JP2939715B2 - Single crystal manufacturing equipment - Google Patents

Single crystal manufacturing equipment

Info

Publication number
JP2939715B2
JP2939715B2 JP19664695A JP19664695A JP2939715B2 JP 2939715 B2 JP2939715 B2 JP 2939715B2 JP 19664695 A JP19664695 A JP 19664695A JP 19664695 A JP19664695 A JP 19664695A JP 2939715 B2 JP2939715 B2 JP 2939715B2
Authority
JP
Japan
Prior art keywords
furnace
single crystal
crystal
cylindrical body
viewing window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19664695A
Other languages
Japanese (ja)
Other versions
JPH0948692A (en
Inventor
英一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP19664695A priority Critical patent/JP2939715B2/en
Publication of JPH0948692A publication Critical patent/JPH0948692A/en
Application granted granted Critical
Publication of JP2939715B2 publication Critical patent/JP2939715B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、単結晶製造装置に
関し、特に蒸気圧の高いAs,P等の元素を含むGaA
s,InP等の化合物半導体単結晶の製造に適用して有
用な装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing a single crystal, and more particularly to GaAs containing elements such as As and P having a high vapor pressure.
The present invention relates to an apparatus useful for producing a compound semiconductor single crystal such as s, InP and the like.

【0002】[0002]

【従来の技術】GaAs等の化合物半導体の単結晶を製
造する方法の一つとして、原料融液に種結晶を接触さ
せ、その種結晶を徐々に引き上げることにより単結晶を
成長させる引上げ法が知られている。例えば、この製造
方法の実施に使用される単結晶製造装置には、結晶育成
の開始時や育成中に炉内を観察するための石英ロッドで
できた覗き窓が設けられている。しかし、結晶育成の進
行に伴って、覗き窓にAs等の高蒸気圧成分元素が付着
して窓が曇ってしまい、炉内の観察が困難になるという
問題点があった。
2. Description of the Related Art As one method of manufacturing a single crystal of a compound semiconductor such as GaAs, a pulling method is known in which a seed crystal is brought into contact with a raw material melt and the seed crystal is gradually pulled to grow the single crystal. Have been. For example, a single crystal manufacturing apparatus used to carry out this manufacturing method is provided with a viewing window made of a quartz rod for observing the inside of a furnace at the start of crystal growth or during crystal growth. However, with the progress of crystal growth, a high vapor pressure component element such as As adheres to the viewing window and the window becomes cloudy, which makes it difficult to observe the inside of the furnace.

【0003】そこで、従来、覗き窓の炉内側の端面に対
して、高圧ガスを吹き付けるようにしたり(特開昭50
−140055号公報に記載されている)、ヒーターに
より加熱するようにしたり(特開平4−59690号公
報に記載されている)、該端面を保護する複数のレンズ
を結晶育成中に交換できるようにする(実開平1−11
9063号公報に記載されている)ことにより、該端面
にAs等が付着するのを防止するようにした装置の提案
がなされている。
Therefore, conventionally, high-pressure gas has been blown against the end face of the inside of the furnace of the viewing window (Japanese Patent Laid-Open Publication No.
-140055), heating with a heater (described in JP-A-4-59690), and replacing a plurality of lenses for protecting the end face during crystal growth. Do (actual Kaihei 1-11)
No. 9063) has been proposed to prevent As or the like from adhering to the end face.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、本発明
者が上記従来技術について検討したところ、以下のよう
な問題点があることが明らかとなった。すなわち、上記
特開昭50−140055号公報に記載された装置で
は、吹き付けたガスにより炉内のガスの対流が乱れるだ
けでなく、吹き付けた高圧ガスが断熱膨張することによ
り熱バランス等が崩れ、育成結晶が多結晶化し易い。ま
た、特開平4−59690号公報に記載された装置で
は、本来炉内上部が冷えているのが好ましいにもかかわ
らず、覗き窓の炉内側の端面を加熱するヒーターにより
炉内上部が温められてしまい、熱バランスが崩れて育成
結晶が多結晶化し易い。さらに、実開平1−11906
3号公報に記載された装置では、複数の保護レンズの回
転機構等により装置の構成が複雑となり、装置自体のコ
スト及びメンテナンス等のコストが嵩んでしまう。
However, when the present inventor studied the above prior art, it became clear that there were the following problems. That is, in the apparatus described in JP-A-50-140055, not only the convection of the gas in the furnace is disturbed by the sprayed gas, but also the heat balance and the like are disrupted by the adiabatic expansion of the sprayed high-pressure gas, The grown crystal is easily polycrystallized. Further, in the apparatus described in JP-A-4-59690, the upper part of the furnace is heated by a heater for heating the inner end face of the viewing window, although the upper part of the furnace is preferably cooled. As a result, the heat balance is lost and the grown crystal is likely to be polycrystallized. In addition, the actual practice 1-11-1906
In the device described in Japanese Patent Laid-Open Publication No. 3 (1994), the configuration of the device becomes complicated due to the rotation mechanism of the plurality of protective lenses, and the cost of the device itself and the cost of maintenance and the like increase.

