JPH10227754A - High temperature damage evaluation method for temper martensite stainless steel - Google Patents

High temperature damage evaluation method for temper martensite stainless steel

Info

Publication number
JPH10227754A
JPH10227754A JP9031992A JP3199297A JPH10227754A JP H10227754 A JPH10227754 A JP H10227754A JP 9031992 A JP9031992 A JP 9031992A JP 3199297 A JP3199297 A JP 3199297A JP H10227754 A JPH10227754 A JP H10227754A
Authority
JP
Japan
Prior art keywords
laves phase
temperature
potential
amount
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9031992A
Other languages
Japanese (ja)
Other versions
JP3486315B2 (en
Inventor
Nobuhiko Nishimura
宣彦 西村
Fujimitsu Masuyama
不二光 増山
Akirou Sasada
顕郎 笹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP03199297A priority Critical patent/JP3486315B2/en
Publication of JPH10227754A publication Critical patent/JPH10227754A/en
Application granted granted Critical
Publication of JP3486315B2 publication Critical patent/JP3486315B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high temperature damage evaluation method for temper martensite stainless steel by which the high temperature damage of the machine parts which are used at a high temperature for a long time, and are made of temper martensite stainless steel, can be evaluated with high accuracy by a simple operation during the use of the same. SOLUTION: A surface of a part to be examined, having the mirror finished surface, is dipped into an electrolyte, the electric potential is applied to the same at a specific potential scanning speed, a peak value of the current value appeared in the almost constant potential on a dissolving current-potential curve obtained corresponding to the dissolution of a Laves phase as a specific deposit, is determined, the formation amount of the Laves phase is determined from an evaluation chart indicating the relationship between the peak current density and the formation amount of the Laves phase, formed by using a specimen on which the ageing treatment has 4 been performed in advance, and an impact value or the rupture strength of a material of the part to be examined, or the operating temperature of the material of the part to be examined, is evalurated on the basis of the relational chart of the Laves phase formation amount, and the impact value or rupture time obtained in advance on the basis of the obtained formation amount of Laves phase, or a relational expression of the Laves phase formation amount-temperature-retension time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高温で長時間運転さ
れる焼戻しマルテンサイト系鋼からなる機械部品の高温
損傷度を供用中の状態で評価することのできる焼戻しマ
ルテンサイト系鋼の高温損傷評価方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-temperature damage evaluation of a tempered martensitic steel capable of evaluating the degree of high-temperature damage of a mechanical part made of a tempered martensitic steel operated at a high temperature for a long time in a service state. About the method.

【0002】[0002]

【従来の技術】従来より、高温で長時間運転される機械
部品の供用中の高温損傷検査方法として、次のような方
法が知られている。 1)長時間使用によって生成したき裂などの欠陥を磁
気、超音波、放射線等を用いて非破壊的に検査する方
法。 2)長時間使用された機械部品表面から試験片を採取し
て、衝撃試験やクリープ破断試験のような機械試験に供
する方法。 3)部材の表面や採取した試験片の表面の金属組織を観
察して、き裂が生成する前に生じる微小な空洞や析出物
の形態変化などを観察する方法。
2. Description of the Related Art Conventionally, the following method has been known as a high-temperature damage inspection method during the service of a machine component that is operated at a high temperature for a long time. 1) A non-destructive inspection method for defects such as cracks generated by long-term use using magnetism, ultrasonic waves, radiation, and the like. 2) A method in which a test piece is sampled from the surface of a machine component that has been used for a long time and subjected to a mechanical test such as an impact test or a creep rupture test. 3) A method of observing the metal structure on the surface of the member or the surface of the collected test piece, and observing the morphological change of minute voids and precipitates that occur before a crack is formed.

【0003】[0003]

【発明が解決しようとする課題】本発明が解決しようと
する上記従来技術の課題は以下のとおりである。 1)非破壊検査による方法はき裂を検出する方法である
ことから、き裂が発生する以前の損傷の程度を評価でき
ない。したがって、き裂が生成してから破壊するまでに
あまり時間がないと考えられる部品、例えば薄肉の伝熱
管や管厚にわたってほぼ一様な応力が負荷されるような
大径薄肉配管等においては、き裂が生じる以前の損傷を
検出できなければ、設備の安全運転に支障をきたす場合
があった。さらに、き裂の発生を伴わない損傷、例えば
靱性の低下等については、その損傷の度合いについて全
く情報が得られなかった。 2)試験片を用いて機械試験に供する方法は、前述した
課題を解決できる方法ではあるが、部材から試験片を採
取する必要がある。多くの場合、試験片採取後に該機械
を運転するためには採取後の部品の補修復旧作業が必要
になり、復旧部品の信頼性、復旧に要する費用及び工期
の問題から、特に大きな部品においては試験片採取が極
めて困難であった。 3)部材の表面や試験片表面の金属組織を観察する方法
については、試験片を用いる方法に比べて非破壊的手法
であり、検査後の補修復旧作業は不要であるが、評価の
ために表面から採取したレプリカを電子顕微鏡などの装
置を用いて解析する必要があり、その場で損傷を評価す
ることはできなかった。
The problems to be solved by the prior art described above by the present invention are as follows. 1) Since the method based on the nondestructive inspection is a method for detecting a crack, the degree of damage before a crack occurs cannot be evaluated. Therefore, in parts where it is considered that there is not much time from crack generation to fracture, for example, in thin-walled heat transfer tubes or large-diameter thin-walled pipes where almost uniform stress is applied over the thickness of the tube, Failure to detect damage before cracking could hinder safe operation of equipment. In addition, no information was obtained on the degree of damage with respect to damage without crack generation, for example, reduction in toughness. 2) The method of performing a mechanical test using a test piece is a method that can solve the above-described problem, but it is necessary to collect a test piece from a member. In many cases, in order to operate the machine after sample collection, it is necessary to replace and repair old parts after collection, and the reliability of recovered parts, the cost required for recovery, and the construction period are limited. It was extremely difficult to collect test pieces. 3) The method of observing the metal structure on the surface of a member or the surface of a test piece is a non-destructive method as compared with the method using a test piece, and the old work of repairing and repairing after inspection is unnecessary. It was necessary to analyze the replica taken from the surface using an apparatus such as an electron microscope, and it was not possible to evaluate the damage on the spot.

