to obtain the difference between the hardness of the first product and the hardness of the second product at a predetermined Larson mirror parameter, the difference between the hardness of the second product and the difference is obtained. Creating a calibration curve representing the relationship of 3;
Determining a fourth relationship between hardness and damage rate of the second product;
Creating a calibration curve representing the fifth relationship between the difference and the damage rate of the second product using the third relationship and the fourth relationship. - ベイナイト組織を有する製品のクリープ余寿命の予測方法であって、請求項1に記載の作成方法によって作成された検量線を用いることを特徴とする、クリープ余寿命の予測方法。 A method for predicting a remaining creep life of a product having a bainite structure, wherein a calibration curve created by the creating method according to claim 1 is used.
- ベイナイト組織を有する製品のクリープ余寿命の予測方法であって、
ベイナイト組織を有し加熱により劣化した第1製品の、硬さとラーソンミラーパラメータとの第1の関係を求める工程と、
ベイナイト組織を有し加熱及び加圧により劣化した第2製品の、硬さとラーソンミラーパラメータとの間の第2の関係を求める工程と、
第1の関係と第2の関係とを用いて、所定のラーソンミラーパラメータにおける、第1製品の硬さと第2製品の硬さとの差を求めることによって、第2製品の硬さと前記差との第3の関係を求める工程と、
第2の製品の硬さと損傷率との間の第4の関係を求める工程と、
第3の関係と第4の関係とを用いて、前記差と、第2製品の損傷率との第5の関係を求める工程と、
第3の関係を用いて、クリープ余寿命を予測する製品の硬さから、対応する前記差を得る工程と、
第5の関係を用いて、前記得られた差から、対応する当該製品の損傷率を求める工程とを含む、クリープ余寿命の予測方法。 A method for predicting the remaining creep life of a product having a bainite structure,
Obtaining a first relationship between hardness and Larson mirror parameters of a first product having a bainite structure and deteriorated by heating;
Determining a second relationship between hardness and Larson mirror parameters of a second product having a bainite structure and degraded by heating and pressing;
Using the first relationship and the second relationship, the difference between the hardness of the second product and the difference between the hardness of the first product and the hardness of the second product in a predetermined Larson mirror parameter is obtained. Obtaining a third relationship;
Determining a fourth relationship between hardness and damage rate of the second product;
Using a third relationship and a fourth relationship to determine a fifth relationship between the difference and the damage rate of the second product;
Using the third relationship to obtain the corresponding difference from the hardness of the product that predicts the remaining creep life,
A method for predicting a remaining creep life, comprising: calculating a damage rate of the corresponding product from the obtained difference using a fifth relationship. - 前記クリープ余寿命を予測する製品の硬さに対応する差を求めるために、第3の関係のうち、実質的に比例関係である硬さの範囲を用いることを特徴とする、請求項2に記載のクリープ余寿命の予測方法。 The range of hardness that is substantially proportional among the third relationships is used to obtain the difference corresponding to the hardness of the product that predicts the creep remaining life. The prediction method of the creep remaining life as described.
- 前記クリープ余寿命を予測する製品の損傷率を求めるために、第5の関係のうち、実質的に比例関係である差の範囲を用いることを特徴とする、請求項3または4に記載のクリープ余寿命の予測方法。 5. The creep according to claim 3, wherein a range of a difference that is substantially proportional among the fifth relationships is used to obtain a damage rate of a product that predicts the creep remaining life. How to predict the remaining life.
- 前記クリープ余寿命を予測する製品、第1製品及び第2製品が、中空管であることを特徴とする、請求項3~5のいずれか1項に記載のクリープ余寿命の予測方法。 The creep remaining life prediction method according to any one of claims 3 to 5, wherein the products for predicting the remaining creep life, the first product, and the second product are hollow tubes.
- 前記クリープ余寿命を予測する製品が曲がり部分を有するボイラ用配管であることを特徴とする、請求項5に記載のクリープ余寿命の予測方法。 6. The creep remaining life prediction method according to claim 5, wherein the product for which the creep remaining life is predicted is a pipe for a boiler having a bent portion.