【0005】本発明は、上記問題点を解決するためにな
されたもので、炉内の熱バランス等を乱さずに、高蒸気
圧成分の付着によって覗き窓が曇るのを防ぐことができ
るように改良した単結晶製造装置を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and is intended to prevent the observation window from fogging due to the attachment of high vapor pressure components without disturbing the heat balance in the furnace. An object of the present invention is to provide an improved single crystal manufacturing apparatus.

【0006】[0006]

【課題を解決するための手段】加熱炉内を観察するため
の覗き窓を有する結晶成長装置において、前記覗き窓
は、炉内に突出する透明な棒体と、該棒体の炉内突出部
分の側面を囲みかつ同棒体の炉内側の端面よりも突出す
る筒体とを備え、該筒体は、前記加熱炉内の冷却による
低温部分に接触していることを特徴とする。このように
すれば、炉内のガス成分が覗き窓の筒体により冷却され
固化してその筒体に付着するため、透視用の透明な棒体
の炉内側の端面にガス成分が付着するのを防止できるの
で、結晶育成の開始から終了にいたるまで、炉内の視界
が確保され、結晶育成過程を観察することができる。
In a crystal growth apparatus having a viewing window for observing the inside of a heating furnace, the viewing window includes a transparent rod projecting into the furnace, and a protruding portion of the rod in the furnace. And a cylindrical body surrounding the side surface of the rod and protruding from an inner end surface of the rod body, wherein the cylindrical body is in contact with a low-temperature portion caused by cooling in the heating furnace. With this configuration, the gas component in the furnace is cooled and solidified by the barrel of the viewing window and adheres to the barrel, so that the gas component adheres to the end face inside the furnace of the transparent rod for fluoroscopy. Can be prevented, the visibility in the furnace is secured from the start to the end of crystal growth, and the crystal growth process can be observed.

【0007】この発明において、前記筒体の熱伝導率は
10Wm-1-1以上であるとよい。また、前記筒体の長
さは、炉内のガス成分が固化して同筒体に十分に付着し
得る長さ以上で、かつ視野を狭めない程度の長さ以下で
あるとよい。さらに、前記筒体は、ステンレス鋼または
モリブデンでできているとよい。
[0007] In the present invention, the thermal conductivity of the cylindrical body is preferably 10 Wm -1 K -1 or more. Further, the length of the cylindrical body is preferably longer than a length at which gas components in the furnace are solidified and sufficiently attached to the same cylindrical body, and shorter than a length that does not narrow the field of view. Further, the cylinder may be made of stainless steel or molybdenum.

【0008】[0008]