【0004】本発明は前記従来技術の実状に鑑み、高温
で長時間使用される焼戻しマルテンサイト系鋼からなる
機械部品の高温損傷度を、供用中の状態で、簡単な操作
で精度よく評価することのできる焼戻しマルテンサイト
系鋼の高温損傷評価方法を提供しようとするものであ
る。
The present invention has been made in view of the above-mentioned prior art, and accurately evaluates the high-temperature damage degree of a mechanical part made of tempered martensitic steel which is used for a long time at a high temperature by a simple operation in a service state. It is an object of the present invention to provide a method for evaluating the high-temperature damage of tempered martensitic steel that can be performed.

【0005】[0005]

【課題を解決するための手段】本発明者らは高温で使用
される焼戻しマルテンサイト鋼の高温損傷の評価方法に
ついて種々検討する中で、焼戻しマルテンサイト鋼の高
温損傷と直接関係するラベス相(Laves相)に着目
して検討し、ラベス相の生成状態を金属組織的な手法に
よらず電気化学的な手法によって評価することにより、
供用中の状態のままで簡単且つ精度よく測定できること
を見出し、このようにして得られたラベス相の生成状態
から材料の高温損傷の度合いを推定できることを見出し
た。
The present inventors have studied various methods for evaluating the high-temperature damage of tempered martensitic steel used at high temperatures, and found that the Laves phase (which is directly related to the high-temperature damage of tempered martensitic steel). Laves phase), and by evaluating the generation state of the Laves phase by an electrochemical method instead of a metallographic method,
It has been found that measurement can be performed easily and accurately in the state of operation, and that the degree of high-temperature damage of the material can be estimated from the state of formation of the Laves phase thus obtained.

【0006】本発明の第1は8〜12重量%のCrを含
有する焼戻しマルテンサイト系鋼の高温損傷を評価する
に当たり、次の1)〜7)の手順により操作することを
特徴とする焼戻しマルテンサイト鋼の高温損傷評価方法
である。 1)長時間高温で使用された焼戻しマルテンサイト系鋼
からなる高温部品の調査対象部位の表面を鏡面に研摩す
る。 2)前記鏡面研摩面のうち計測に必要な面積を残して他
をマスキングし、マスキングしていない面(計測面)の
面積を測定する。 3)電解溶液又はこれをゲル化したものに前記鏡面研摩
面を浸し、適切な参照電極及び対極を設置するとともに
計測面に電極線を接続し、電流計測準備を整える。 4)自然電極電位を計測後、一定の電位掃引速度で貴方
向に分極し、溶解電流と電位を記録する。 5)特定の析出物であるラベス相の溶解に対応して得ら
れる溶解電流−電位曲線上のほぼ一定の電位に現れる電
流値のピーク値を求める。 6)あらかじめ時効処理した試験片を用いて作成したピ
ーク電流密度(ピーク電流を計測面積で割った値)とラ
ベス相の生成量との関係を示す評価線図からラベス相の
生成量を求める。 7)得られたラベス相の生成量から、あらかじめ時効処
理した試験片を用いて作成したラベス相生成量と衝撃値
との関係線図を用いて、調査対象部位の材料の衝撃値を
求め、それにより靱性を評価する。
A first aspect of the present invention is to evaluate the high temperature damage of a tempered martensitic steel containing 8 to 12% by weight of Cr by operating according to the following procedures 1) to 7). This is a method for evaluating high-temperature damage of martensitic steel. 1) Polish the surface of the inspection target site of a high-temperature component made of tempered martensitic steel used at a high temperature for a long time to a mirror surface. 2) The other of the mirror-polished surfaces is masked except for the area required for measurement, and the area of the unmasked surface (measurement surface) is measured. 3) The mirror-polished surface is immersed in an electrolytic solution or a gel thereof, and an appropriate reference electrode and a counter electrode are installed, and an electrode wire is connected to the measurement surface to prepare for current measurement. 4) After measuring the natural electrode potential, polarize in a noble direction at a constant potential sweep rate, and record the dissolution current and potential. 5) A peak value of a current value appearing at a substantially constant potential on a dissolution current-potential curve obtained in accordance with dissolution of the Laves phase as a specific precipitate is determined. 6) The generation amount of the Laves phase is obtained from an evaluation diagram showing the relationship between the peak current density (the value obtained by dividing the peak current by the measurement area) and the generation amount of the Laves phase, which is prepared using a test piece that has been subjected to aging treatment in advance. 7) From the obtained amount of generation of the Laves phase, using the relationship diagram between the amount of generation of the Laves phase and the impact value prepared using a test piece aged in advance, the impact value of the material at the site to be investigated was obtained. Thereby, the toughness is evaluated.

【0007】本発明の第2は前記第1発明の焼戻しマル
テンサイト鋼の高温損傷評価方法において、手順7)の
代わりに次の手順8)の操作を行うことを特徴とする焼
戻しマルテンサイト鋼の高温損傷評価方法である。 8)得られたラベス相の生成量から、あらかじめ時効処
理した試験片を用いて作成したラベス相生成量と破断時
間との関係線図を用いて、調査対象部位の材料の破断強
度を求め、それによりクリープ損傷を評価する。
A second aspect of the present invention is the method for evaluating the high temperature damage of tempered martensitic steel according to the first aspect of the present invention, wherein the operation of the following procedure 8) is performed instead of the procedure 7). This is a high-temperature damage evaluation method. 8) From the obtained amount of Labes phase generation, the breaking strength of the material at the site to be investigated was determined by using a relationship diagram between the amount of Labes phase generation and the breaking time created using a test piece that had been aged in advance, The creep damage is thereby evaluated.