- 前記加圧が内圧を加えることにより行われることを特徴とする、請求項6または7に記載のクリープ余寿命の予測方法。 The method for predicting a remaining creep life according to claim 6 or 7, wherein the pressurization is performed by applying an internal pressure.
- 前記硬さがビッカース硬さであることを特徴とする、請求項3~8のいずれか1項に記載のクリープ余寿命の予測方法。 The creep remaining life prediction method according to any one of claims 3 to 8, wherein the hardness is Vickers hardness.
- 第1製品に加えられた温度と、第2製品に加えられた温度とが、同じであることを特徴とする、請求項3~9のいずれか1項に記載のクリープ余寿命の予測方法。 The creep remaining life prediction method according to any one of claims 3 to 9, wherein the temperature applied to the first product and the temperature applied to the second product are the same.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/058372 WO2014147830A1 (en) | 2013-03-22 | 2013-03-22 | Method for predicting remaining creep life expectancy of product with bainite structure and method for producing standard curve used in this prediction method |
JP2013529486A JP5355832B1 (en) | 2013-03-22 | 2013-03-22 | Method for predicting the remaining creep life of a product having a bainite structure, and a method for creating a calibration curve used in this prediction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/058372 WO2014147830A1 (en) | 2013-03-22 | 2013-03-22 | Method for predicting remaining creep life expectancy of product with bainite structure and method for producing standard curve used in this prediction method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014147830A1 true WO2014147830A1 (en) | 2014-09-25 |
Family
ID=49765039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/058372 WO2014147830A1 (en) | 2013-03-22 | 2013-03-22 | Method for predicting remaining creep life expectancy of product with bainite structure and method for producing standard curve used in this prediction method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5355832B1 (en) |
WO (1) | WO2014147830A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2816339A1 (en) * | 2013-06-20 | 2014-12-24 | Mitsubishi Hitachi Power Systems, Ltd. | Remaining life assessment method for heat-resisting steel member |
WO2019123792A1 (en) * | 2017-12-21 | 2019-06-27 | 三菱日立パワーシステムズ株式会社 | Service life evaluating device and service life evaluating method |
RU2720651C1 (en) * | 2017-01-17 | 2020-05-12 | Сименс Мобилити Гмбх | Method of forecasting expected service life of a component part of an observed vehicle and a processing unit |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106769531B (en) * | 2017-03-10 | 2019-07-30 | 江苏方天电力技术有限公司 | A kind of method for building up of soft P91 pipe fitting endurance curve extrapolation function |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04240552A (en) * | 1991-01-23 | 1992-08-27 | Nippon Steel Corp | Method for evaluating residual life of metal welding member under high temperature stress |
JPH09257788A (en) * | 1996-03-25 | 1997-10-03 | Japan Steel Works Ltd:The | Method for non-destructive judgement for creep damage of crmov steel product |
JP2001305067A (en) * | 2000-04-18 | 2001-10-31 | Mitsubishi Heavy Ind Ltd | Method of evaluating service life of material |
-
2013
- 2013-03-22 JP JP2013529486A patent/JP5355832B1/en active Active
- 2013-03-22 WO PCT/JP2013/058372 patent/WO2014147830A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04240552A (en) * | 1991-01-23 | 1992-08-27 | Nippon Steel Corp | Method for evaluating residual life of metal welding member under high temperature stress |
JPH09257788A (en) * | 1996-03-25 | 1997-10-03 | Japan Steel Works Ltd:The | Method for non-destructive judgement for creep damage of crmov steel product |
JP2001305067A (en) * | 2000-04-18 | 2001-10-31 | Mitsubishi Heavy Ind Ltd | Method of evaluating service life of material |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2816339A1 (en) * | 2013-06-20 | 2014-12-24 | Mitsubishi Hitachi Power Systems, Ltd. | Remaining life assessment method for heat-resisting steel member |
RU2720651C1 (en) * | 2017-01-17 | 2020-05-12 | Сименс Мобилити Гмбх | Method of forecasting expected service life of a component part of an observed vehicle and a processing unit |