【発明の実施の形態】図1は本発明に係る単結晶製造装
置の一例の概略を示す図である。同図に示すように、こ
の単結晶製造装置1は、液体封止チョクラルスキー(L
EC)法による単結晶引上げ用の加熱炉であり、2は水
冷ジャケット構造の高圧容器、3は高圧容器内を外部か
ら観察するための覗き窓、4は高圧容器の天井部を冷却
する水冷リフレクター部、5は原料融液6を入れるるつ
ぼ、7はB2 3 等の液体封止剤、8は種結晶、9は育
成した単結晶、10は種結晶8を支持しつつ育成結晶9
を引き上げる結晶引上げ軸、11はるつぼ5を支持する
るつぼ軸、12はヒーター、13は保温部材である。こ
の単結晶製造装置1では、覗き窓3は、例えば透視用の
石英ロッド30とその石英ロッド30を囲む保護カバー
31とでできている。
FIG. 1 is a diagram schematically showing an example of a single crystal manufacturing apparatus according to the present invention. As shown in FIG. 1, the single crystal manufacturing apparatus 1 includes a liquid-sealed Czochralski (L
A heating furnace for pulling a single crystal by the EC) method, 2 is a high-pressure vessel having a water-cooled jacket structure, 3 is a viewing window for observing the inside of the high-pressure vessel from the outside, and 4 is a water-cooled reflector that cools the ceiling of the high-pressure vessel. 5, a crucible for holding the raw material melt 6, 7 a liquid sealant such as B 2 O 3 , 8 a seed crystal, 9 a grown single crystal, 10 a grown crystal 9 supporting the seed crystal 8
, A crucible shaft for supporting the crucible 5, a heater 12, and a heat retaining member 13. In the single crystal manufacturing apparatus 1, the viewing window 3 is made of, for example, a transparent quartz rod 30 and a protective cover 31 surrounding the quartz rod 30.

【0009】石英ロッド30は、透明な棒体であり、高
圧容器2の天井部及び水冷リフレクター部4を貫通して
容器2内に突出している。そして、この石英ロッド30
を外部から覗くと、例えば図1に二点鎖線で示すような
視野が得られ、単結晶9が成長する様子を観察できる。
石英ロッド30と高圧容器2との接合部分は気密封止構
造となっている。
The quartz rod 30 is a transparent rod, and penetrates through the ceiling of the high-pressure vessel 2 and the water-cooled reflector section 4 and protrudes into the vessel 2. And this quartz rod 30
From the outside, for example, a field of view as shown by a two-dot chain line in FIG. 1 is obtained, and a state in which the single crystal 9 grows can be observed.
The joint between the quartz rod 30 and the high-pressure vessel 2 has a hermetically sealed structure.

【0010】保護カバー31は、図2に示すように、石
英ロッド30の炉内側の端面30aを除いて、炉内2に
突出している部分の側面30bを囲むカバー本体31a
と、該カバー本体31aの上端の縁に設けられたフラン
ジ部31bとからなる。
As shown in FIG. 2, the protective cover 31 has a cover body 31a surrounding a side surface 30b of a portion protruding into the furnace 2 except for an end surface 30a inside the furnace of the quartz rod 30.
And a flange portion 31b provided at an upper edge of the cover main body 31a.

【0011】カバー本体31aは、特に限定しないが、
例えば断面が円形状をなすように成形された筒体であ
る。カバー本体31aの上端は、水冷リフレクター部4
のリフレクター40の、覗き窓3が設けられた部位の傾
斜に沿うような角度(例えば、図2の例では23°)で
傾斜している。そして、保護カバー31は、フランジ部
31bを介してリフレクター40に接合され、リフレク
ター40と一体化されている。
Although the cover body 31a is not particularly limited,
For example, it is a cylindrical body formed so that its cross section has a circular shape. The upper end of the cover body 31a is a water-cooled reflector section 4.
The reflector 40 is inclined at an angle (for example, 23 ° in the example of FIG. 2) along the inclination of the portion where the viewing window 3 is provided. The protective cover 31 is joined to the reflector 40 via the flange portion 31b, and is integrated with the reflector 40.