【0008】本発明の第3は前記第1発明の焼戻しマル
テンサイト鋼の高温損傷評価方法において、手順7)の
代わりに次の手順9)の操作を行うことを特徴とする焼
戻しマルテンサイト鋼の高温損傷評価方法である。 9)得られたラベス相の生成量と高温部品の累計運転時
間から、あらかじめ時効処理した試験片及び長時間使用
材を用いて作成したラベス相生成量−温度−保持時間の
間の関係式を用いて、調査対象部位の材料の使用温度を
評価する。
[0008] A third aspect of the present invention is the method for evaluating the high temperature damage of tempered martensitic steel according to the first aspect, wherein the operation of the following step 9) is performed instead of the step 7). This is a high-temperature damage evaluation method. 9) From the obtained amount of labes phase and the total operation time of the high-temperature parts, the relational expression between the amount of labes phase formed, temperature, and holding time, which was prepared using a test piece that had been subjected to aging treatment and a material used for a long time, was calculated. Evaluate the working temperature of the material at the site to be surveyed.

【0009】[0009]

【発明の実施の形態】本発明の方法においては、先ず高
温部品の調査対象部位の表面を鏡面研摩した後、計測に
必要な面積を残して絶縁塗料等を用いてマスキングす
る。計測に必要な面積は、安定した計測値を得るために
十分多くの結晶粒が計測面積中に含まれるようにするた
め0.5cm2 以上とするのが好ましく、特に0.5〜
1cm2程度の範囲が好適である。計測面の形状は特に
限定する必要はないが、面積を測定しやすいように矩形
状とするのが好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the method of the present invention, first, a surface of a high-temperature component to be inspected is mirror-polished, and then masked with an insulating paint or the like while leaving an area necessary for measurement. The area required for measurement is preferably 0.5 cm 2 or more in order to ensure that a sufficiently large number of crystal grains are included in the measurement area in order to obtain a stable measurement value.
A range of about 1 cm 2 is preferred. The shape of the measurement surface does not need to be particularly limited, but is preferably rectangular so that the area can be easily measured.

【0010】次いで、電気化学測定を行うため、前記計
測面が電解液に浸るようにする。その方法としては、例
えば計測面の周囲に粘土などで堰を設け、その中に電解
液を満たすようにすればよい。また、調査対象部位の場
所、形状等によって計測面上に電解液を満たすことがで
きないような場合には、電解液をゲル状にして円筒状の
容器等に入れ、計測面にゲルの先端部を接触させるよう
にする方法を採ることもできる。
Next, in order to perform an electrochemical measurement, the measurement surface is immersed in an electrolytic solution. As a method thereof, for example, a weir made of clay or the like may be provided around the measurement surface, and the weir may be filled with the electrolyte. Also, if the electrolyte cannot be filled on the measurement surface due to the location, shape, etc. of the site to be surveyed, the electrolyte is gelled and placed in a cylindrical container, etc., and the tip of the gel is placed on the measurement surface. May be brought into contact with each other.

【0011】このようにして計測面を浸した電解液又は
そのゲル内に電流計測のための対極を設置する。さら
に、計測面の近傍の電解液に接しない部分に対象部の電
極をスポット溶接法等によって構成し、別に設けられた
参照溶液管を電解液又はそのゲルと塩橋で接続して参照
溶液内に参照電極を設ける。また、塩橋を設けない場合
にはそのまま電解液の十分離れた位置に参照電極を設け
ることもできる。
In this way, a counter electrode for measuring the current is provided in the electrolyte or gel containing the measurement surface. Furthermore, the electrode of the target part is formed by spot welding or the like in a portion not in contact with the electrolyte near the measurement surface, and a separately provided reference solution tube is connected to the electrolyte or its gel with a salt bridge to form a solution in the reference solution. Is provided with a reference electrode. If no salt bridge is provided, a reference electrode may be provided at a position sufficiently distant from the electrolyte.

【0012】対象部電極、参照電極及び対極をポテンシ
ョスタットに接続して、対象部電極と参照電極間の電位
を制御して対象部に電位を与えて(分極させて)対象部
電極と対極間の電流を計測する。得られた電流を測定面
積で割って電流密度とする。
The target part electrode, the reference electrode, and the counter electrode are connected to a potentiostat, and the potential between the target part electrode and the reference electrode is controlled to apply a potential to the target part (polarize) so that the potential between the target part electrode and the counter electrode is changed. And measure the current. The obtained current is divided by the measurement area to obtain a current density.

【0013】計測面を浸す電解液としては、例えば1M
のKOH水溶液が使用できる。この電解液は、該水溶液
1リットルに対して20g程度の高吸水性アクリル酸樹
脂を混合させるなどの方法によってゲル化させることが
できる。
As an electrolytic solution for immersing the measurement surface, for example, 1M
Can be used. This electrolytic solution can be gelled by a method such as mixing about 20 g of a superabsorbent acrylic resin with 1 liter of the aqueous solution.