US10950071B2 (en) | 2017-01-17 | 2021-03-16 | Siemens Mobility GmbH | Method for predicting the life expectancy of a component of an observed vehicle and processing unit |
WO2019123792A1 (en) * | 2017-12-21 | 2019-06-27 | 三菱日立パワーシステムズ株式会社 | Service life evaluating device and service life evaluating method |
JP2019113345A (en) * | 2017-12-21 | 2019-07-11 | 三菱日立パワーシステムズ株式会社 | Lifetime evaluation device, and lifetime evaluation method |
JP7039784B2 (en) | 2017-12-21 | 2022-03-23 | 三菱重工業株式会社 | Life evaluation device and life evaluation method |
Also Published As
Publication number | Publication date |
---|---|
JP5355832B1 (en) | 2013-11-27 |
JPWO2014147830A1 (en) | 2017-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5450903B1 (en) | Prediction method for creep remaining life of product deteriorated by heating and pressurization, and calibration curve creation method used for this prediction method | |
Shingledecker et al. | Testing and analysis of full-scale creep-rupture experiments on inconel alloy 740 cold-formed tubing | |
JP5355832B1 (en) | Method for predicting the remaining creep life of a product having a bainite structure, and a method for creating a calibration curve used in this prediction method | |
CN100573181C (en) | Utilize the method for ferromagnetic materials surface stray magnetic field signal monitoring fatigue damage | |
JP4979563B2 (en) | Creep life evaluation method | |
Student et al. | Influence of the long-term operation of 12Kh1M1F steel from different zones of a bend of steam pipeline of a thermal power plant on its mechanical characteristics | |
Nobakhti et al. | Evaluating small punch test as accelerated creep test using Larson–Miller parameter | |
Kim et al. | Experimental evaluation of the effect of local wall thinning on the failure pressure of elbows | |
Xing et al. | Reliability analysis and life prediction of HK40 steel during high-temperature exposure | |
Brodecki et al. | Monitoring of fatigue damage development in as-received and exploited 10CrMo9-10 power engineering steel supported by Digital Image Correlation | |
JP2014145657A (en) | Method and device for evaluating life of metal member | |
Tsurui et al. | Optimization and verification of ultra-miniature specimen for evaluating creep property of in-service component material under uniaxial loading | |
JP5475198B1 (en) | Prediction method for creep remaining life of product deteriorated by heating and pressurization, and calibration curve creation method used for this prediction method | |
RU2281468C1 (en) | Method of measuring mechanical stresses in steel structures | |
JP5859710B2 (en) | Prediction method for creep remaining life of product deteriorated by heating and pressurization, and calibration curve creation method used for this prediction method | |
JP2014142304A (en) | Life evaluation method for austenite stainless steel | |
Kim et al. | Residual life-time evaluation method using instrumented indentation test | |
JP5543954B2 (en) | Creep strain inspection method and inspection apparatus | |
Vakili‐Tahami et al. | Experimental Study of the Creep Lifetime of the 1.25 Cr 0.5 Mo Steel Pipes | |
Nakatsuka et al. | Evaluation of Internal Pressure Creep Rupture Life of Boiler Tube Using Miniature Tensile Creep Test | |
JP4767184B2 (en) | Soundness evaluation method for boiler pipes and attached pipes | |
Špička et al. | Sensitivity analysis of the crack evaluation for steam turbine casings loaded by pressure and temperatures | |
Han et al. | Material Degradation Analysis and Reliability Assessment of Residual Life for Service-Exposed Reformer Tubes | |
JP4865741B2 (en) | Damage evaluation method for bent part of steel pipe | |
Bassi et al. | Creep-Fatigue Crack Growth in Power Plant Components |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2013529486 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13878791 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13878791 Country of ref document: EP Kind code of ref document: A1 |