【0012】リフレクター40は冷却パイプ41内を流
れる水により冷却されているので、カバー本体31aも
冷却される。結晶育成中にそのカバー本体31aに高圧
容器2内のガス成分が接触すると、該ガス成分は冷却さ
れて固化し、カバー本体31aに付着する。それによっ
て、石英ロッドの炉内側の端面30aにガス成分が固化
して付着するのが防止され、該端面30aが曇らないよ
うになっている。従って、保護カバー31は、冷却効果
を高めるために、熱伝導率が10Wm-1-1以上である
ような熱伝導率の良い金属等の材料、例えばステンレス
鋼(熱伝導率:400Kで15〜18Wm-1-1)やモ
リブデン(熱伝導率:400Kで134Wm-1-1)で
できている。それらステンレス鋼やモリブデンは、融点
が高いため、育成結晶や炉内雰囲気を汚染しないという
利点がある。
Since the reflector 40 is cooled by the water flowing in the cooling pipe 41, the cover body 31a is also cooled. When a gas component in the high-pressure vessel 2 comes into contact with the cover body 31a during crystal growth, the gas component is cooled and solidified, and adheres to the cover body 31a. This prevents the gas component from solidifying and adhering to the end surface 30a inside the furnace of the quartz rod, and prevents the end surface 30a from fogging. Therefore, in order to enhance the cooling effect, the protective cover 31 is made of a material such as a metal having a high thermal conductivity of 10 Wm -1 K -1 or more, such as a metal such as stainless steel (thermal conductivity: 15 K at 400 K). 1818 Wm −1 K −1 ) and molybdenum (thermal conductivity: 134 Wm −1 K −1 at 400 K). Since these stainless steels and molybdenum have a high melting point, they have the advantage of not contaminating the grown crystals and the atmosphere in the furnace.

【0013】また、特に限定しないが、例えばカバー本
体31aの下端は、高圧容器2に取り付けられた石英ロ
ッド30の傾き度合、視野の広さ及び高圧容器2内のガ
ス成分の流れなどを考慮して、適当な角度(例えば、図
2の例では14°)で傾いている。
Although not particularly limited, for example, the lower end of the cover main body 31a is made in consideration of the degree of inclination of the quartz rod 30 attached to the high-pressure vessel 2, the wide field of view, the flow of gas components in the high-pressure vessel 2, and the like. Therefore, it is inclined at an appropriate angle (for example, 14 ° in the example of FIG. 2).

【0014】カバー本体31aの長さは、該カバー本体
31aに接触したガス成分が固化して十分に付着し得る
長さ以上で、かつ視野を狭めない程度の長さ以下であ
る。具体的には、特に限定しないが、石英ロッド30の
炉内側の端面30aからカバー本体31aの下端の縁の
うち最も離れている点までの突出長さd(図2参照)は
50mmである。本発明者が行った実験によれば、突出長
さdが150mm程度までなら十分実用可能な効果が得ら
れた。このように、カバー本体31aが石英ロッド30
の端面30aよりも突出していることにより、該端面3
0aが直接炉内のガス成分に曝され難くなり、保護カバ
ー31の冷却効果と相俟って、その端面30aにガス成
分が固化して付着するのを効率良く防止できる。なお、
突出長さdは、石英ロッド30の外径や観察対象となる
物体までの距離などにより適宜選択される。
The length of the cover body 31a is not less than the length at which the gas component in contact with the cover body 31a is solidified and sufficiently adhered, and not more than the length which does not narrow the field of view. Specifically, although not particularly limited, the protruding length d (see FIG. 2) from the end surface 30a inside the furnace of the quartz rod 30 to the farthest point of the lower edge of the cover main body 31a is 50 mm. According to an experiment conducted by the present inventors, a sufficiently practical effect was obtained when the protrusion length d was up to about 150 mm. Thus, the cover body 31a is
Projecting beyond the end face 30a of the end face 3a.
Oa is less likely to be directly exposed to the gas components in the furnace, and together with the cooling effect of the protective cover 31, it is possible to efficiently prevent the gas components from solidifying and adhering to the end face 30a. In addition,
The protruding length d is appropriately selected depending on the outer diameter of the quartz rod 30 and the distance to an object to be observed.

【0015】上述したように、覗き窓3の石英ロッド3
0をリフレクター40により冷却されてなる保護カバー
31で囲って保護したことにより、高圧容器2内のガス
成分が保護カバー31により冷却されて固化し、保護カ
バー31に付着する。従って、透視用の石英ロッド30
の炉内側の端面30aがガス成分の付着により曇るとい
うことがなくなるので、育成結晶9を原料融液6から切
り離すまで覗き窓3を介して外部から高圧容器2内を観
察することができる。
As described above, the quartz rod 3 of the viewing window 3
The gas component in the high-pressure vessel 2 is cooled and solidified by the protective cover 31, and adheres to the protective cover 31 by surrounding and protecting the 0 with the protective cover 31 cooled by the reflector 40. Therefore, the quartz rod 30 for see-through is used.
Since the end face 30a on the inside of the furnace is not fogged due to the adhesion of the gas component, the inside of the high-pressure vessel 2 can be observed from the outside through the viewing window 3 until the grown crystal 9 is separated from the raw material melt 6.