【0014】電流の測定は次のようにして行う。先ず外
部から電位をかけない状態に5分間保持する。ここで参
照電極として飽和カロメル電極(SCE:Satylated Ca
lmerElectrode)を用いた場合には自然電位は約−50
0mVになる。その後、一定の電位掃引速度で貴方向に
分極し(大きさを徐々に変化させながら電位を付与
し)、このときに対象部電極と対極間に流れる電流をモ
ニタリングして、この値を測定領域の面積で割った値を
電流密度として、電位−電流密度曲線を得る。具体的に
は、例えば、+400mV程度まで約30mV/分の掃
引速度で電位をかける(分極する)。
The current is measured as follows. First, a state where no potential is applied from the outside is maintained for 5 minutes. Here, a saturated calomel electrode (SCE: Satylated Ca
lmmerElectrode), the spontaneous potential is about -50
It becomes 0 mV. Then, it is polarized in the noble direction at a constant potential sweep speed (potential is applied while gradually changing the size), and at this time, the current flowing between the target part electrode and the counter electrode is monitored, and this value is measured. The potential-current density curve is obtained by using the value obtained by dividing the area by the current density as the current density. Specifically, for example, a potential is applied (polarized) at a sweep rate of about 30 mV / min up to about +400 mV.

【0015】8〜12%Crを含有する鋼に現れるラベ
ス相(ここではFe2 MoとFe2W)は、この電解液
を用いると電位約+200〜300mVに電流密度の高
いピークが現れ、この電位でラベス相が溶解する。これ
らの鋼では、製造ままの状態ではラベス相は生成してい
ないが、長時間加熱されるに従ってラベス相が生成し、
増加してくる。そこで、本発明の方法においては、上記
の鋼について予め実験室的に種々の温度で種々の保持時
間の加熱試験を行った試験片(時効処理した試験片)を
用いて、上述した方法で電位−電流密度曲線を得て+2
00〜300mVの電位に現れるピークの電流密度(I
P )を計測し、それらの値とシャルピー衝撃値、クリー
プ破断時間あるいは加熱温度及び時間との関係を求めて
おき、それを用いることによって測定対象部位のIP
計測するだけでシャルピー衝撃値、クリープ破断時間及
び使用温度を求めることができ、高温損傷を評価できる
ようにした。
The Laves phase (here, Fe 2 Mo and Fe 2 W) appearing in steel containing 8 to 12% Cr shows a high current density peak at a potential of about +200 to 300 mV when this electrolytic solution is used. The Laves phase dissolves at the potential. In these steels, a Laves phase is not generated as it is manufactured, but a Laves phase is generated as it is heated for a long time,
Will increase. Therefore, in the method of the present invention, a test piece (aged test piece) which has been subjected to a heating test for various holding times at various temperatures in a laboratory in advance in the above-mentioned steel is used, and the potential is determined by the method described above. −2 after obtaining the current density curve
The current density of the peak appearing at a potential of 00 to 300 mV (I
P) was measured, their values and Charpy impact value, to previously obtain a relation between the creep rupture time or heating temperature and time, just Charpy impact value measuring the I P of stbm by using it, The creep rupture time and the use temperature can be obtained, and the high temperature damage can be evaluated.

【0016】すなわち、前記の加熱試験を行ったそれぞ
れの試験片について、その金属組織を観察して、ラベ
ス相の面積率を画像処理装置を用いて測定し、IP とラ
ベス相面積率との関係線図を作成し、シャルピー衝撃
試験片を採取して任意の温度でシャルピー衝撃試験を行
って衝撃値を求め、IP とシャルピー衝撃値との関係線
図を作成し、クリープ破断試験片を加工して、任意の
条件でクリープ破断試験を行って破断時間を求め、IP
とクリープ破断時間との関係線図を作成する。そして、
測定対象部位についてのIP 測定結果とこれらの関係線
図とから、ラベス相面積率、シャルピー衝撃値、クリー
プ破断時間等を求めることができる。
[0016] That is, for each of the test specimens subjected to the heating test described above, by observing the metallic structure, the area ratio of the Laves phase was measured using an image processing apparatus, the I P and Laves phase area ratio create a relational diagram, determine the impact value by performing a Charpy impact test at any temperature were taken Charpy impact test piece, to create a relational diagram between I P and Charpy impact value, the creep rupture test specimen After processing, a creep rupture test was performed under arbitrary conditions to determine the rupture time, and I P
Create a relationship diagram between the time and the creep rupture time. And
And a I P measurements and these relational diagram of the measurement target sites can be determined Laves phase area ratio, Charpy impact value, the creep rupture time and the like.

【0017】以下、本発明の作用、効果について説明す
る。焼戻しマルテンサイト鋼においてラベス相は熱処理
ままの状態では生成せず、長時間高温で暴露することに
よって次第に生成、成長する。また、その生成位置は結
晶粒界であることが多く、いったん生成すると粗大化し
やすく、母地に比べて脆いために、靱性が低下する。さ
らに、ラベス相は固溶強化元素であるMoおよびWを含
有するために、その生成によってこれらの固溶強化元素
の母地の固溶濃度が減少し、クリープ強度が低下するこ
とが知られている。すなわち、ラベス相の生成、成長
は、耐熱鋼の高温損傷の主な要因となっている。
The operation and effect of the present invention will be described below. In tempered martensitic steel, the Laves phase does not form as it is in the heat treatment, but gradually forms and grows by prolonged exposure to high temperatures. In addition, the formation position is often at the crystal grain boundary, and once formed, it is likely to become coarse and brittle as compared to the base, so that the toughness is reduced. Furthermore, since the Laves phase contains Mo and W, which are solid solution strengthening elements, it is known that the formation thereof reduces the solid solution concentration of the matrix of these solid solution strengthening elements and lowers the creep strength. I have. That is, the generation and growth of the Laves phase are the main factors of high-temperature damage of heat-resistant steel.