【0016】なお、保護カバー31は、ステンレス鋼製
やモリブデン製のものに限らず、熱伝導率が良く、育成
結晶や炉内雰囲気を汚染しないような特性を有する材料
であれば、いかなる材料を用いて作製しても良い。
The protective cover 31 is not limited to a material made of stainless steel or molybdenum, but may be made of any material having a good thermal conductivity and a property of not contaminating the grown crystal and the atmosphere in the furnace. It may be manufactured by using.

【0017】また、保護カバー31は、上記実施例のも
のに限らず、種々設計変更可能である。例えば、図3に
示すように、保護カバー31のカバー本体31aに冷却
パイプ32を巻き付けて水等を流すことにより、冷却す
るようにしても良い。或は、図4に示すように、カバー
本体31aに冷却フィン33を設けて冷却性能を上げる
ようにしても良い。
The design of the protective cover 31 is not limited to that of the above-described embodiment, but can be variously changed. For example, as shown in FIG. 3, the cooling may be performed by winding a cooling pipe 32 around the cover main body 31 a of the protective cover 31 and flowing water or the like. Alternatively, as shown in FIG. 4, a cooling fin 33 may be provided on the cover body 31a to increase the cooling performance.

【0018】さらに、炉内の熱バランスやガスの対流の
乱れという点では上記実施例よりも多少不利であるが、
図5に示すように、カバー本体31aの下方に高圧ガス
の吹出口34を設けて石英ロッド30の端面30aにガ
スを吹き付けることにより、冷却するとともに炉内のガ
ス成分が端面30aに接触するのを妨げるようにしても
良い。
Further, the heat balance in the furnace and the disturbance of the convection of the gas are somewhat disadvantageous in comparison with the above embodiment,
As shown in FIG. 5, a high-pressure gas outlet 34 is provided below the cover main body 31a to blow gas onto the end face 30a of the quartz rod 30 so that the gas component in the furnace contacts the end face 30a while cooling. May be prevented.

【0019】また、装置の構成が多少複雑になるが、図
6に示すように、カバー本体31aの下端近傍に該下端
の開口を略完全にもしくはある程度塞ぎ得るような蓋体
35を回動機構36により回動可能に支持して設け、そ
の蓋体35を回転移動させて炉内観察時のみカバー本体
31aを開口させるようにしても良い。
Although the structure of the apparatus is somewhat complicated, as shown in FIG. 6, a cover 35 is provided near the lower end of the cover main body 31a so as to close the opening at the lower end substantially or to some extent. The cover body 35a may be rotatably supported by the cover 36, and the cover 35 may be rotated to open the cover main body 31a only during observation in the furnace.

【0020】さらに、本発明は、GaAs単結晶の製造
に限らず、InPやInAsやGaSbなどの他の化合
物半導体単結晶の製造にも適用可能であるのはいうまで
もないし、LEC法において使用される上記実施例の結
晶引上げ装置以外にも、覗き窓を有する単結晶製造装置
に適用できる。
Further, the present invention is not limited to the production of a GaAs single crystal, but may be applied to the production of other compound semiconductor single crystals such as InP, InAs, and GaSb. In addition to the crystal pulling apparatus of the above embodiment, the present invention can be applied to a single crystal manufacturing apparatus having a viewing window.

【0021】[0021]

【実施例】上記構成の単結晶製造装置1を用いてLEC
法によりGaAs単結晶を製造した具体例について説明
するが、本発明はその具体例により何等制限されるもの
ではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS LEC using the single crystal manufacturing apparatus 1 having the above configuration
A specific example in which a GaAs single crystal is manufactured by the method will be described, but the present invention is not limited by the specific example.