【0018】そのため、前記従来技術の項に述べたよう
に金属組織を観察してラベス相の生成量を評価する試み
が行われている。本発明は、このラベス相の生成の状態
を非破壊的に検出評価することから、従来の技術である
非破壊検査法では検出できなかったき裂発生以前の高温
損傷およびき裂の生成を伴わない高温損傷を検出できる
ようになった。さらに、従来技術に示したような機械試
験と異なり機械部品からの試験片採取の必要がないこと
から、評価後の機械の補修復旧作業を必要としなくなっ
た。
For this reason, as described in the section of the prior art, an attempt has been made to observe the metal structure and evaluate the generation amount of the Laves phase. Since the present invention non-destructively detects and evaluates the state of the generation of the Laves phase, it does not involve high-temperature damage and crack generation before crack initiation which could not be detected by the conventional nondestructive inspection method. High temperature damage can now be detected. Further, unlike the mechanical test as shown in the prior art, there is no need to collect a test piece from a mechanical part, so that it is no longer necessary to repair and repair the machine after the evaluation.

【0019】さらに、本発明では、高温損傷と関係する
ラベス相の析出量を従来からの金属組織による方法と異
なり、電気化学的な手法によって計測するようにした。
したがって、本発明方法によれば機械部品の設置現場で
電気化学測定を行いその結果がすぐに得られることか
ら、その場で機械部品の高温損傷の程度を評価できるよ
うになった。
Further, in the present invention, the amount of precipitation of the Laves phase related to high-temperature damage is measured by an electrochemical method, unlike the conventional method using a metal structure.
Therefore, according to the method of the present invention, the electrochemical measurement is performed at the installation site of the mechanical component, and the result can be obtained immediately, so that the degree of high-temperature damage of the mechanical component can be evaluated on the site.

【0020】[0020]

【実施例】以下、本発明の実施例を図を参照して説明す
る。火力発電用ボイラの高温部材として使用される0.
1C−9Cr−1Mo−0.05Nb−0.2V鋼の試
験片を用いて、600℃及び625℃で1〜30000
hの加熱試験を実施した。該加熱試験片から10mm×
10mm×5mmの試験片を採取し、表面10mm四方
を研摩紙及びダイヤモンドペーストを用いて鏡面研摩
し、その裏面に白金線をスポット溶接した。鏡面研摩し
た表面の8mm×8mmの領域以外を絶縁塗料で被覆
し、さらに側面裏面及び白金線を絶縁塗料で被覆した。
被覆後、被覆されていない研摩面の面積を計測した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. It is used as a high-temperature member for boilers for thermal power generation.
Using a test piece of 1C-9Cr-1Mo-0.05Nb-0.2V steel, 1-3000 at 600 ° C. and 625 ° C.
h was subjected to a heating test. 10 mm from the heated test piece
A 10 mm × 5 mm test piece was sampled, and a 10 mm square surface was mirror-polished using abrasive paper and diamond paste, and a platinum wire was spot-welded to the back surface. The area other than the 8 mm × 8 mm area of the mirror-polished surface was covered with an insulating paint, and the back side and the platinum wire were further covered with the insulating paint.
After coating, the area of the uncoated polished surface was measured.

【0021】図1に本発明の実施例における測定装置の
概略図を示す。測定装置の構成は日本工業規格JIS
G0579に準拠した。まず、前記試験片1にスポット
溶接した白金電極線をガラス管で被覆し、溶液から隔離
した状態で白金製対極2との間の電位をポテンショスタ
ット3で測定する。さらに、試験片1と対極2間に電位
を与え、寒天を充填した塩橋4を介して設置された飽和
甘こう電極製の参照電極5と試験片1間の電位を測定
し、電位と電流値をパソコン6に記録するようにした。
測定は、十分に窒素を通して脱酸素化した電解液に試験
片を浸漬し、自然電極電位から+400mVまで貴側に
0.5mV/secで掃引して、電流を計測した。電解
液はラベス相の溶解を検出する液を探査した結果、1M
水酸化カリウム溶液として、電解液は、図示しない恒温
槽で30±1℃になるようにした。
FIG. 1 is a schematic diagram of a measuring apparatus according to an embodiment of the present invention. The configuration of the measuring device is Japanese Industrial Standard JIS
According to G0579. First, a platinum electrode wire spot-welded to the test piece 1 is covered with a glass tube, and the potential between the platinum electrode and the platinum electrode 2 is measured with a potentiostat 3 while being isolated from the solution. Further, a potential is applied between the test piece 1 and the counter electrode 2, and the potential between the reference electrode 5 made of a saturated ginger electrode and the test piece 1 installed through the salt bridge 4 filled with agar is measured. The value was recorded on the personal computer 6.
For the measurement, the test piece was immersed in an electrolyte solution that had been sufficiently deoxygenated by passing nitrogen, and was swept from the natural electrode potential to +400 mV on the noble side at 0.5 mV / sec, and the current was measured. As a result of exploring a solution for detecting the dissolution of the Laves phase, 1 M
As the potassium hydroxide solution, the temperature of the electrolytic solution was adjusted to 30 ± 1 ° C. in a thermostat (not shown).

【0022】図2はこのようにして測定した受入まま材
と600℃×10000h時効材(熱処理した試験片)
の分極曲線を示す図である。ここで、横軸は腐食電位、
縦軸は電流を試験片の測定面積で割った電流密度であ
る。時効材には電位約+210mV/SCEにピークが
認められた(SCEは参照電極として飽和カロメル電極
を用いたことを示す)。そこで、金属組織を観察しやす
くするために、前記時効材の研摩した面をあらかじめピ
クリン酸塩酸水溶液で化学エッチングして、前述した電
気化学測定を行い、ピーク電位である約+210mV/
SCEで一定時間保持して、その後測定を中断した試験
片の組織観察を行った結果、ラベス相は認められなくな
り、この電位で保持することによってラベス相が溶解す
る(観察されなくなる)ことが明らかになった。
FIG. 2 shows the as-received material and the aged material at 600 ° C. × 10000 h (heat-treated test piece) measured in this way.
FIG. 3 is a diagram showing a polarization curve of the present invention. Here, the horizontal axis is the corrosion potential,
The vertical axis is the current density obtained by dividing the current by the measured area of the test piece. In the aging material, a peak was observed at a potential of about +210 mV / SCE (SCE indicates that a saturated calomel electrode was used as a reference electrode). Therefore, in order to make it easier to observe the metal structure, the polished surface of the aging material is chemically etched in advance with an aqueous solution of picric acid hydrochloride, and the above-mentioned electrochemical measurement is performed. The peak potential is about +210 mV /
As a result of observing the structure of the test piece which was held for a certain period of time in the SCE and the measurement was interrupted, the Labes phase was no longer observed, and it was apparent that the Labes phase was dissolved (disappeared) by holding at this potential. Became.

【0023】そこで、種々の時効材について前記電気化
学測定を行い、+210mV/SCEでの電流密度をI
p として計測した。さらに、これらの試験片について化
学エッチングを行って、走査型オージェ電子分光分析装
置を用いてモリブデンと鉄が主に検出される析出物をラ
ベス相としてその面積率を求めた。図3に前記電気化学
測定によるピーク電流密度Ip と従来法によって求めた
ラベス相面積率との関係を示す。従来方法である金属組
織に着目した方法で求めたラベス相面積率と電気化学的
に測定したピーク電流密度との間にはよい相関が認めら
れ、この方法によって、電子顕微鏡などの分析装置を用
いることなく、その場でラベス相の生成量を測定できる
ことがわかった。
Therefore, the above electrochemical measurement was performed on various aging materials, and the current density at +210 mV / SCE was calculated as I
Measured as p . Further, these test pieces were subjected to chemical etching, and the area ratio was determined using a precipitate in which molybdenum and iron were mainly detected as a Laves phase using a scanning Auger electron spectrometer. It said showing the relationship between Laves phase area ratio as determined by electrochemical peak current density I p and the conventional method by measuring in FIG. A good correlation was observed between the Laves phase area ratio determined by a method focusing on the metal structure, which is a conventional method, and the peak current density electrochemically measured. By this method, an analyzer such as an electron microscope was used. It was found that the production amount of the Laves phase could be measured on the spot without any problem.

【0024】図4は受入まま材及び時効材について測定
した0℃における2mmVノッチシャルピー衝撃値とピ
ーク電流密度Ip との関係を示す図である。ピーク電流
密度Ip が大きくなるにしたがって(すなわち、ラベス
相が多くなるにしたがって)衝撃値は低下しており、ラ
ベス相の生成量を本発明方法により非破壊的に測定する
ことによって、長時間加熱による靱性低下を評価できる
ことがわかった。
[0024] FIG. 4 is a diagram showing the relationship between 2mmV notch Charpy impact value and the peak current density I p at 0 ℃ measured for acceptance Mom material and aging material. The impact value decreases as the peak current density I p increases (ie, as the Laves phase increases), and the non-destructive measurement of the generation amount of the Laves phase according to the method of the present invention allows a long time. It was found that the decrease in toughness due to heating can be evaluated.

【0025】また、図5は受入まま材及び時効材につい
て測定した650℃、100MPaにおけるクリープ破
断時間とピーク電流密度Ip との関係の1例を示す模式
図である。ピーク電流密度Ip の大きさ(すなわち、ラ
ベス相の生成量)はクリープ破断強度の低下とよく相関
しており、本発明方法によって長時間加熱によるクリー
プ破断強度の低下を評価できることが明らかである。
FIG. 5 is a schematic diagram showing an example of the relationship between the creep rupture time at 650 ° C. and 100 MPa and the peak current density I p measured for the as-received material and the aged material. The magnitude of the peak current density I p (i.e., the amount of Laves phase) correlates well with the reduction in creep rupture strength, it is clear that can evaluate the decrease in creep rupture strength due to prolonged heating by the method of the present invention .

【0026】さらに、ラベス相の各温度(T)及び時間
(t)における析出量Xは以下の式で表され、係数K
(T)が温度依存性を持っている。したがって、機械部
品において本発明方法によって求めたラベス相析出量と
機械部品の運転時間から、K(t)を求めると、K
(T)の温度依存性から、該機械部品の使用温度を求め
ることができる。また、Xeqは試験温度範囲では温度に
依存しない係数である。
Further, the amount X of precipitation of the Laves phase at each temperature (T) and time (t) is represented by the following equation, and the coefficient K
(T) has temperature dependency. Therefore, when K (t) is determined from the amount of Laves phase precipitation obtained by the method of the present invention and the operation time of the mechanical part, the K
From the temperature dependence of (T), the working temperature of the machine component can be determined. Xeq is a coefficient that does not depend on temperature in the test temperature range.

【数1】X=Xeq [1−exp(-kt n )]X = X eq [1-exp (-kt n )]

【0027】[0027]

【発明の効果】以上詳述したように、本発明方法によれ
ば火力発電プラントなどの高温部品に多用されている焼
戻しマルテンサイト鋼に長時間高温で使用されることに
よって生じる靱性低下、クリープ破断強度低下などの高
温損傷の程度を、供用状態のままで、精度よく求めるこ
とができること、また、ボイラ内部の火炎に触れる伝熱
管や付着金物など使用時の温度を直接測定できない機械
部品の実際の使用温度を求めることができることから、
高温で運転される機器の長時間にわたる安全な運用に貢
献できる。
As described above in detail, according to the method of the present invention, the toughness is reduced and the creep rupture is caused by using the tempered martensitic steel which is frequently used for high temperature parts such as thermal power plants at a high temperature for a long time. The degree of high-temperature damage, such as a decrease in strength, can be accurately determined in the service state, and the actual temperature of machine parts that cannot directly measure the temperature during use, such as heat transfer tubes and adhered hardware that touch the flame inside the boiler, can be measured. Since the operating temperature can be determined,
It can contribute to safe operation of equipment operated at high temperatures for a long time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における測定装置の概略図。FIG. 1 is a schematic diagram of a measuring device according to an embodiment of the present invention.