【0022】この具体例では、覗き窓3の石英ロッド3
0の外径は50mm、カバー本体31aの石英ロッド30
の端面30aからの突出長さdは50mm、カバー本体3
1aの外径は68mm、カバー本体31aの上端及び下端
の傾き角はそれぞれ23°と14°、カバー本体31a
の厚さは約0.3mmであった。保護カバー31にはステ
ンレス鋼製のものを用いた。
In this specific example, the quartz rod 3
0 has an outer diameter of 50 mm and the quartz rod 30 of the cover body 31a.
The protruding length d from the end face 30a of the cover body 3 is 50 mm.
The outer diameter of 1a is 68 mm, the inclination angles of the upper and lower ends of the cover body 31a are 23 ° and 14 °, respectively, and the cover body 31a
Had a thickness of about 0.3 mm. The protective cover 31 was made of stainless steel.

【0023】12インチの径を有するpBN製のるつぼ
5内に27.0kgのGaAs多結晶原料と液体封止材7
としてB2 3 を入れ、それら原料及び封止剤を20kg
/cm2 のArガス雰囲気下で加熱融解した後、結晶引上
げ軸10を時計回りに6rpmで回転させるとともにる
つぼ軸11を反時計回りに20〜30rpm で回転さ
せながら、結晶引上げ軸10を毎時6.0〜8.0mmの
速度でもって上昇させるとともにるつぼ軸11を毎時
1.7mmの速度でもって上昇させ、直径4インチで直胴
部の長さ300mmのGaAs単結晶を育成した。
In a pBN crucible 5 having a diameter of 12 inches, 27.0 kg of a GaAs polycrystalline raw material and a liquid sealing material 7 are placed.
B 2 O 3 as the raw material and 20 kg of these raw materials and sealant
After heating and melting in an Ar gas atmosphere of / cm 2 , while rotating the crystal pulling shaft 10 clockwise at 6 rpm and rotating the crucible shaft 11 counterclockwise at 20 to 30 rpm, the crystal pulling shaft 10 is rotated at 6 rpm. The crucible shaft 11 was raised at a speed of 1.7 mm / h while being raised at a speed of 0.0 to 8.0 mm, and a GaAs single crystal having a diameter of 4 inches and a length of a straight body of 300 mm was grown.

【0024】その結果、育成結晶9の長さが100mmの
時、結晶長200mmの時、育成結晶9を原料融液6から
切り離す時、それぞれの時においても、覗き窓3を介し
て結晶9の形状及び結晶9と原料融液6との境界を確認
することができた。
As a result, when the length of the grown crystal 9 is 100 mm, when the crystal length is 200 mm, when the grown crystal 9 is cut off from the raw material melt 6, the crystal 9 can be cut through the viewing window 3 at each time. The shape and the boundary between the crystal 9 and the raw material melt 6 could be confirmed.

【0025】また、カバー本体31aの突出長さdを1
50mmとし、上記具体例と同じ育成条件で結晶を引き上
げたところ、結晶切離し時にいたるまで常に覗き窓3を
介して結晶の形状及び結晶と原料融液との境界を確認す
ることができた。
The projecting length d of the cover body 31a is set to 1
When the crystal was pulled up under the same growth conditions as in the above specific example, the shape of the crystal and the boundary between the crystal and the raw material melt could always be confirmed through the viewing window 3 until the crystal was separated.

【0026】さらに、保護カバー31をモリブデン製の
ものに代えて上記具体例と同じ育成条件で結晶を引き上
げたところ、結晶切離し時にいたるまで常に覗き窓3を
介して結晶の形状及び結晶と原料融液との境界を確認す
ることができた。
Further, when the protective cover 31 was replaced with a molybdenum cover and the crystal was pulled up under the same growth conditions as in the above embodiment, the crystal shape and the crystal fusion with the raw material were always passed through the viewing window 3 until the crystal was separated. The boundary with the liquid could be confirmed.

【0027】比較として、覗き窓3に保護カバー31を
取り付けていない引上げ装置を用いて、上記具体例と同
様の育成条件で結晶育成を行ったところ、育成結晶の長
さが100mmの時、結晶長200mmの時には高圧容器2
内を観察することができたが、その照度は保護カバー3
1を取り付けてある場合の1/10程度であった。ま
た、育成結晶を原料融液から切り離す時には高圧容器2
内を観察することは不可能であった。なお、結晶育成開
始時点における照度は上記具体例の結晶育成開始時点に
おける照度と同じであった。
As a comparison, when a crystal was grown under the same growth conditions as in the above specific example using a pulling device in which the protective cover 31 was not attached to the viewing window 3, the crystal was grown when the length of the grown crystal was 100 mm. High pressure vessel 2 when the length is 200 mm
I was able to observe the inside, but the illuminance was
1 was about 1/10 that of the case where 1 was attached. Further, when separating the grown crystal from the raw material melt, the high pressure vessel 2
It was impossible to observe inside. The illuminance at the start of crystal growth was the same as the illuminance at the start of crystal growth in the above specific example.

【0028】[0028]

【発明の効果】加熱炉内を観察するための覗き窓を有す
る結晶成長装置において、前記覗き窓は、炉内に突出す
る透明な棒体と、該棒体の炉内突出部分の側面を囲みか
つ同棒体の炉内側の端面よりも突出する筒体とを備え、
該筒体は、前記加熱炉内の冷却による低温部分に接触し
ているため、炉内のガス成分が覗き窓の筒体により冷却
され固化してその筒体に付着するようになり、透視用の
透明な棒体の炉内側の端面にガス成分が付着するのを防
止できるので、結晶育成の開始から終了にいたるまで、
炉内の視界が確保されて結晶育成過程を観察することが
できる。
According to the present invention, in a crystal growth apparatus having a viewing window for observing the inside of a heating furnace, the viewing window surrounds a transparent rod protruding into the furnace and a side surface of a protruding portion of the rod in the furnace. And a cylindrical body protruding from the inner end surface of the rod body,
Since the cylindrical body is in contact with a low-temperature portion due to cooling in the heating furnace, gas components in the furnace are cooled and solidified by the cylindrical body of the viewing window and adhere to the cylindrical body, and are used for fluoroscopy. Since the gas component can be prevented from adhering to the end face inside the furnace of the transparent rod body, from the start to the end of crystal growth,
The view in the furnace is secured, and the crystal growth process can be observed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る単結晶製造装置の一例の概略を示
す断面図である。
FIG. 1 is a sectional view schematically showing an example of a single crystal manufacturing apparatus according to the present invention.

【図2】その単結晶製造装置の保護カバーの一例を示す
正面図である。
FIG. 2 is a front view showing an example of a protective cover of the single crystal manufacturing apparatus.

【図3】保護カバーの他の例を示す概略図である。FIG. 3 is a schematic view showing another example of the protective cover.

【図4】保護カバーの他の例を示す概略図である。FIG. 4 is a schematic view showing another example of the protective cover.

【図5】保護カバーの他の例を示す概略図である。FIG. 5 is a schematic view showing another example of the protective cover.

【図6】保護カバーの他の例を示す概略図である。FIG. 6 is a schematic view showing another example of the protective cover.

【符号の説明】[Explanation of symbols]