【図2】受入まま材と600℃×10000h時効材の
分極曲線の模式図。
FIG. 2 is a schematic diagram of polarization curves of an as-received material and an aged material at 600 ° C. for 10,000 hours.

【図3】本発明方法によるピーク電流密度Ip と従来法
によって求めたラベス相面積率との関係を示す模式図。
FIG. 3 is a schematic diagram showing a relationship between a peak current density Ip according to the method of the present invention and a Laves phase area ratio obtained by a conventional method.

【図4】受入まま材及び時効材について測定した0℃に
おける2mmVノッチシャルピー衝撃値とピーク電流密
度Ip との関係を示す模式図。
FIG. 4 is a schematic diagram showing the relationship between a 2 mm V notch Charpy impact value at 0 ° C. and a peak current density I p measured for an as-received material and an aging material.

【図5】受入まま材及び時効材について測定した650
℃、100MPaにおけるクリープ破断強度とピーク電
流密度Ip との関係を示す。
FIG. 5: 650 measured for as-received and aged materials
4 shows the relationship between the creep rupture strength at 100 ° C. and 100 MPa and the peak current density Ip .

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 8〜12重量%のCrを含有する焼戻し
マルテンサイト系鋼の高温損傷を評価するに当たり、次
の1)〜7)の手順により操作することを特徴とする焼
戻しマルテンサイト鋼の高温損傷評価方法。 1)長時間高温で使用された焼戻しマルテンサイト系鋼
からなる高温部品の調査対象部位の表面を鏡面に研摩す
る。 2)前記鏡面研摩面のうち計測に必要な面積を残して他
をマスキングし、マスキングしていない面(計測面)の
面積を測定する。 3)電解溶液又はこれをゲル化したものに前記鏡面研摩
面を浸し、適切な参照電極及び対極を設置するとともに
計測面に電極線を接続し、電流計測準備を整える。 4)自然電極電位を計測後、一定の電位掃引速度で貴方
向に分極し、溶解電流と電位を記録する。 5)特定の析出物であるラベス相(Laves相)の溶
解に対応して得られる溶解電流−電位曲線上のほぼ一定
の電位に現れる電流値のピーク値を求める。 6)あらかじめ時効処理した試験片を用いて作成したピ
ーク電流密度(ピーク電流を計測面積で割った値)とラ
ベス相の生成量との関係を示す評価線図からラベス相の
生成量を求める。 7)得られたラベス相の生成量から、あらかじめ時効処
理した試験片を用いて作成したラベス相生成量と衝撃値
との関係線図を用いて、調査対象部位の材料の衝撃値を
求め、それにより靱性を評価する。
1. A method for evaluating the high-temperature damage of a tempered martensitic steel containing 8 to 12% by weight of Cr, wherein the operation is performed according to the following steps 1) to 7). High temperature damage evaluation method. 1) Polish the surface of the inspection target site of a high-temperature component made of tempered martensitic steel used at a high temperature for a long time to a mirror surface. 2) The other of the mirror-polished surfaces is masked except for the area required for measurement, and the area of the unmasked surface (measurement surface) is measured. 3) The mirror-polished surface is immersed in an electrolytic solution or a gel thereof, and an appropriate reference electrode and a counter electrode are installed, and an electrode wire is connected to the measurement surface to prepare for current measurement. 4) After measuring the natural electrode potential, polarize in a noble direction at a constant potential sweep rate, and record the dissolution current and potential. 5) A peak value of a current value appearing at a substantially constant potential on a dissolution current-potential curve obtained in accordance with the dissolution of the Laves phase (Laves phase) as a specific precipitate is determined. 6) The generation amount of the Laves phase is obtained from an evaluation diagram showing the relationship between the peak current density (the value obtained by dividing the peak current by the measurement area) and the generation amount of the Laves phase, which is prepared using a test piece that has been subjected to aging treatment in advance. 7) From the obtained amount of generation of the Laves phase, using the relationship diagram between the amount of generation of the Laves phase and the impact value prepared using a test piece aged in advance, the impact value of the material at the site to be investigated was obtained. Thereby, the toughness is evaluated.
【請求項2】 請求項1に記載の焼戻しマルテンサイト
鋼の高温損傷評価方法において、手順7)の代わりに次
の手順8)の操作を行うことを特徴とする焼戻しマルテ
ンサイト鋼の高温損傷評価方法。 8)得られたラベス相の生成量から、あらかじめ時効処
理した試験片を用いて作成したラベス相生成量と破断時
間との関係線図を用いて、調査対象部位の材料の破断強
度を求め、それによりクリープ損傷を評価する。
2. The method for evaluating the high-temperature damage of a tempered martensitic steel according to claim 1, wherein the operation of the following step 8) is performed instead of the step 7). Method. 8) From the obtained amount of Labes phase generation, the breaking strength of the material at the site to be investigated was determined by using a relationship diagram between the amount of Labes phase generation and the breaking time created using a test piece that had been aged in advance, The creep damage is thereby evaluated.
【請求項3】 請求項1に記載の焼戻しマルテンサイト
鋼の高温損傷評価方法において、手順7)の代わりに次
の手順9)の操作を行うことを特徴とする焼戻しマルテ
ンサイト鋼の高温損傷評価方法。 9)得られたラベス相の生成量と高温部品の累計運転時
間から、あらかじめ時効処理した試験片及び長時間使用
材を用いて作成したラベス相生成量−温度−保持時間の
間の関係式を用いて、調査対象部位の材料の使用温度を
評価する。
3. The method for evaluating high-temperature damage of a tempered martensitic steel according to claim 1, wherein the operation of the following step 9) is performed instead of the step 7). Method. 9) From the obtained amount of labes phase and the total operation time of the high-temperature parts, the relational expression between the amount of labes phase formed, temperature, and holding time, which was prepared using a test piece that had been subjected to aging treatment and a material used for a long time, was calculated. Evaluate the working temperature of the material at the site to be surveyed.
JP03199297A 1997-02-17 1997-02-17 High temperature damage evaluation method for tempered martensitic steel Expired - Fee Related JP3486315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03199297A JP3486315B2 (en) 1997-02-17 1997-02-17 High temperature damage evaluation method for tempered martensitic steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03199297A JP3486315B2 (en) 1997-02-17 1997-02-17 High temperature damage evaluation method for tempered martensitic steel

Publications (2)

Publication Number Publication Date
JPH10227754A true JPH10227754A (en) 1998-08-25
JP3486315B2 JP3486315B2 (en) 2004-01-13

Family

ID=12346423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03199297A Expired - Fee Related JP3486315B2 (en) 1997-02-17 1997-02-17 High temperature damage evaluation method for tempered martensitic steel

Country Status (1)

Country Link
JP (1) JP3486315B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092478A (en) * 2007-10-05 2009-04-30 Mitsubishi Heavy Ind Ltd Method of evaluating degradation in heat-resistant steel and method of evaluating degradation in turbine
JP2010038553A (en) * 2008-07-31 2010-02-18 Hatsuden Setsubi Gijutsu Kensa Kyokai TOUGHNESS EVALUATING METHOD OF HIGH Cr-BASED STEEL STRUCTURE
JP2012132933A (en) * 2012-03-09 2012-07-12 Mitsubishi Heavy Ind Ltd Deterioration assessing method for heat-resistant steel and deterioration assessing method for turbines
JP2019052916A (en) * 2017-09-14 2019-04-04 富士電機株式会社 METHOD FOR DETECTING LAVES PHASE OF HIGH-Cr COPPER
CN115808458A (en) * 2022-11-21 2023-03-17 华电能源股份有限公司富拉尔基发电厂 Method for evaluating aging state of heat-resistant steel based on electrochemical technology

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6344741B2 (en) * 2015-01-30 2018-06-20 三菱日立パワーシステムズ株式会社 Operating temperature estimation method and creep life estimation method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092478A (en) * 2007-10-05 2009-04-30 Mitsubishi Heavy Ind Ltd Method of evaluating degradation in heat-resistant steel and method of evaluating degradation in turbine
JP2010038553A (en) * 2008-07-31 2010-02-18 Hatsuden Setsubi Gijutsu Kensa Kyokai TOUGHNESS EVALUATING METHOD OF HIGH Cr-BASED STEEL STRUCTURE
JP4664399B2 (en) * 2008-07-31 2011-04-06 財団法人発電設備技術検査協会 Evaluation method of toughness of high Cr steel structures
JP2012132933A (en) * 2012-03-09 2012-07-12 Mitsubishi Heavy Ind Ltd Deterioration assessing method for heat-resistant steel and deterioration assessing method for turbines
JP2019052916A (en) * 2017-09-14 2019-04-04 富士電機株式会社 METHOD FOR DETECTING LAVES PHASE OF HIGH-Cr COPPER
CN115808458A (en) * 2022-11-21 2023-03-17 华电能源股份有限公司富拉尔基发电厂 Method for evaluating aging state of heat-resistant steel based on electrochemical technology

Also Published As

Publication number Publication date
JP3486315B2 (en) 2004-01-13

Similar Documents

Publication Publication Date Title
Shaikh et al. Use of eddy current testing method in detection and evaluation of sensitisation and intergranular corrosion in austenitic stainless steels
Darowicki et al. Investigation of pitting corrosion of stainless steel by means of acoustic emission and potentiodynamic methods
NO319344B1 (en) Electrochemical noise engineering for corrosion
CN100573181C (en) Utilize the method for ferromagnetic materials surface stray magnetic field signal monitoring fatigue damage
Bellezze et al. Electrochemical characterization of three corrosion-resistant alloys after processing for heating-element sheathing
JP3486315B2 (en) High temperature damage evaluation method for tempered martensitic steel
Scully et al. Methods for determining aqueous corrosion reaction rates
JP3064107B2 (en) High-temperature damage evaluation method for austenitic heat-resistant steel
Yonezu et al. Monitoring of stress corrosion cracking in stainless steel weldments by acoustic and electrochemical measurements
Schmiedt et al. Characterisation of the corrosion fatigue behaviour of brazed AISI 304L/BNi-2 joints in synthetic exhaust gas condensate
JP3495543B2 (en) Evaluation method for creep damage of tempered martensitic steel
JPWO2003091709A1 (en) Generation and propagation method of intergranular stress corrosion cracking of specimen
JPH06249828A (en) Detection of carbide in low alloy steel by electrochemical polarization method
JPH10170503A (en) Evaluation method for creep life of tempered martensite heat-resisting steel
JP6963745B2 (en) Laves phase detection method for high Cr steel
JP2729679B2 (en) Evaluation method of aging and embrittlement of chromium-molybdenum steel by electrochemical method
Liu et al. Corrosion behavior of the high‐strength low alloy steel welded joint in natural seawater
Oltra et al. Real-time monitoring of intergranular corrosion damage on AA2024
JP3441181B2 (en) Method for detecting deterioration of super heat resistant alloy steel
JPH1183842A (en) Remaining service life determination method for cr-mo steel heating furnace pipe
JPH02157642A (en) Gel electrode for electrochemical measurement for evaluating deterioration degree of metallic material
JPH04235346A (en) Method for detecting grain-boundary segregation property of metal material
JP3202462B2 (en) Creep strain measurement method for heat resistant ferritic steel
Moitra et al. Instrumented drop-weight test results for normalised and tempered 9Cr 1Mo steel
Luz et al. Use of double loop electrochemical potentiokinetic reactivation (DL-EPR) to evaluate the sensitization of austenitic steels after welding

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030924

LAPS Cancellation because of no payment of annual fees