1 単結晶製造装置 2 高圧容器 3 覗き窓 30 石英ロッド(棒体) 30a 端面 30b 側面 31 保護カバー(筒体) DESCRIPTION OF SYMBOLS 1 Single crystal manufacturing apparatus 2 High pressure vessel 3 Viewing window 30 Quartz rod (rod) 30a End face 30b Side face 31 Protective cover (tubular body)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 加熱炉内を観察するための覗き窓を有す
る結晶成長装置において、前記覗き窓は、炉内に突出す
る透明な棒体と、該棒体の炉内突出部分の側面を囲みか
つ同棒体の炉内側の端面よりも突出する筒体とを備え、
該筒体は、前記加熱炉内の冷却による低温部分に接触し
ていることを特徴とする単結晶製造装置。
1. A crystal growth apparatus having a viewing window for observing the inside of a heating furnace, wherein the viewing window surrounds a transparent rod protruding into the furnace and a side surface of a protruding portion of the rod in the furnace. And a cylindrical body protruding from the inner end surface of the rod body,
The single crystal manufacturing apparatus, wherein the cylindrical body is in contact with a low temperature portion caused by cooling in the heating furnace.
【請求項2】 前記筒体の熱伝導率は、10Wm-1-1
以上であることを特徴とする請求項1記載の単結晶製造
装置。
2. The thermal conductivity of the cylinder is 10 Wm −1 K −1.
2. The apparatus for producing a single crystal according to claim 1, wherein:
【請求項3】 前記筒体の長さは、炉内のガス成分が固
化して同筒体に十分に付着し得る長さ以上で、かつ視野
を狭めない程度の長さ以下であることを特徴とする請求
項1または2記載の単結晶製造装置。
3. The length of the cylindrical body is not less than a length at which gas components in the furnace are solidified and sufficiently attached to the same cylindrical body, and not more than a length that does not narrow the field of view. The single crystal production apparatus according to claim 1 or 2, wherein
【請求項4】 前記筒体は、ステンレス鋼またはモリブ
デンでできていることを特徴とする請求項1、2または
3記載の単結晶製造装置。
4. The apparatus for producing a single crystal according to claim 1, wherein the cylindrical body is made of stainless steel or molybdenum.
JP19664695A 1995-08-01 1995-08-01 Single crystal manufacturing equipment Expired - Lifetime JP2939715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19664695A JP2939715B2 (en) 1995-08-01 1995-08-01 Single crystal manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19664695A JP2939715B2 (en) 1995-08-01 1995-08-01 Single crystal manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH0948692A JPH0948692A (en) 1997-02-18
JP2939715B2 true JP2939715B2 (en) 1999-08-25

Family

ID=16361243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19664695A Expired - Lifetime JP2939715B2 (en) 1995-08-01 1995-08-01 Single crystal manufacturing equipment

Country Status (1)

Country Link
JP (1) JP2939715B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100450866B1 (en) * 2001-11-30 2004-10-01 주식회사 실트론 A cover of growing chamber
KR100872806B1 (en) * 2007-10-01 2008-12-09 주식회사 실트론 Apparatus of manufacturing silicon single crystal ingot
JP2010168259A (en) * 2009-01-26 2010-08-05 Shin Etsu Handotai Co Ltd Apparatus for producing single crystal
JP2011162393A (en) * 2010-02-09 2011-08-25 Shin Etsu Handotai Co Ltd Single crystal production apparatus and single crystal production method
KR101680216B1 (en) * 2014-12-31 2016-12-12 주식회사 엘지실트론 View port and ingot growing apparatus including the same

Also Published As

Publication number Publication date
JPH0948692A (en) 1997-02-18

Similar Documents

Publication Publication Date Title
US9217208B2 (en) Apparatus for producing single crystal
WO1999050481A1 (en) Method of manufacturing compound semiconductor single crystal
JP2939715B2 (en) Single crystal manufacturing equipment
KR910016974A (en) Crystal Growth Method And Apparatus
JPH09183686A (en) Method and apparatus for pulling up single crystal
JP3806791B2 (en) Method for producing compound semiconductor single crystal
JP3220542B2 (en) Semiconductor single crystal rod manufacturing equipment
JPH0733307B2 (en) Single crystal growth equipment
JP3203341B2 (en) Semiconductor single crystal rod manufacturing equipment
JP2723249B2 (en) Crystal growing method and crucible for crystal growing
JPH0761889A (en) Semiconductor single crystal pull device and method fir pulling semiconductor single crystal
JPH0748200A (en) Production of single crystal
JP2868204B2 (en) Equipment for producing lithium tetraborate single crystal
JP3018738B2 (en) Single crystal manufacturing equipment
JP2734820B2 (en) Method for manufacturing compound semiconductor single crystal
JP2769300B2 (en) Crystal pulling device
JP2739556B2 (en) Method for manufacturing piezoelectric crystal
JP3367616B2 (en) Single crystal manufacturing method and single crystal manufacturing apparatus
JPH01100087A (en) Single crystal pulling-up device
JPS6041037B2 (en) Manufacturing equipment for high dissociation pressure compound single crystal for semiconductors
RU2552463C1 (en) Method of fuse securing during growth of monocrystals by method of direct crystallisation from melt in horizontal glass vacuum-treated container
JPH06279169A (en) Apparatus for production of single crystalline body
JPS5895699A (en) Growing method of gaas single crystal
JPH021117B2 (en)
JPH09315881A (en) Production of semiconductor crystal